共查询到20条相似文献,搜索用时 0 毫秒
1.
ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit 总被引:6,自引:0,他引:6
Schrader LA Birnbaum SG Nadin BM Ren Y Bui D Anderson AE Sweatt JD 《American journal of physiology. Cell physiology》2006,290(3):C852-C861
Kv4.2 is the primary pore-forming subunit encoding A-type currents in many neurons throughout the nervous system, and it also contributes to the transient outward currents of cardiac myocytes. A-type currents in the dendrites of hippocampal CA1 pyramidal neurons are regulated by activation of ERK/MAPK, and Kv4.2 is the likely pore-forming subunit of that current. We showed previously that Kv4.2 is directly phosphorylated at three sites by ERK/MAPK (T602, T607, and S616). In this study we determined whether direct phosphorylation of Kv4.2 by ERK/MAPK is responsible for the regulation of the A-type current observed in neurons. We made site-directed mutants, changing the phosphosite serine (S) or threonine (T) to aspartate (D) to mimic phosphorylation. We found that the T607D mutation mimicked the electrophysiological changes elicited by ERK/MAPK activation in neurons: a rightward shift of the activation curve and an overall reduction in current compared with wild type (WT). Surprisingly, the S616D mutation caused the opposite effect, a leftward shift in the activation voltage. K+ channel-interacting protein (KChIP)3 ancillary subunit coexpression with Kv4.2 was necessary for the T607D effect, as the T607D mutant when expressed in the absence of KChIP3 was not different from WT Kv4.2. These data suggest that direct phosphorylation of Kv4.2 at T607 is involved in the dynamic regulation of the channel function by ERK/MAPK and an interaction of the primary subunit with KChIP is also necessary for this effect. Overall these studies provide new insights into the structure-function relationships for MAPK regulation of membrane ion channels. K+ channel-interacting protein; kinase; neurons; A-type current 相似文献
2.
G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible for maintaining ezrin in its active conformation, represents the principle site of GRK2-mediated phosphorylation. Two lines of evidence indicate that GRK2-mediated ezrin-radixinmoesin (ERM) phosphorylation serves to link GPCR activation to cytoskeletal reorganization. First, in Hep2 cells muscarinic M1 receptor (M1MR) activation causes membrane ruffling. This ruffling response is ERM dependent and is accompanied by ERM phosphorylation. Inhibition of GRK2, but not rho kinase or protein kinase C, prevents ERM phosphorylation and membrane ruffling. Second, agonist-induced internalization of the beta2-adrenergic receptor (beta2AR) and M1MR is accompanied by ERM phosphorylation and localization of phosphorylated ERM to receptor-containing endocytic vesicles. The colocalization of internalized beta2AR and phosphorylated ERM is not dependent on Na+/H+ exchanger regulatory factor binding to the beta2AR. Inhibition of ezrin function impedes beta2AR internalization, further linking GPCR activation, GRK activity, and ezrin function. Overall, our results suggest that GRK2 serves not only to attenuate but also to transduce GPCR-mediated signals. 相似文献
3.
G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits 总被引:1,自引:0,他引:1 下载免费PDF全文
Jiménez-Sainz MC Murga C Kavelaars A Jurado-Pueyo M Krakstad BF Heijnen CJ Mayor F Aragay AM 《Molecular biology of the cell》2006,17(1):25-31
The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes ligand-activated G protein-coupled-receptors. Here, evidence is shown for a novel role of GRK2 in regulating chemokine-mediated signals. The presence of increased levels of GRK2 in human embryonic kidney (HEK) 293 cells produced a significant reduction of the extracellular signal-regulated kinase (ERK) response to CCL2. This effect is independent of its role in receptor phosphorylation because the kinase-deficient mutant GRK2K220R was able to reduce this response, and ERK activation by CCR2BIX, a phosphorylation-defective receptor mutant, was also inhibited by GRK2. Constructs containing the Galpha(q)-binding RGS-like RH domain of GRK2 or its Gbetagamma-binding domain could not reproduce the inhibition, thus revealing that GRK2 acts downstream of G proteins. Interestingly, chemokine-driven mitogen-activated protein kinase kinase (MEK) stimulation is not affected in cells overexpressing GRK2 or GRK2K220R or in splenocytes from heterozygous GRK2 mice, where reduced kinase levels correlate with enhanced ERK activation by chemokines. We find GRK2 and MEK in the same multimolecular complex, thus suggesting a mechanism for GRK2 regulation of ERK activity that involves a direct or coordinate interaction with MEK. These results suggest an important role for GRK2 in the control of chemokine induction of ERK activation at the level of the MEK-ERK interface. 相似文献
4.
