首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aboveground net primary production (ANPP) is a key integrator of C uptake and energy flow in many terrestrial ecosystems. As such, ecologists have long sought to understand the factors driving variation in this important ecosystem process. Although total annual precipitation has been shown to be a strong predictor of ANPP in grasslands across broad spatial scales, it is often a poor predictor at local scales. Here we examine the amount of variation in ANPP that can be explained by total annual precipitation versus precipitation during specific periods of the year (precipitation periods) and nutrient availability at three sites representing the major grassland types (shortgrass steppe, mixed-grass prairie, and tallgrass prairie) spanning the broad precipitation gradient of the U.S. Central Great Plains. Using observational data, we found that precipitation periods and nutrient availability were much stronger predictors of site-level ANPP than total annual precipitation. However, the specific nutrients and precipitation periods that best predicted ANPP differed among the three sites. These effects were mirrored experimentally at the shortgrass and tallgrass sites, with precipitation and nutrient availability co-limiting ANPP, but not at the mixed-grass site, where nutrient availability determined ANPP exclusive of precipitation effects. Dominant grasses drove the ANPP response to increased nutrient availability at all three sites. However, the relative responses of rare grasses and forbs were greater than those of the dominant grasses to experimental nutrient additions, thus potentially driving species turnover with chronic nutrient additions. This improved understanding of the factors driving variation in ANPP within ecosystems spanning the broad precipitation gradient of the Great Plains will aid predictions of alterations in ANPP under future global change scenarios.  相似文献   

2.
Across US Great Plains grasslands, a gradient of increasing mean annual precipitation from west to east corresponds to increasing aboveground net primary productivity (ANPP) and increasing N-limitation. Previous work has shown that there is no increase in net N mineralization rates across this gradient, leading to the question of where eastern prairie grasses obtain the nitrogen to support production. One as-yet unexamined source is soil organic N, despite abundant literature from other ecosystems showing that plants take up dissolved soil organic N. This study measured KCl-extractable dissolved organic N (DON) in surface soils across the grassland productivity gradient. We found that KCl-extractable DON pools increased from west to east. If available to and used by plants, this DON may help explain the high ANPP in the eastern Great Plains. These results suggest a need for future research to determine whether, in what quantities, and in what forms prairie grasses use organic N to support primary production.  相似文献   

3.
Grassland Precipitation-Use Efficiency Varies Across a Resource Gradient   总被引:12,自引:2,他引:12  
Aboveground net primary production (ANPP) is positively related to mean annual precipitation, an estimate of water availability. This relationship is fundamental to our understanding and management of grassland ecosystems. However, the slope of the relationship between ANPP and precipitation (precipitation-use efficiency, PUE) has been shown to be different for temporal compared with spatial precipitation series. When ANPP and precipitation are averaged over a number of years for different sites, PUE is similar for grasslands all over the world. Studies for two US Long Term Ecological Research Sites have shown that PUE derived from a long-term dataset (temporal model) has a significantly lower slope than the value derived for sites distributed across the US central grassland region (spatial model). PUE differences between the temporal model and the spatial model may be associated with both vegetational and biogeochemical constraints. Here we use two independent datasets, one derived from field estimates of ANPP and the other from remote sensing, to show that the PUE is low at both the dry end and the wet end of the annual precipitation gradient typical of grassland areas (200–1200 mm), and peaks around 475 mm. The intermediate peak may be related to relatively low levels of both vegetational and biogeochemical constraints at this level of resource availability. Received 2 June 1998; accepted 21 October 1998.  相似文献   

4.
Knowledge of how ecosystem carbon (C) processes respond to variations in precipitation is crucial for assessing impacts of climate change on terrestrial ecosystems. In this study, we examined variations of shoot and root biomass, standing and surface litter, soil respiration, and soil C content along a natural precipitation gradient from 430 to 1200 mm in the southern Great Plains, USA. Our results show that shoot biomass and soil respiration increased linearly with mean annual precipitation (MAP), whereas root biomass and soil C content remained relatively constant along the precipitation gradient. Consequently, the root/shoot ratio linearly decreased with MAP. However, patterns of standing, surface, and total litter mass followed quadratic relationships with MAP along the gradient, likely resulting from counterbalance between litter production and decomposition. Those linear/quadratic equations describing variations of ecosystem C processes with precipitation could be useful for model development, parameterization, and validation at landscape and regional scales to improve predictions of C dynamics in grasslands in response to climate change. Our results indicated that precipitation is an important driver in shaping ecosystem functioning as reflected in vegetation production, litter mass, and soil respiration in grassland ecosystems.  相似文献   

