首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the role of AMPA and kainate receptors in modulating neurotransmitter release from the myenteric plexus, the effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainic acid on endogenous acetylcholine (ACh) and noradrenaline (NA) overflow from the guinea-pig isolated colon was studied. AMPA inhibited spontaneous ACh overflow and increased electrically-evoked NA overflow. Kainic acid did not influence both ACh and NA overflow. AMPA-mediated effects on ACh and NA overflow were significantly reduced by the AMPA/kainate antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, CNQX. The inhibitory effect of AMPA on ACh overflow could be due, at least in part, to the AMPA-induced NA overflow as it was greatly reduced after adrenoceptor blockade and virtually abolished in sympathetically-denervated animals. The possible functional significance of these findings was studied by measuring the efficiency of the peristaltic reflex in the presence of the different agonists. The efficiency of peristalsis was enhanced by AMPA, whereas it was not modified by kainic acid. In conclusion, AMPA receptors, but not kainate receptors, may play a role in the modulation of ACh and NA release and of peristalsis in the guinea-pig colon.  相似文献   

2.
The topography of the channel binding site in glutamate receptors (AMPA and NMDA types of rat brain neurons, receptors of molluscan neurons and insect muscle), and in two subtypes of nicotinic cholinoreceptors (in frog muscle and cat sympathetic ganglion), has been investigated by comparison of the blocking effects of mono- and dicationic derivatives of adamantane and phenylcyclohexyl. The channels studied can be divided into two groups. The first one includes AMPA receptor and glutamate receptors of mollusc and insect, and is characterised by the absence of activity of monocationic drugs and the strong dependence of dicationic once on the internitrogen distance in the drug molecule. The second group includes NMDA receptor and both nicotinic cholinoreceptors. Contrary, here the blocking potency of monocations and dications are practically equal irrespective of molecule length. The data obtained suggest that hydrophobic and nucleophilic components of the binding site are located close to each other in the channels of the NMDA receptor type but are separated by approximately 10 A in the AMPA receptor channel.  相似文献   

3.
The contributions of superoxide dismutase (SOD) and Na(+), K(+)-ATPase to the altered vascular reactivity in potassium-adapted rats were investigated to test the hypothesis that smooth muscle hyperpolarisation may be involved. Isometric contractions to noradrenaline (NA), 5-hydroxytryptamine (5-HT), and relaxations to acetylcholine (ACh), levcromakalim (LEV) and sodium nitroprusside (SNP), were measured in aortic rings from potassium-adapted rats. Pieces of the aortae were also excised from the animals and assayed for SOD and Na(+), K(+)-ATPase. Maximum contractile responses were significantly attenuated (P<0.05) in aortic rings from the potassium-adapted rats to NA and 5-HT, while relaxations were also significantly augmented (P<0.05) in the same rings to LEV and SNP, but not to ACh. Both SOD and Na(+), K(+)-ATPase activities were significantly higher (P<0.05) in the aortae from the potassium-adapted rats compared to controls. It is concluded that the alteration in vascular smooth muscle reactivity may be due to hyperpolarisation caused by the activities of SOD and Na(+), K(+)-ATPase.  相似文献   

4.
N-methyl-D-aspartate (NMDA) stimulated release of [3H]noradrenaline (NA) from prelabelled rat spinal cord slices. The release was partially insensitive to tetrodotoxin (TTX) and was inhibited by the NMDA antagonist MK-801. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) also evoked release of [3H]NA, which was enhanced by blocking AMPA receptor desensitization with cyclothiazide. AMPA-evoked release was inhibited by the non-NMDA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)-quinoxaline (NBQX) but was not affected by TTX. NMDA and AMPA showed synergistic effects, indicating co-existence of NMDA and AMPA receptors on noradrenergic terminals. Kainate evoked [3H]NA release only at high concentrations and the release was not potentiated by blocking kainate receptor desensitization with concanavalin A. Thus, the results indicate that there are stimulatory presynaptic NMDA and AMPA receptors on noradrenergic axon terminals in the spinal cord and that they interact synergistically to evoke release of [3H]NA.  相似文献   

5.
The rostral ventrolateral medulla (rVLM) is involved in processing visceral sympathetic reflexes. However, there is little information on specific neurotransmitters in this brain stem region involved in this reflex. The present study investigated the importance of glutamate and glutamatergic receptors in the rVLM during gallbladder stimulation with bradykinin (BK), because glutamate is thought to function as an excitatory neurotransmitter in this region. Stimulation of visceral afferents activated glutamatergic neurons in the rVLM, as noted by double-labeling with c-Fos and the cellular vesicular glutamate transporter 3 (VGLUT3). Visceral reflex activation significantly increased arterial blood pressure as well as extracellular glutamate concentrations in the rVLM as determined by microdialysis. Barodenervation did not alter the release of glutamate in the rVLM evoked by visceral reflex stimulation. Iontophoresis of glutamate into the rVLM enhanced the activity of sympathetic premotor cardiovascular rVLM neurons. Also, the responses of these neurons to visceral afferent stimulation with BK were attenuated significantly (70%) by blockade of glutamatergic receptors with kynurenic acid. Microinjection of either an N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanate (25 mM, 30 nl) or an dl-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (2 mM, 30 nl) into the rVLM significantly attenuated the visceral sympathoexcitatory reflex responses. These results suggest that glutamate in the rVLM serves as an excitatory neurotransmitter through a baroreflex-independent mechanism and that both NMDA and AMPA receptors mediate the visceral sympathoexcitatory reflex responses.  相似文献   