The Kv3.1 channel plays a crucial role in regulating the high-frequency firing properties of neurons. Here, we determined whether Src regulates the subcellular distributions of the Kv3.1b channel. Co-expression of active Src induced a dramatic redistribution of Kv3.1b to the endoplasmic reticulum. Furthermore, co-expression of the Kv3.1b channel with active Src induced a remarkable decrease in the pool of Kv3.1b at the cell surface. Moreover, the co-expression of active Src results in a significant decrease in the peak current densities of the Kv3.1b channel, and a substantial alteration in the voltage dependence of its steady-state inactivation. Taken together, these results indicate that Src kinase may play an important role in regulating membrane trafficking of Kv3.1b channels. 相似文献
5.
Penela P Ribas C Aymerich I Eijkelkamp N Barreiro O Heijnen CJ Kavelaars A Sánchez-Madrid F Mayor F 《The EMBO journal》2008,27(8):1206-1218
Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration. 相似文献
6.
Regulation of the magnitude, duration, and localization of G protein-coupled receptor (GPCR) signaling responses is controlled by desensitization, internalization, and downregulation of the activated receptor. Desensitization is initiated by the phosphorylation of the activated receptor by GPCR kinases (GRKs) and the binding of the adaptor protein arrestin. In addition to phosphorylating activated GPCRs, GRKs have been shown to phosphorylate a variety of additional substrates. An in vitro screen for novel GRK substrates revealed Hsp70 interacting protein (Hip) as a substrate. GRK5, but not GRK2, bound to and stoichiometrically phosphorylated Hip in vitro. The primary binding domain of GRK5 was mapped to residues 303-319 on Hip, while the major site of phosphorylation was identified to be Ser-346. GRK5 also bound to and phosphorylated Hip on Ser-346 in cells. While Hip was previously implicated in chemokine receptor trafficking, we found that the phosphorylation of Ser-346 was required for proper agonist-induced internalization of the chemokine receptor CXCR4. Taken together, Hip has been identified as a novel substrate of GRK5 in vitro and in cells, and phosphorylation of Hip by GRK5 plays a role in modulating CXCR4 internalization. 相似文献
7.
Kv1.3 is a voltage-gated K+ channel expressed in insulin-sensitive tissues. We previously showed that gene inactivation or pharmacological inhibition of Kv1.3 channel activity increased peripheral insulin sensitivity independently of body weight by augmenting the amount of GLUT4 at the plasma membrane. In the present study, we further examined the effect Kv1.3 on GLUT4 trafficking and tested whether it occurred via an insulin-dependent pathway. We found that Kv1.3 inhibition by margatoxin (MgTX) stimulated glucose uptake in adipose tissue and skeletal muscle and that the effect of MgTX on glucose transport was additive to that of insulin. Furthermore, whereas the increase in uptake was wortmannin insensitive, it was completely inhibited by dantrolene, a blocker of Ca2+ release from intracellular Ca2+ stores. In white adipocytes in primary culture, channel inhibition by Psora-4 increased GLUT4 translocation to the plasma membrane. In these cells, GLUT4 protein translocation was unaffected by the addition of wortmannin but was significantly inhibited by dantrolene. Channel inhibition depolarized the membrane voltage and led to sustained, dantrolene-sensitive oscillations in intracellular Ca2+ concentration. These results indicate that the apparent increase in insulin sensitivity observed in association with inhibition of Kv1.3 channel activity is mediated by an increase in GLUT4 protein at the plasma membrane, which occurs largely through a Ca2+-dependent process. insulin; glucose; diabetes; calcium 相似文献
8.