5.
We studied the aboveground net primary productivity (ANPP) of wheat crops in the Argentine Pampas. Our specific objectives were to determine (a) the response of ANPP to changes in water availability (b) the regional patterns of ANPP and (c) the interannual variability and environmental controls of ANPP. We used ground and satellite data to address these questions. Wheat ANPP was calculated as the ratio between grain yield and harvest index. We developed a simple model that took into account environmental and genetic improvement effects upon harvest index. We used the normalized difference vegetational index (NDVI) as a surrogate for ANPP at the county level. Straight-line regression models were fitted to single-year and average values of ANPP and precipitation to derive temporal and spatial models for wheat. For grasslands, we used spatial and temporal models already published. At any given site, there was no difference between modeled wheat and grassland average ANPP. The response of ANPP to changes in interannual water availability decreased along the precipitation gradient when vegetation structure (for example, species composition, density, and total cover) was held constant (wheat crops). Wheat ANPP and total production variability, estimated from remotely sensed data, decreased as mean annual precipitation (MAP) increased. The percentage of soils without drainage problems was the variable that explained most of the wheat ANPP spatial variability as shown by stepwise linear regression. Precipitation variability accounted for 49% of wheat ANPP variability. Remotely sensed estimates of ANPP variability showed lower and wheat ANPP higher temporal variability than annual precipitation.  相似文献   

6.
For most ecosystems, net ecosystem exchange of CO2 (NEE) varies within and among years in response to environmental change. We analyzed measurements of CO2 exchange from eight native rangeland ecosystems in the western United States (58 site‐years of data) in order to determine the contributions of photosynthetic and respiratory (physiological) components of CO2 exchange to environmentally caused variation in NEE. Rangelands included Great Plains grasslands, desert shrubland, desert grasslands, and sagebrush steppe. We predicted that (1) week‐to‐week change in NEE and among‐year variation in the response of NEE to temperature, net radiation, and other environmental drivers would be better explained by change in maximum rates of ecosystem photosynthesis (Amax) than by change in apparent light‐use efficiency (α) or ecosystem respiration at 10 °C (R10) and (2) among‐year variation in the responses of NEE, Amax, and α to environmental drivers would be explained by changes in leaf area index (LAI). As predicted, NEE was better correlated with Amax than α or R10 for six of the eight rangelands. Week‐to‐week variation in NEE and physiological parameters correlated mainly with time‐lagged indices of precipitation and water‐related environmental variables, like potential evapotranspiration, for desert sites and with net radiation and temperature for Great Plains grasslands. For most rangelands, the response of NEE to a given change in temperature, net radiation, or evaporative demand differed among years because the response of photosynthetic parameters (Amax, α) to environmental drivers differed among years. Differences in photosynthetic responses were not explained by variation in LAI alone. A better understanding of controls on canopy photosynthesis will be required to predict variation in NEE of rangeland ecosystems.  相似文献   

7.
The large organic carbon (C) pools found in noncultivated grassland soils suggest that historically these ecosystems have had high rates of C sequestration. Changes in the soil C pool over time are a function of alterations in C input and output rates. Across the Great Plains and at individual sites through time, inputs of C (via aboveground production) are correlated with precipitation; however, regional trends in C outputs and the sensitivity of these C fluxes to annual variability in precipitation are less well known. To address the role of precipitation in controlling grassland C fluxes, and thereby soil C sequestration rates, we measured aboveground and belowground net primary production (ANPP-C and BNPP-C), soil respiration (SR-C), and litter decomposition rates for 2 years, a relatively dry year followed by a year of average precipitation, at five sites spanning a precipitation gradient in the Great Plains. ANPP-C, SR-C, and litter decomposition increased from shortgrass steppe (36, 454, and 24 g C m–2 y–1) to tallgrass prairie (180, 1221, and 208 g C m–2 y–1 for ANPP-C, SR-C, and litter decomposition, respectively). No significant regional trend in BNPP-C was found. Increasing precipitation between years increased rates of ANPP-C, BNPP-C, SR-C, and litter decomposition at most sites. However, regional patterns of the sensitivity of ANPP-C, BNPP-C, SR-C, and litter decomposition to between-year differences in precipitation varied. BNPP-C was more sensitive to between-year differences in precipitation than were the other C fluxes, and shortgrass steppe was more responsive than were mixed grass and tallgrass prairie.  相似文献   

