首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report here that budding yeast cAMP-dependent protein kinase (cAPK) is controlled by heat stress. A rise in temperature from 30 to 37 degrees C was found to result in both a higher expression and an increased cytoplasmic localization of its regulatory subunit Bcy1. Both of these effects required phosphorylation of serines located in its localization domain. Surprisingly, classic cAPK-controlled processes were found to be independent of Bcy1 phosphorylation, indicating that these modifications do not affect cAPK activity as such. Alternatively, phosphorylation may recruit cAPK to, and thereby control, a specific subset of (perhaps novel) cAPK targets that are presumably localized extranuclearly. Zds1 and Zds2 may play a role in this process, since these were found required to retain hyperphosphorylated Bcy1 in the cytoplasm at 37 degrees C. Mck1, a homologue of mammalian glycogen synthase kinase 3 and a downstream component of the heat-activated Pkc1-Slt2/Mpk1 cell wall integrity pathway, is partly responsible for hyperphosphorylations of Bcy1. Remarkably, Zds1 appears to act as a negative regulator of cell wall integrity signaling, and this activity is dependent in part on the phosphorylation status of Bcy1. Thus, Mck1 phosphorylation of Bcy1 and Zds1 may constitute an unprecedented negative feedback control on the cell wall integrity-signaling pathway.  相似文献   

2.
While screening for genes that reverse the sporulation-deficient phenotype of the ras1delta diploid Schizosaccharomyces pombe strain, we identified zds1. This gene shares sequence homology with the ZDS1 and ZDS2 genes from Saccharomyces cerevisiae, which appear to be involved in multiple cellular events. Expression of Zds1 in ras1delta diploid cells elevated their sporulation rate from 0.3 to 11.2%. Expression of the Zds1 C-terminal region increased the sporulation rate further (to 21.9%) while introduction of the Zds1 N-terminal region had no effect. zds1 expression did not induce sporulation in strains with mutations in genes participating in the downstream MAP kinase cascade. The zds1-disrupted strain is sensitive to CaCl2, and this effect is suppressed by the C-terminal region of Zds1. The growth of the zds1delta strain is markedly inhibited by cold temperatures, while its viability decreased in the stationary phase. Moreover, the zds1delta strain is round in shape and very sensitive to zymolyase, and its cell wall becomes thicker than that of wild type. Thus, zds1 must be required to maintain cell wall integrity. The Zds1-GFP fusion protein localized to the cytosol, the septum, and the cell cortex. Its localization in the septum was dependent on its C-terminal region. Overexpression of the C-terminal region of Zds1 induced multi-septa and abnormal zygotes. We propose that the C-terminal region is the functional domain of Zds1 while the N-terminal region is a negative regulatory region. Thus, Zds1 is involved in multiple cellular events in fission yeast, including sexual differentiation, Ca2+ tolerance, cell wall integrity, viability in the stationary phase, and cell morphology.  相似文献   

3.
4.
Budding yeast CDC55 encodes a regulatory B subunit of the PP2A (protein phosphatase 2A), which plays important roles in mitotic entry and mitotic exit. The spatial and temporal regulation of PP2A is poorly understood, although recent studies demonstrated that the conserved proteins Zds1 and Zds2 stoichiometrically bind to Cdc55-PP2A and regulate it in a complex manner. Zds1/Zds2 promote Cdc55-PP2A function for mitotic entry, whereas Zds1/Zds2 inhibit Cdc55-PP2A function during mitotic exit. In this paper, we propose that Zds1/Zds2 primarily control Cdc55 localization. Cortical and cytoplasmic localization of Cdc55 requires Zds1/Zds2, and Cdc55 accumulates in the nucleus in the absence of Zds1/Zds2. By genetically manipulating the nucleocytoplasmic distribution of Cdc55, we showed that Cdc55 promotes mitotic entry when in the cytoplasm. On the other hand, nuclear Cdc55 prevents mitotic exit. Our analysis defines the long-sought molecular function for the zillion different screens family proteins and reveals the importance of the regulation of PP2A localization for proper mitotic progression.  相似文献   