Keyvan SedaghatMario Tiberi 《Cellular signalling》2011,23(1):180-192
Herein, we investigate the differential D1 dopaminergic receptor (D1R) regulation by G protein-coupled receptor kinase (GRK) 2 and 3 using two truncated receptors lacking the distal (Δ425) and distal-central (Δ379) cytoplasmic tail (CT) regions. We first show the association between D1R and GRKs in co-transfected cells and rat striatum. Our studies further indicate that deletion of distal CT region of D1R does not alter the association between receptor and GRK2. Meanwhile, removal of both distal and central CT regions culminates in a drastic increase in the basal association between Δ379 and GRK2 relative to D1R and Δ425. Interestingly, CT truncations have no effect on the basal and DA-induced association of receptors with GRK3. Furthermore, we demonstrate that desensitization of D1R is considerably more robust in cells expressing GRK3. Notably, the robust GRK3-induced D1R desensitization is not attenuated by CT deletions. However, GRK2-induced Δ425 desensitization is not detectable whereas we unexpectedly find that Δ379 desensitization is similar to GRK2-induced D1R desensitization. GRK2 and GRK3-dependent desensitization of wild type D1R is not linked to differences in the extent of DA-induced receptor phosphorylation. Moreover, our studies show that GRK2-induced D1R phosphorylation is only modulated by deletion of distal CT region while distal and central CT regions control GRK3-induced D1R phosphorylation. Intriguingly, dopamine-induced Δ379 phosphorylation by GRK3 was significantly lower than receptor phosphorylation in cells harboring Δ379 alone or Δ379 and GRK2. Overall, our study suggests an intricate interplay between CT regions of D1R in differentially regulating receptor responsiveness by GRK2 and GRK3. 相似文献
9.
Agonist-specific regulation of delta-opioid receptor trafficking by G protein-coupled receptor kinase and beta-arrestin 总被引:1,自引:0,他引:1
Zhang J Ferguson SS Law PY Barak LS Caron MG 《Journal of receptor and signal transduction research》1999,19(1-4):301-313
Opioid receptors mediate multiple biological functions through their interaction with endogenous opioid peptides as well as opioid alkaloids including morphine and etorphine. Previously we have reported that the ability of distinct opioid agonists to differentially regulate mu-opioid receptor (mu OR) responsiveness is related to their ability to promote G protein-coupled receptor kinase (GRK)-dependent phosphorylation of the receptor (1). In the present study, we further examined the role of GRK and beta-arrestin in agonist-specific regulation of the delta-opioid receptor (delta OR). While both etorphine and morphine effectively activate the delta OR, only etorphine triggers robust delta OR phosphorylation followed by plasma membrane translocation of beta-arrestin and receptor internalization. In contrast, morphine is unable to either elicit delta OR phosphorylation or stimulate beta-arrestin translocation, correlating with its inability to cause delta OR internalization. Unlike for the mu OR, overexpression of GRK2 results in neither the enhancement of delta OR sequestration nor the rescue of delta OR-mediated beta-arrestin translocation. Therefore, our findings not only point to the existence of marked differences in the ability of different opioid agonists to promote delta OR phosphorylation by GRK and binding to beta-arrestin, but also demonstrate differences in the regulation of two opioid receptor subtypes. These observations may have important implications for our understanding of the distinct ability of various opioids in inducing opioid tolerance and addiction. 相似文献
10.