8.
Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2‐year experiment in three US Great Plains grasslands – the C4‐dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3‐dominated northern mixed grass prairie (NMP; intermediate ANPP) – to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high‐rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11–13) small or (ii) fewer (3–5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3‐dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above‐ and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands.  相似文献   

9.
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.  相似文献   

10.
Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in soil water regimes between the IM and GP regions may be useful for understanding the potential influence of climate changes on soil water patterns and resulting dominant plant functional groups in both regions.  相似文献   

11.
In the Great Plains of North America potential evaporation exceeds precipitation during most months of the year. About 75% of the annual precipitation is received from April through September, and is accompanied by high temperatures and low relative humidity. Dryland agriculture in the Great Plains has depended on wheat production in a wheat-fallow agroecosystem (one crop year followed by a fallow year). Historically this system has used mechanical weed control practices during the fallow period, which leaves essentially no crop residue cover for protection against soil erosion and greatly accelerates soil organic carbon oxidation. This paper reviews the progress made in precipitation management in the North American Great Plains and synthesises data from an existing long-term experiment to demonstrate the management principles involved. The long-term experiment was established in 1985 to identify dryland crop and soil management systems that would maximize precipitation use efficiency (maximization of biomass production per unit of precipitation received), improve soil productivity, and increase economic return to the farmers in the West Central portion of the Great Plains. Embedded within the primary objective are sub-objectives that focus on reducing the amount of summer fallow time and reversing the soil degradation that has occurred in the wheat-fallow cropping system. The experiment consists of four variables: 1) Climate regime; 2) Soils; 3) Management systems; and 4) Time. The climate variable is based on three levels of potential evapotranspiration (ET), which are represented by three sites in eastern Colorado. All sites have annual long-term precipitation averages of approximately 400–450 mm, but vary in growing season open pan evaporation from 1600 mm in the north to 1975 mm in the south. The soil variable is represented by a catenary sequence of soils at each site. Management systems, the third variable, differ in the amount of summer fallow time and emphasize increased crop diversity. All systems are managed with no-till techniques. The fourth variable is time, and the results presented in this paper are for the first 12 yr (3 cycles of the 4-yr system). Comparing yields of cropping systems that differ in cycle length and systems that contain fallow periods, when no crop is produced, is done with a technique called “annualisation”. Yields are “annualised” by summing yields for all crops in the system and dividing by the total number of years in the system cycle. For example in a wheat-fallow system the wheat yield is divided by two because it takes 2 yr to produce one crop. Cropping system intensification increased annualised grain and crop residue yields by 75 to 100% compared to wheat-fallow. Net return to farmers increased by 25% to 45% compared to wheat-fallow. Intensified cropping systems increased soil organic C content by 875 and 1400 kg ha−1, respectively, after 12 yr compared to the wheat-fallow system. All cropping system effects were independent of climate and soil gradients, meaning that the potential for C sequestration exists in all combinations of climates and soils. Soil C gains were directly correlated to the amount of crop residue C returned to the soil. Improved macroaggregation was also associated with increases in the C content of the aggregates. Soil bulk density was reduced by 0.01g cm−3 for each 1000 kg ha−1 of residue addition over the 12-yr period, and each 1000 kg ha−1 of residue addition increased effective porosity by 0.3%. No-till practices have made it possible to increase cropping intensification beyond the traditional wheat-fallow system and in turn water-use efficiency has increased by 30% in West Central Great Plains agroecosystems. Cropping intensification has also provided positive feedbacks to soil productivity via the increased amounts of crop residue being returned to the soil.  相似文献   