5.
Snf1 protein kinase containing the beta subunit Gal83 is localized in the cytoplasm during growth of Saccharomyces cerevisiae cells in abundant glucose and accumulates in the nucleus in response to glucose limitation. Nuclear localization of Snf1-Gal83 requires activation of the Snf1 catalytic subunit and depends on Gal83, but in the snf1Delta mutant, Gal83 exhibits glucose-regulated nuclear accumulation. We show here that the N terminus of Gal83, which is divergent from those of the other beta subunits, is necessary and sufficient for Snf1-independent, glucose-regulated localization. We identify a leucine-rich nuclear export signal in the N terminus and show that export depends on the Crm1 export receptor. We present evidence that catalytically inactive Snf1 promotes the cytoplasmic retention of Gal83 in glucose-grown cells through its interaction with the C terminus of Gal83; cytoplasmic localization of inactive Snf1-Gal83 maintains accessibility to the Snf1-activating kinases. Finally, we characterize the effects of glucose phosphorylation on localization. These studies define roles for Snf1 and Gal83 in determining the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase.  相似文献   

6.
A genetic screen for GTPase-activating proteins (GAPs) or other negative regulators of the Rac/Rho family GTPase Cdc42p in Saccharomyces cerevisiae identified ZDS1, a gene encoding a protein of 915 amino acids. Sequence from the yeast genome project identified a homolog, ZDS2, whose predicted product of 942 amino acids is 38% identical in sequence to Zds1p. Zds1p and Zds2p have no detectable homology to known Rho-GAPs or to other known proteins. However, by several assays, it appears that overexpression of either Zds1p or Zds2p decreases the level of Cdc42p activity. Deletion analysis also suggests that Zds1p and Zds2p are at least partially overlapping in function. Deletion of ZDS2 produced no obvious phenotype, and deletion of ZDS1 produced no obvious phenotype other than a mild effect on cell shape. However, the zds1 zds2 double mutant grew slowly with an apparent mitotic delay and produced elongated cells and buds with other evidence of abnormal morphogenesis. A glutathione S-transferase-Zds1p fusion protein that fully complemented the double mutant localized to presumptive bud sites and the tips of small buds. The similarity of this localization to that of Cdc42p suggests that Zds1p may interact directly with Cdc42p. As ZDS1 and ZDS2 have recently been identified also by numerous other groups studying a wide range of biological phenomena, the roles of Cdc42p in intracellular signaling may be more diverse than has previously been appreciated.  相似文献   

7.
Dok1 is believed to be a mainly cytoplasmic adaptor protein which down-regulates mitogen-activated protein kinase activation, inhibits cell proliferation and transformation, and promotes cell spreading and cell migration. Here we show that Dok1 shuttles between the nucleus and cytoplasm. Treatment of cells with leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent receptor CRM1, causes nuclear accumulation of Dok1. We have identified a functional NES (348LLKAKLTDPKED359) that plays a major role in the cytoplasmic localization of Dok1. Src-induced tyrosine phosphorylation prevented the LMB-mediated nuclear accumulation of Dok1. Dok1 cytoplasmic localization is also dependent on IKKbeta. Serum starvation or maintaining cells in suspension favor Dok1 nuclear localization, while serum stimulation, exposure to growth factor, or cell adhesion to a substrate induce cytoplasmic localization. Functionally, nuclear NES-mutant Dok1 had impaired ability to inhibit cell proliferation and to promote cell spreading and cell motility. Taken together, our results provide the first evidence that Dok1 transits through the nucleus and is actively exported into the cytoplasm by the CRM1 nuclear export system. Nuclear export modulated by external stimuli and phosphorylation may be a mechanism by which Dok1 is maintained in the cytoplasm and membrane, thus regulating its signaling functions.  相似文献   

8.
Multiple mechanisms regulate subcellular localization of human CDC6   总被引:7,自引:0,他引:7  
CDC6 is a protein essential for DNA replication, the expression and abundance of which are cell cycle-regulated in Saccharomyces cerevisiae. We have demonstrated previously that the subcellular localization of the human CDC6 homolog, HsCDC6, is cell cycle-dependent: nuclear during G(1) phase and cytoplasmic during S phase. Here we demonstrate that endogenous HsCDC6 is phosphorylated during the G(1)/S transition. The N-terminal region contains putative cyclin-dependent kinase phosphorylation sites adjoining nuclear localization sequences (NLSs) and a cyclin-docking motif, whereas the C-terminal region contains a nuclear export signal (NES). In addition, we show that the observed regulated subcellular localization depends on phosphorylation status, NLS, and NES. When the four putative substrate sites (serines 45, 54, 74, and 106) for cyclin-dependent kinases are mutated to alanines, the resulting HsCDC6A4 protein is localized predominantly to the nucleus. This localization depends upon two functional NLSs, because expression of HsCDC6 containing mutations in the two putative NLSs results in predominantly cytoplasmic distribution. Furthermore, mutation of the four serines to phosphate-mimicking aspartates (HsCDC6D4) results in strictly cytoplasmic localization. This cytoplasmic localization depends upon the C-terminal NES. Together these results demonstrate that HsCDC6 is phosphorylated at the G(1)/S phase of the cell cycle and that the phosphorylation status determines the subcellular localization.  相似文献   