To develop a malleable system to model the well-described, physiological interactions between Gq/11 - coupled receptor and Gi/o-coupled receptor signaling, we coexpressed the endothelin A receptor, the mu-opioid receptor, and the G protein-coupled inwardly rectifying potassium channel (Kir 3) heteromultimers in Xenopus laevis oocytes. Activation of the Gi/o-coupled mu-opioid receptor strongly increased Kir 3 channel current, whereas activation of the Gq/11-coupled endothelin A receptor inhibited the Kir 3 response evoked by mu-opioid receptor activation. The magnitude of the inhibition of Kir 3 was channel subtype specific; heteromultimers composed of Kir 3.1 and Kir 3.2 or Kir 3.1 and Kir 3.4 were significantly more sensitive to the effects of endothelin-1 than heteromultimers composed of Kir 3.1 and Kir 3.5. The difference in sensitivity of the heteromultimers suggests that the endothelin-induced inhibition of the opioid- activated current was caused by an effect at the channel rather than at the opioid receptor. The endothelin-1-mediated inhibition was mimicked by arachidonic acid and blocked by the phospholipase A2 inhibitor arachidonoyl trifluoromethyl ketone. Consistent with a possible phospholipase A2-mediated mechanism, the endothelin-1 effect was blocked by calcium chelation with BAPTA-AM and was not affected by kinase inhibition by either staurosporine or genistein. The data suggest the hypothesis that Gq/11-coupled receptor activation may interfere with Gi/o-coupled receptor signaling by the activation of phospholipase A2 and subsequent inhibition of effector function by a direct effect of an eicosanoid on the channel. 相似文献
11.
Ca2+ and Mg2+ modulate conformational dynamics and stability of downstream regulatory element antagonist modulator 下载免费PDF全文
Khoa Pham Gangadhar Dhulipala Walter G Gonzalez Bernard S Gerstman Chola Regmi Prem P Chapagain Jaroslava Miksovska 《Protein science : a publication of the Protein Society》2015,24(5):741-751
Downstream Regulatory Element Antagonist Modulator (DREAM) belongs to the family of neuronal calcium sensors (NCS) that transduce the intracellular changes in Ca2+ concentration into a variety of responses including gene expression, regulation of Kv channel activity, and calcium homeostasis. Despite the significant sequence and structural similarities with other NCS members, DREAM shows several features unique among NCS such as formation of a tetramer in the apo-state, and interactions with various intracellular biomacromolecules including DNA, presenilin, Kv channels, and calmodulin. Here we use spectroscopic techniques in combination with molecular dynamics simulation to study conformational changes induced by Ca2+/Mg2+ association to DREAM. Our data indicate a minor impact of Ca2+ association on the overall structure of the N- and C-terminal domains, although Ca2+ binding decreases the conformational heterogeneity as evident from the decrease in the fluorescence lifetime distribution in the Ca2+ bound forms of the protein. Time-resolved fluorescence data indicate that Ca2+binding triggers a conformational transition that is characterized by more efficient quenching of Trp residue. The unfolding of DREAM occurs through an partially unfolded intermediate that is stabilized by Ca2+ association to EF-hand 3 and EF-hand 4. The native state is stabilized with respect to the partially unfolded state only in the presence of both Ca2+ and Mg2+ suggesting that, under physiological conditions, Ca2+ free DREAM exhibits a high conformational flexibility that may facilitate its physiological functions. 相似文献
12.
GRK2 is a member of the G protein-coupled receptor kinase (GRK) family, which phosphorylates the activated form of a variety of G protein-coupled receptors (GPCR) and plays an important role in GPCR modulation. It has been recently reported that stimulation of the mitogen-activated protein kinase cascade by GPCRs involves tyrosine phosphorylation of docking proteins mediated by members of the Src tyrosine kinase family. In this report, we have investigated the possible role of c-Src in modulating GRK2 function. We demonstrate that c-Src can directly phosphorylate GRK2 on tyrosine residues, as shown by in vitro experiments with purified proteins. The phosphorylation reaction exhibits an apparent K(m) for GRK2 of 12 nM, thus suggesting a physiological relevance in living cells. Consistently, overexpression of the constitutively active c-Src Y527F mutant in COS-7 cells leads to tyrosine phosphorylation of co-expressed GRK2. In addition, GRK2 can be detected in phosphotyrosine immunoprecipitates from HEK-293 cells transiently transfected with this Src mutant. Interestingly, phosphotyrosine immunoblots reveal a rapid and transient increase in GRK2 phosphorylation upon agonist stimulation of beta(2)-adrenergic receptors co-transfected with GRK2 and wild type c-Src in COS-7 cells. This tyrosine phosphorylation is maximal within 5 min of isoproterenol stimulation and reaches values of approximately 5-fold over basal conditions. Furthermore, GRK2 phosphorylation on tyrosine residues promotes an increased kinase activity toward its substrates. Our results suggest that GRK2 phosphorylation by c-Src is inherent to GPCR activation and put forward a new mechanism for the regulation of GPCR signaling. 相似文献
13.