12.
One of the major concerns about global warming is the potential for an increase in decomposition and soil respiration rates, increasing CO2 emissions and creating a positive feedback between global warming and soil respiration. This is particularly important in ecosystems with large belowground biomass, such as grasslands where over 90% of the carbon is allocated belowground. A better understanding of the relative influence of climate and litter quality on litter decomposition is needed to predict these changes accurately in grasslands. The Long‐Term Intersite Decomposition Experiment Team (LIDET) dataset was used to evaluate the influence of climatic variables (temperature, precipitation, actual evapotranspiration, and climate decomposition index), and litter quality (lignin content, carbon : nitrogen, and lignin : nitrogen ratios) on leaf and root decomposition in the US Great Plains. Wooden dowels were used to provide a homogeneous litter quality to evaluate the relative importance of above and belowground environments on decomposition. Contrary to expectations, temperature did not explain variation in root and leaf decomposition, whereas precipitation partially explained variation in root decomposition. Percent lignin was the best predictor of leaf and root decomposition. It also explained most variation in root decomposition in models which combined litter quality and climatic variables. Despite the lack of relationship between temperature and root decomposition, temperature could indirectly affect root decomposition through decreased litter quality and increased water deficits. These results suggest that carbon flux from root decomposition in grasslands would increase, as result of increasing temperature, only if precipitation is not limiting. However, where precipitation is limiting, increased temperature would decrease root decomposition, thus likely increasing carbon storage in grasslands. Under homogeneous litter quality, belowground decomposition was faster than aboveground and was best predicted by mean annual precipitation, which also suggests that the high moisture in soil accelerates decomposition belowground.  相似文献   

13.
The increase in atmospheric nitrogen (N) deposition has resulted in some terrestrial ecological changes. In order to identify the response of sensitive indicators to N input and estimate the sensitivity and saturation thresholds in alpine grasslands, we set up a series of multilevel N addition experiments in four types of alpine grasslands (alpine meadow [AM], alpine meadow‐steppe [AMS], alpine steppe [AS], and alpine desert‐steppe [ADS]) along with a decreasing precipitation gradient from east to west on the Northern Tibetan Plateau. N addition only had significant effects on species diversity in AMS, while had no effects on the other three alpine grasslands. Aboveground biomass of grasses and overall community in ADS were enhanced with increasing N addition, but such effects did not occur in AS. Legume biomass in ADS and AS showed similar unimodal patterns and exhibited a decreasing tend in AM. Regression fitting showed that the most sensitive functional groups were grasses, and the N saturation thresholds were 103, 115, 136, and 156 kg N hm?2 year?1 in AM, AMS, AS, and ADS, respectively. This suggests that alpine grasslands become more and more insensitive to N input with precipitation decrease. N saturation thresholds also negatively correlated with soil N availability. N sensitivity differences caused by precipitation and nutrient availability suggest that alpine grasslands along the precipitation gradient will respond differently to atmospheric N deposition in the future global change scenario. This different sensitivity should also be taken into consideration when using N fertilization to restore degraded grasslands.  相似文献   

14.
Variation in aboveground net primary production (ANPP) is usually studied across wide environmental gradients focusing on spatial averages of zonal natural communities. We studied the spatial and temporal variation of ANPP of upland sown pastures and lowland natural grasslands across a narrow gradient of precipitation and temperature. The Flooding Pampa (Argentina) encompasses an 850–1000 mm range of mean annual precipitation and a 13.8–16.0°C range of mean annual temperature. For 15 100 × 100 km cells, we obtained mean monthly precipitation, temperature, and paddock-level ANPP of upland pastures and lowland grasslands during 8 years. Mean annual ANPP of lowland grasslands and upland sown pastures was positively related to mean annual precipitation. ANPP of upland pastures was 60–80% larger and increased more steeply with mean annual precipitation. ANPP seasonality also changed across the gradient. In lowland grasslands, as mean annual precipitation increased, ANPP monthly maximum increased, minimum decreased, and the duration of the growing season shortened. In contrast, in upland pastures, ANPP monthly maximum was constant, minimum increased, and the growing season lengthened with increasing precipitation. ANPP was more stable across years for lowland grasslands than for upland pastures. The response of annual ANPP to current-year precipitation decreased across the gradient, while the importance of the previous-year precipitation increased. In summary, we found strong spatial and temporal patterns of ANPP across a narrow environmental gradient. In addition, landscape position and species composition heavily influenced those patterns.  相似文献   