9.
10.
Nuclear import and export of influenza virus nucleoprotein.   总被引:11,自引:4,他引:7       下载免费PDF全文
Influenza virus nucleoprotein (NP) shuttles between the nucleus and the cytoplasm. A nuclear localization signal (NLS) has been identified in NP at amino acids 327 to 345 (J. Davey et al., Cell 40:667-675, 1985). However, some NP mutants that lack this region still localize to the nucleus, suggesting an additional NLS in NP. We therefore investigated the nucleocytoplasmic transport of NP from influenza virus A/WSN/33 (H1N1). NP deletion constructs lacking the 38 N-terminal amino acids, as well as those lacking the 38 N-terminal amino acids and the previously identified NLS, localized to both the cytoplasm and the nucleus. Nuclear localization of a protein containing amino acids 1 to 38 of NP fused to LacZ proved that these 38 amino acids function as an NLS. Within this region, we identified two basic amino acids, Lys7 and Arg8, that are crucial for NP nuclear import. After being imported into the nucleus, the wild-type NP and the NP-LacZ fusion construct containing amino acids 1 to 38 of NP were both transported back to the cytoplasm, where they accumulated. These data indicate that NP has intrinsic structural features that allow nuclear import, nuclear export, and cytoplasmic accumulation in the absence of any other viral proteins. Further, the information required for nuclear import and export is located in the 38 N-terminal amino acids of NP, although other NP nuclear export signals may exist. Treatment of cells with a protein kinase C inhibitor increased the amounts of nuclear NP, whereas treatment of cells with a phosphorylation stimulator increased the amounts of cytoplasmic NP. These findings suggest a role of phosphorylation in nucleocytoplasmic transport of NP.  相似文献   

11.
The Ran GTPase activating protein RanGAP1 plays an essential role in nuclear transport by stimulating RanGTP hydrolysis in the cytoplasmic compartment. In mammalian cells, unmodified RanGAP1 is predominantly cytoplasmic, whereas modification by small ubiquitin-related modifier protein (SUMO) targets RanGAP1 to the cytoplasmic filaments of nuclear pore complex (NPC). Although RanGAP1 contains nine putative nuclear export signals and a nuclear localization signal, little is known if RanGAP1 shuttles between the nuclear and cytoplasmic compartments and how its primary localization in the cytoplasm and at the NPC is regulated. Here we show that inhibition of CRM1-mediated nuclear export using RNAi-knockdown of CRM1 and inactivation of CRM1 by leptomycin B (LMB) results in nuclear accumulation of RanGAP1. LMB treatment induced a more robust redistribution of RanGAP1 from the cytoplasm to the nucleoplasm compared to CRM1 RNAi and also uniquely triggered a decrease or loss of RanGAP1 localization at the NPC, suggesting that LMB treatment is more effective in inhibiting CRM1-mediated nuclear export of RanGAP1. Our time-course analysis of LMB treatment reveals that the NPC-associated RanGAP1 is much more slowly redistributed to the nucleoplasm than the cytoplasmic RanGAP1. Furthermore, LMB-induced nuclear accumulation of RanGAP1 is positively correlated with an increase in levels of SUMO-modified RanGAP1, suggesting that SUMOylation of RanGAP1 may mainly take place in the nucleoplasm. Lastly, we demonstrate that the nuclear localization signal at the C-terminus of RanGAP1 is required for its nuclear accumulation in cells treated with LMB. Taken together, our results elucidate that RanGAP1 is actively transported between the nuclear and cytoplasmic compartments, and that the cytoplasmic and NPC localization of RanGAP1 is dependent on CRM1-mediated nuclear export.  相似文献   