G protein-coupled receptor kinase 2 (GRK2) is a key modulator of G protein-coupled receptors (GPCR). Altered expression of GRK2 has been described to occur during pathological conditions characterized by impaired GPCR signaling. We have reported recently that GRK2 is rapidly degraded by the proteasome pathway and that beta-arrestin function and Src-mediated phosphorylation are involved in targeting GRK2 for proteolysis. In this report, we show that phosphorylation of GRK2 by MAPK also triggers GRK2 turnover by the proteasome pathway. Modulation of MAPK activation alters the degradation of transfected or endogenous GRK2, and a GRK2 mutant that mimics phosphorylation by MAPK shows an enhanced degradation rate, thus indicating a direct effect of MAPK on GRK2 turnover. Interestingly, MAPK-mediated modulation of wild-type GRK2 stability requires beta-arrestin function and is facilitated by previous phosphorylation of GRK2 on tyrosine residues by c-Src. Consistent with an important physiological role, interfering with this GRK2 degradation process results in altered GPCR responsiveness. Our data suggest that both c-Src and MAPK-mediated phosphorylation would contribute to modulate GRK2 degradation, and put forward the existence of new feedback mechanisms connecting MAPK cascades and GPCR signaling. 相似文献
14.
Freeman JL Gonzalo P Pitcher JA Claing A Lavergne JP Reboud JP Lefkowitz RJ 《Biochemistry》2002,41(42):12850-12857
G protein-coupled receptor kinases are well characterized for their ability to phosphorylate and desensitize G protein-coupled receptors (GPCRs). In addition to phosphorylating the beta2-adrenergic receptor (beta2AR) and other receptors, G protein-coupled receptor kinase 2 (GRK2) can also phosphorylate tubulin, a nonreceptor substrate. To identify novel nonreceptor substrates of GRK2, we used two-dimensional gel electrophoresis to find cellular proteins that were phosphorylated upon agonist-stimulation of the beta2AR in a GRK2-dependent manner. The ribosomal protein P2 was identified as an endogenous HEK-293 cell protein whose phosphorylation was increased following agonist stimulation of the beta2AR under conditions where tyrosine kinases, PKC and PKA, were inhibited. P2 along with its other family members, P0 and P1, constitutes a part of the elongation factor-binding site connected to the GTPase center in the 60S ribosomal subunit. Phosphorylation of P2 is known to regulate protein synthesis in vitro. Further, P2 and P1 are shown to be good in vitro substrates for GRK2 with K(M) values approximating 1 microM. The phosphorylation sites in GRK2-phosphorylated P2 are identified (S102 and S105) and are identical to the sites known to regulate P2 activity. When the 60S subunit deprived of endogenous P1 and P2 is reconstituted with GRK2-phosphorylated P2 and unphosphorylated P1, translational activity is greatly enhanced. These findings suggest a previously unrecognized relationship between GPCR activation and the translational control of gene expression mediated by GRK2 activation and P2 phosphorylation and represent a potential novel signaling pathway responsible for P2 phosphorylation in mammals. 相似文献
15.