15.
Unexpected patterns of sensitivity to drought in three semi-arid grasslands   总被引:1,自引:0,他引:1  
Cherwin K  Knapp A 《Oecologia》2012,169(3):845-852
Global climate models forecast an increase in the frequency and intensity of extreme weather events, including severe droughts. Based on multi-year relationships between precipitation amount and aboveground annual net primary production (ANPP), semi-arid grasslands are projected to be among the most sensitive ecosystems to changes in precipitation. To assess sensitivity to drought, as well as variability within the shortgrass steppe biome, we imposed moderate and severe rainfall reductions for two growing seasons in three undisturbed grasslands that varied in soil type and climate. We predicted strong drought-induced reductions in ANPP at all sites and greater sensitivity to drought in sites with lower average precipitation, consistent with continental-scale patterns. Identical experimental infrastructure at each site reduced growing season rainfall events by 50 or 80%, and significantly reduced average soil moisture in both years (by 21 and 46% of control levels, respectively). Despite reductions in soil moisture, ANPP responses varied unexpectedly-from no reduction in ANPP to a 51% decrease. Although sensitivity to drought was highest in the semi-arid grassland with lowest mean annual precipitation, patterns in responses to drought across these grasslands were also strongly related to rainfall event size. When growing season rainfall patterns were dominated by many smaller events, ANPP was significantly reduced by drought but not when rainfall patterns were characterized by large rain events. This interaction between drought sensitivity and rainfall event size suggests that ANPP responses to future droughts may be reduced if growing season rainfall regimes also become more extreme.  相似文献   

16.
Variability of above-ground net primary production (ANPP) of arid to sub-humid ecosystems displays a closer association with precipitation when considered across space (based on multiyear averages for different locations) than through time (based on year-to-year change at single locations). Here, we propose a theory of controls of ANPP based on four hypotheses about legacies of wet and dry years that explains space versus time differences in ANPP–precipitation relationships. We tested the hypotheses using 16 long-term series of ANPP. We found that legacies revealed by the association of current- versus previous-year conditions through the temporal series occur across all ecosystem types from deserts to mesic grasslands. Therefore, previous-year precipitation and ANPP control a significant fraction of current-year production. We developed unified models for the controls of ANPP through space and time. The relative importance of current-versus previous-year precipitation changes along a gradient of mean annual precipitation with the importance of current-year PPT decreasing, whereas the importance of previous-year PPT remains constant as mean annual precipitation increases. Finally, our results suggest that ANPP will respond to climate-change-driven alterations in water availability and, more importantly, that the magnitude of the response will increase with time.  相似文献   

17.
In many grasslands, grazing by large native or introduced ungulates drives ecosystem structure and function. The behavior of these animals is important as it directs the spatial effects of grazing. To the degree that temperature drives spatial components of foraging, understanding how changes in climate alter grazing behavior will provide guidance for the conservation of ecosystem goods and services. We determined the behavioral response of native bison (Bison bison) and introduced cattle (Bos taurus) to temperature in tallgrass prairie within the Great Plains, USA. We described the thermal environment by measuring operative temperature (the temperature perceived by animals) through space and time. Site selection preferences of ungulates were quantified using resource selection functions. Woody vegetation in tallgrass prairie provided a cooler thermal environment for large ungulates, decreasing operative temperature up to 16 °C in the heat of the summer. Cattle began to seek thermal refugia at lower air temperatures (24 °C) by selecting areas closer to woody vegetation and water sources. Bison, however, sought refugia within wooded areas at higher air temperatures (36 °C), which occurred much less frequently. Both species became more attracted to riparian areas as air temperature increased, with preferences increasing tenfold during the hottest periods. As predicted warming occurs across the Great Plains and other grasslands, grazing behavior and subsequent grazing effects will be altered. Riparian areas, particularly those with both water and woody vegetation, will receive greater utilization and selection by large ungulates. The use of native grazers for conservation or livestock production may mitigate negative effects caused by increased temperatures.  相似文献   