12.
SR proteins (splicing factors containing arginine-serine repeats) are essential factors that control the splicing of precursor mRNA by regulating multiple steps in spliceosome development. The prototypical SR protein ASF/SF2 (human alternative splicing factor) contains two N-terminal RNA recognition motifs (RRMs) (RRM1 and RRM2) and a 50-residue C-terminal RS (arginine-serine-rich) domain that can be phosphorylated at numerous serines by the protein kinase SR-specific protein kinase (SRPK) 1. The RS domain [C-terminal domain that is rich in arginine-serine repeats (residues 198-248)] is further divided into N-terminal [RS1: N-terminal portion of the RS domain (residues 198-227)] and C-terminal [RS2: C-terminal portion of the RS domain (residues 228-248)] segments whose modification guides the nuclear localization of ASF/SF2. While previous studies revealed that SRPK1 phosphorylates RS1, regiospecific and temporal-specific control within the largely redundant RS domain is not well understood. To address this issue, we performed engineered footprinting and single-turnover experiments to determine where and how SRPK1 initiates phosphorylation within the RS domain. The data show that local sequence elements in the RS domain control the strong kinetic preference for RS1 phosphorylation. SRPK1 initiates phosphorylation in a small region of serines (initiation box) in the middle of the RS domain at the C-terminal end of RS1 and then proceeds in an N-terminal direction. This initiation process requires both a viable docking groove in the large lobe of SRPK1 and one RRM (RRM2) on the N-terminal flank of the RS domain. Thus, while local RS/SR content steers regional preferences in the RS domain, distal contacts with SRPK1 guide initiation and directional phosphorylation within these regions.  相似文献   

13.
Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase   总被引:5,自引:0,他引:5  
The serine/threonine kinase, Pim-1, appears to be involved in regulating proliferation, differentiation and cell survival of lymphoid and myeloid cells. In this study, we have found that amino acid residues 140-147 (RKRRQTSM) at the C-terminal end of p21(Cip1/WAF1), a cyclin-dependent kinase (CDK) inhibitor, constitute an ideal phosphorylation consensus sequence for Pim-1. We demonstrate that Pim-1 efficiently phosphorylates this peptide sequence as well as the p21 protein in vitro. We also demonstrate by pull-down assay and by immunoprecipitation that Pim-1 associates with p21. During phorbol ester-induced differentiation of U937 cells, both Pim-1 and p21 expression levels increase with Pim-1 levels increasing in both the nucleus and cytoplasm while p21 remains primarily cytoplasmic. Co-transfection of wild type p21 with wild type Pim-1 results in cytoplasmic localization of p21 while co-transfection of wild type p21 with kinase dead Pim-1 results in nuclear localization of p21. Consistent with the results from the phosphoamino acid assay, Pim-1 phosphorylates transfected p21 only on Thr(145) in p21-deficient human fibroblasts and this phosphorylation event results in the cytoplasmic localization of p21. These findings demonstrate that Pim-1 associates with and phosphorylates p21 in vivo, which influences the subcellular localization of p21.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) cascade is a ubiquitous signaling module that transmits extracellular stimuli through the cytoplasm to the nucleus; in response to activating stimuli, MAPKs translocate into the nucleus. Mammalian MEK MAPK kinases (MAPKKs) have in their N termini an MAPK-docking site and a nuclear export signal (NES) sequence, which are known to play critical roles in maintaining ERK MAPKs in the cytoplasm of unstimulated cells. Herein, we show that the Wis1 MAPKK of the stress-activated Spc1 MAPK cascade in fission yeast also has a MAPK-docking site and an NES sequence in its N-terminal domain. Unexpectedly, an inactivating mutation to the NES of chromosomal wis1(+) does not affect the subcellular localization of Spc1 MAPK, whereas this NES mutation disturbs the cytoplasmic localization of Wis1. However, when Wis1 is targeted to the nucleus by fusing to a nuclear localization signal sequence, stress-induced nuclear translocation of Spc1 is abrogated, indicating that cytoplasmic Wis1 is required for nuclear transport of Spc1 upon stress. Moreover, we have observed that a fraction of Wis1 translocates into the nucleus in response to stress. These results suggest that cytoplasmic localization of Wis1 MAPKK by its NES is important for stress signaling to the nucleus.  相似文献   

15.
The human immunodeficiency virus type 1 (HIV-1) protein U (VpU) is an accessory protein responsible for enhancement of viral particle release and down regulation of the T-lymphocyte coreceptor CD4. Direct binding between the cytoplasmic domains of CD4 and VpU as well as phosphorylation of serines 53 and 57 in the cytoplasmic domain of VpU plays a central role in CD4 downregulation. We investigated structural consequences of phosphorylation of the two serines using nuclear magnetic resonance spectroscopy. A uniformly 15N and 13C stable isotope-labeled 45-residue peptide comprising the cytoplasmic domain of VpU (VpUcyt) was recombinantly produced in E .coli. The peptide forms two helices (commonly referred to as helix 2 and 3) in the presence of membrane mimicking dodecylphosphocholine (DPC) micelles, which flank a flexible region containing the two phosphorylation sites. Phosphorylation does not cause any drastic structural changes in the secondary structure of VpUcyt. However, an N-terminal elongation of helix 3 and a slightly reduced helicity at the C-terminus of helix 2 are observed upon phosphorylation based on characteristic changes of 13Calpha and 13Cbeta chemical shifts. Phosphorylation also reduces the local mobility of the protein backbone in the loop region containing the phosphorylation sites according to heteronuclear 1H--15N nuclear Overhauser enhancement (NOE) data.  相似文献   