Kenski DM Zhang C von Zastrow M Shokat KM 《The Journal of biological chemistry》2005,280(41):35051-35061
G protein-coupled receptor kinases (GRKs) play a pivotal role in receptor regulation. Efforts to study the acute effects of GRKs in intact cells have been limited by a lack of specific inhibitors. In the present study we have developed an engineered version of GRK2 that is specifically and reversibly inhibited by the substituted nucleotide analog 1-naphthyl-PP1 (1Na-PP1), and we explored GRK2 function in regulated internalization of the mu-opioid receptor (muOR). A previously described method that conferred analog sensitivity on various kinases, by introducing a space-creating mutation in the conserved active site, failed when applied to GRK2 because the corresponding mutation (L271G) rendered the mutant kinase (GRK2-as1) catalytically inactive. A sequence homology-based approach was used to design second-site suppressor mutations. A C221V second-site mutation produced a mutant kinase (GRK2-as5) with full functional activity and analog sensitivity as compared with wild-type GRK2 in vitro and in intact cells. The role of GRK2-as5 activity in the membrane trafficking of the muOR was also characterized. Morphine-induced internalization was completely blocked when GRK2-as5 activity was inhibited before morphine application. However, inhibition of GRK2-as5 during recycling and reinternalization of the muOR did not attenuate these processes. These results suggest there is a difference in the GRK requirement for initial ligand-induced internalization of a G protein-coupled receptor compared with subsequent rounds of reinternalization. 相似文献
16.
Protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is irreversibly proteolytically activated, internalized, and then sorted to lysosomes and degraded. Internalization and lysosomal sorting of activated PAR1 is critical for termination of receptor signaling. We previously demonstrated that activated PAR1 is rapidly phosphorylated and internalized via a clathrin- and dynamin-dependent pathway that is independent of arrestins. Toward understanding the mechanisms responsible for activated PAR1 internalization through clathrin-coated pits we examined the function of a highly conserved tyrosine-based motif, YXXL, localized in the cytoplasmic carboxyl tail of the receptor. A mutant PAR1 in which tyrosine 383 and leucine 386 were replaced with alanines (Y383A/L386A) was significantly impaired in agonist-triggered internalization and degradation compared with wild-type receptor. In contrast, constitutive internalization, and recycling of unactivated PAR1 Y383A/L386A mutant was not affected, suggesting that tonic cycling of the mutant receptor remained intact. Strikingly, a PAR1 C387Z truncation mutant in which the YXXL motif was exposed at the C terminus constitutively internalized and degraded in an agonist-independent manner, whereas C387Z truncation mutant in which the critical tyrosine and leucine were mutated to alanine (C387Z-Y383A/L386A) failed to internalize. Inhibition of PAR1 C387Z mutant constitutive internalization with dominant-negative K44A dynamin blocked agonist-independent degradation of the mutant receptor. Together these findings strongly suggest that internalization of activated PAR1 is controlled by multiple regulatory mechanisms involving phosphorylation and a highly conserved tyrosine-based motif, YXXL. This study is the first to describe a function for a tyrosine-based motif, YXX, in GPCR internalization and reveal novel complexities in the regulation of GPCR trafficking. 相似文献
17.
Kwak YG Hu N Wei J George AL Grobaski TD Tamkun MM Murray KT 《The Journal of biological chemistry》1999,274(20):13928-13932
The human Kv1.5 potassium channel forms the IKur current in atrial myocytes and is functionally altered by coexpression with Kvbeta subunits. To explore the role of protein kinase A (PKA) phosphorylation in beta-subunit function, we examined the effect of PKA stimulation on Kv1.5 current following coexpression with either Kvbeta1.2 or Kvbeta1.3, both of which coassemble with Kv1.5 and induce fast inactivation. In Xenopus oocytes expressing Kv1.5 and Kvbeta1.3, activation of PKA reduced macroscopic inactivation with an increase in K+ current. Similar results were obtained using HEK 293 cells which lack endogenous K+ channel subunits. These effects did not occur when Kv1.5 was coexpressed with either Kvbeta1.2 or Kvbeta1.3 lacking the amino terminus, suggesting involvement of this region of Kvbeta1.3. Removal of a consensus PKA phosphorylation site on the Kvbeta1.3 NH2 terminus (serine 24), but not alternative sites in either Kvbeta1.3 or Kv1.5, resulted in loss of the functional effects of kinase activation. The effects of phosphorylation appeared to be electrostatic, as replacement of serine 24 with a negatively charged amino acid reduced beta-mediated inactivation, while substitution with a positively charged residue enhanced it. These results indicate that Kvbeta1.3-induced inactivation is reduced by PKA activation, and that phosphorylation of serine 24 in the subunit NH2 terminus is responsible. 相似文献