18.
Chen Q  Hooper DU  Lin S 《PloS one》2011,6(3):e16909
Long-term livestock over-grazing causes nitrogen outputs to exceed inputs in Inner Mongolia, suggesting that low levels of nitrogen fertilization could help restore grasslands degraded by overgrazing. However, the effectiveness of such an approach depends on the response of production and species composition to the interactive drivers of nitrogen and water availability. We conducted a five-year experiment manipulating precipitation (NP: natural precipitation and SWP: simulated wet year precipitation) and nitrogen (0, 25 and 50 kg N ha-1 yr-1) addition in Inner Mongolia. We hypothesized that nitrogen fertilization would increase forage production when water availability was relatively high. However, the extent to which nitrogen would co-limit production under average or below average rainfall in these grasslands was unknown.Aboveground net primary production (ANPP) increased in response to nitrogen when precipitation was similar to or higher than the long-term average, but not when precipitation was below average. This shift in limitation was also reflected by water and nitrogen use efficiency. Belowground live biomass significantly increased with increasing water availability, but was not affected by nitrogen addition. Under natural precipitation (NP treatment), the inter-annual variation of ANPP was 3-fold greater than with stable water availability (CVANPP = 61±6% and 17±3% for NP and SWP treatment, respectively) and nitrogen addition increased CVANPP even more (89±14%). This occurred in part because fertilizer nitrogen left in the soil in dry years remained available for uptake during wet years and because of high production by unpalatable annual species in wet years in the NP treatment. In summary, plant growth by residual fertilizer nitrogen could lead to sufficient yields to offset lack of additional production in dry years. However, the utility of fertilization for restoration may be constrained by shifts in species composition and the lack of response by belowground biomass, which reduces replacement of soil carbon and nitrogen.  相似文献   

19.
Yuan ZY  Li LH  Han XG  Chen SP  Wang ZW  Chen QS  Bai WM 《Oecologia》2006,148(4):564-572
The concept of nutrient use efficiency is central to understanding ecosystem functioning because it is the step in which plants can influence the return of nutrients to the soil pool and the quality of the litter. Theory suggests that nutrient efficiency increases unimodally with declining soil resources, but this has not been tested empirically for N and water in grassland ecosystems, where plant growth in these ecosystems is generally thought to be limited by soil N and moisture. In this paper, we tested the N uptake and the N use efficiency (NUE) of two Stipa species (S. grandis and S. krylovii) from 20 sites in the Inner Mongolia grassland by measuring the N content of net primary productivity (NPP). NUE is defined as the total net primary production per unit N absorbed. We further distinguished NUE from N response efficiency (NRE; production per unit N available). We found that NPP increased with soil N and water availability. Efficiency of whole-plant N use, uptake, and response increased monotonically with decreasing soil N and water, being higher on infertile (dry) habitats than on fertile (wet) habitats. We further considered NUE as the product of the N productivity (NP the rate of biomass increase per unit N in the plant) and the mean residence time (MRT; the ratio between the average N pool and the annual N uptake or loss). The NP and NUE of S. grandis growing usually in dry and N-poor habitats exceeded those of S. krylovii abundant in wet and N-rich habitats. NUE differed among sites, and was often affected by the evolutionary trade-off between NP and MRT, where plants and communities had adapted in a way to maximize either NP or MRT, but not both concurrently. Soil N availability and moisture influenced the community-level N uptake efficiency and ultimately the NRE, though the response to N was dependent on the plant community examined. These results show that soil N and water had exerted a great impact on the N efficiency in Stipa species. The intraspecific differences in N efficiency within both Stipa species along soil resource availability gradient may explain the differences in plant productivity on various soils, which will be conducive to our general understanding of the N cycling and vegetation dynamics in northern Chinese grasslands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号