16.
Entry into mitosis requires the phosphorylation of multiple substrates by cyclin B-Cdk1, while exit from mitosis requires their dephosphorylation, which depends largely on the phosphatase PP2A in complex with its B55 regulatory subunit (Tws in Drosophila). At mitotic entry, cyclin B-Cdk1 activates the Greatwall kinase, which phosphorylates Endosulfine proteins, thereby activating their ability to inhibit PP2A-B55 competitively. The inhibition of PP2A-B55 at mitotic entry facilitates the accumulation of phosphorylated Cdk1 substrates. The coordination of these enzymes involves major changes in their localization. In interphase, Gwl is nuclear while PP2A-B55 is cytoplasmic. We recently showed that Gwl suddenly relocalizes from the nucleus to the cytoplasm in prophase, before nuclear envelope breakdown and that this controlled localization of Gwl is required for its function. We and others have shown that phosphorylation of Gwl by cyclin B-Cdk1 at multiple sites is required for its nuclear exclusion, but the precise mechanisms remained unclear. In addition, how Gwl returns to its nuclear localization was not explored. Here we show that cyclin B-Cdk1 directly inactivates a Nuclear Localization Signal in the central region of Gwl. This phosphorylation facilitates the cytoplasmic retention of Gwl, which is exported to the cytoplasm in a Crm1-dependent manner. In addition, we show that PP2A-Tws promotes the return of Gwl to its nuclear localization during cytokinesis. Our results indicate that the cyclic changes in Gwl localization at mitotic entry and exit are directly regulated by the antagonistic cyclin B-Cdk1 and PP2A-Tws enzymes.  相似文献   

17.
18.
The double-stranded RNA-activated-protein kinase PKR was originally identified as a ribosomal protein that regulates protein synthesis at the translational level. While PKR locates predominantly to the cytoplasm, nuclear or nucleolar species of PKR have been detected. Here, we demonstrate that PKR possesses three leucine-rich sequences resembling nuclear export signals (NESs). Enhanced green fluorescent protein (EGFP) fused to one of these sequences and transfected in COS-1 cells exhibited predominant cytoplasmic staining, which was abrogated by a leucine to alanine substitution. In addition, Leptomycin B (LMB), an inhibitor of NES-mediated nuclear export, inhibited the cytoplasmic localization of EGFP-NES, indicating the potential activity of these stretches as NESs. Although EGFP fused to a PKR with three NES mutations still located to the cytoplasm, an additional N-terminal deletion impaired the cytoplasmic predominance, suggesting that the N-terminal region is also required for localization. These results suggest that the cytoplasmic localization of PKR is regulated by NESs as well as the N-terminal sequence.  相似文献   

19.
The cyclin B1/Cdc2 complex regulates many of the dramatic cellular rearrangements observed at mitosis. Although predominantly cytoplasmic during interphase, this kinase complex translocates precipitously to the nucleus at the G(2)-M transition. The interphase cytoplasmic location of cyclin B1/Cdc2 reflects continuous, albeit slow, nuclear import and much more rapid nuclear export. In contrast, the sudden nuclear accumulation of the complex before entry into mitosis reflects a marked increase in the import rate, with a concomitant inhibition of cyclin B1 nuclear export. These dynamic changes in cyclin B1/Cdc2 localization are regulated by phosphorylation of four serines within a region of cyclin B1 known as the cytoplasmic retention sequence (CRS). Phosphorylation of all four serines is required for rapid nuclear entry, whereas phosphorylation of only the last in the series (Ser 113) is required to prevent nuclear export by CRM1. As these residues represent key loci of regulation, it is important to identify the kinases acting on these sites. Here we report that Xenopus cyclin B1 is regulated by both Erk and Plx kinases, and that Cdc2, counter to previous speculation, is not required for CRS phosphorylation. Phosphorylation of the first two of the CRS serines (Ser 94 and Ser 96) is catalyzed by Erk in the Xenopus system. Although it was previously reported that Ser 113 is a Plx substrate, we were unable to observe phosphorylation of this residue in isolation by purified Plx. Rather, in contrast to previously published data, we have found that the penultimate CRS serine (Ser 101) is a Plx substrate. Collectively, these data demonstrate a new role for Erk in mitotic regulation, identify the Ser 101-directed kinase, and provide a picture of cyclin B1/Cdc2 regulation by the combinatorial action of distinct kinases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号