18.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2023,1870(5):119476
Endosomal trafficking is intricately linked to G protein-coupled receptors (GPCR) fate and signaling. Extracellular uridine diphosphate (UDP) acts as a signaling molecule by selectively activating the GPCR P2Y6. Despite the recent interest for this receptor in pathologies, such as gastrointestinal and neurological diseases, there is sparse information on the endosomal trafficking of P2Y6 receptors in response to its endogenous agonist UDP and synthetic selective agonist 5-iodo-UDP (MRS2693). Confocal microscopy and cell surface ELISA revealed delayed internalization kinetics in response to MRS2693 vs. UDP stimulation in AD293 and HCT116 cells expressing human P2Y6. Interestingly, UDP induced clathrin-dependent P2Y6 internalization, whereas receptor stimulation by MRS2693 endocytosis appeared to be associated with a caveolin-dependent mechanism. Internalized P2Y6 was associated with Rab4, 5, and 7 positive vesicles independent of the agonist. We have measured a higher frequency of receptor expression co-occurrence with Rab11-vesicles, the trans-Golgi network, and lysosomes in response to MRS2693. Interestingly, a higher agonist concentration reversed the delayed P2Y6 internalization and recycling kinetics in the presence of MRS2693 stimulation without changing its caveolin-dependent internalization. This work showed a ligand-dependent effect affecting the P2Y6 receptor internalization and endosomal trafficking. These findings could guide the development of bias ligands that could influence P2Y6 signaling. 相似文献
19.
Mangmool S Haga T Kobayashi H Kim KM Nakata H Nishida M Kurose H 《The Journal of biological chemistry》2006,281(42):31940-31949
Clathrin is a major component of clathrin-coated pits and serves as a binding scaffold for endocytic machinery through the binding of a specific sequence known as the clathrin-binding motif. This motif is also found in cellular signaling proteins other than endocytic components, including G protein-coupled receptor kinase 2 (GRK2), which phosphorylates G protein-coupled receptors and promotes uncoupling of receptor-G protein interaction. However, the functions of clathrin in the regulation of GRK2 are unknown. Here we demonstrated that overexpression of GRK2 mutated at the clathrin-binding motif with alanine (GRK2-5A) results in inhibition of phosphorylation and internalization of the beta2-adrenergic receptor (beta2AR). However, the interaction of beta2AR with GRK2-5A is the same as that of wild type GRK2 as determined by bioluminescence resonance energy transfer. Furthermore, GRK2-5A phosphorylates rhodopsin essentially to the same extent as wild type GRK2 in vitro. Depletion of the clathrin heavy chain using small interference RNA inhibits agonist-induced phosphorylation and internalization of beta2AR. Thus, clathrin works as a regulator of GRK2 in cells. These results indicate that clathrin is a novel player in cellular functions in addition to being a component of endocytosis. 相似文献
20.
G protein-coupled receptors (GPCRs) respond to agonists to activate downstream enzymatic pathways or to gate ion channel function. Turning off GPCR signaling is known to involve phosphorylation of the GPCR by GPCR kinases (GRKs) to initiate their internalization. The process, however, is relatively slow and cannot account for the faster desensitization responses required to regulate channel gating. Here, we show that GRKs enable rapid desensitization of the G protein-coupled potassium channel (GIRK/Kir3.x) through a mechanism independent of their kinase activity. On GPCR activation, GRKs translocate to the membrane and quench channel activation by competitively binding and titrating G protein βγ subunits away from the channel. Of interest, the ability of GRKs to effect this rapid desensitization depends on the receptor type. The findings thus reveal a stimulus-specific, phosphorylation-independent mechanism for rapidly downregulating GPCR activity at the effector level. 相似文献