6.
The non-L-glutamate (L-Glu) receptor component of D-aspartate (D-Asp) currents in Aplysia californica buccal S cluster (BSC) neurons was studied with whole cell voltage clamp to differentiate it from receptors activated by other well-known agonists of the Aplysia nervous system and investigate modulatory mechanisms of D-Asp currents associated with synaptic plasticity. Acetylcholine (ACh) and serotonin (5-HT) activated whole cell excitatory currents with similar current voltage relationships to D-Asp. These currents, however, were pharmacologically distinct from D-Asp. ACh currents were blocked by hexamethonium (C6) and tubocurarine (D-TC), while D-Asp currents were unaffected. 5-HT currents were blocked by granisetron and methysergide (MES), while D-Asp currents were unaffected. Conversely, while (2S,3R)-1-(Phenanthren-2-carbonyl)piperazine-2,3-dicarboxylic acid(PPDA) blocked D-Asp currents, it had no effect on ACh or 5-HT currents. Comparison of the charge area described by currents induced by ACh or 5-HT separately from, or with, D-Asp suggests activation of distinct receptors by all 3 agonists. Charge area comparisons with L-Glu, however, suggested some overlap between L-Glu and D-Asp receptors. Ten minute exposure to 5-HT induced facilitation of D-Asp-evoked responses in BSC neurons. This effect was mimicked by phorbol ester, suggesting that protein kinase C (PKC) was involved.  相似文献   

7.
The smooth-muscle cells of the testicular capsule (tunica albuginea) of man, rat, and mouse were examined by electron microscopy. They were characteristically flattened, elongated, branching cells and diffusely incorporated into the collagenous matrix and did not form a compact muscle layer. Contractile and synthetic smooth-muscle cell phenotypes were identified. Nerve varicosities in close apposition to smooth muscle were seen in human tissue. Contractions induced by adenosine 5'-triphosphate (ATP), alpha, beta-methylene ATP, noradrenaline (NA), acetylcholine (ACh), and electrical field stimulation (EFS) of autonomic nerves were investigated. Nerve-mediated responses of the rabbit and human tunica albuginea were recorded. The EFS-induced human responses were completely abolished by prazosin. In the rabbit, EFS-induced contractile responses were reduced by pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid by 36% and by prazosin by 77%. Both antagonists together almost completely abolished all EFS-induced contractions. The human tunica albuginea was contracted by NA, ATP, and alpha, beta-methylene ATP, but not by ACh. The rabbit and rat tunica albuginea were contracted by NA, ATP, alpha, beta-methylene ATP, and ACh. The mouse tunica albuginea was contracted by ACh, ATP, and alpha, beta-methylene ATP, but relaxed to NA. Immunohistochemical studies showed that P2X1 (also known as P2RX1) and P2X2 (also known as P2RX2) receptors were expressed on the smooth muscle of the rodent testicular capsule, expression being less pronounced in man. The testicular capsule of the rat, mouse, rabbit, and man all contain contractile smooth muscle. ATP, released as a cotransmitter from sympathetic nerves, can stimulate the contraction of rabbit smooth muscle. Human, rat, and mouse testicular smooth muscle demonstrated purinergic responsiveness, probably mediated through the P2X1 and/or P2X2 receptors.  相似文献   

8.
Abstract: In the present study, glutamate receptor agonists and antagonists were administered by retrograde microdialysis into either the medial septum/vertical limb of the diagonal band (MS/vDB), or hippocampus, and the output of acetylcholine (ACh) was measured in the hippocampus by using intracerebral microdialysis. Perfusion with N -methyl- d -aspartate (NMDA) and ( S )-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the MS/vDB caused an increase in ACh output in the hippocampus. This increase was completely blocked by coadministration of their respective antagonists d (−)-2-amino-5-phosphonopentanoic acid ( d -AP5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Perfusion in the MS/vDB with kainic acid also caused an increase in ACh output, but coadministration of CNQX attenuated the increase only partially. Perfusion with d -AP5 or CNQX alone in the septal probe did not affect ACh output from the hippocampus. In contrast to the results of septal administration of NMDA and AMPA, local perfusion with the same drugs in the hippocampus caused a decrease in ACh output. Whereas the results of septal administration of drugs indicate that septal cholinergic neurons probably receive excitatory glutamatergic innervation, the decrease in ACh output caused by administration of NMDA and AMPA in the hippocampus is poorly understood.  相似文献   

9.
The effects and the sites of action of 5-Hydroxytryptamine (5HT) were examined in transverse muscular strips of pigeon oesophagus. 5-Hydroxytryptamine (0.001 to 30 microM) induced a concentration-dependent excitatory effect on the EMG activity. This response was mainly characterized by an increase in burst frequency. The maximum 5-HT-induced excitatory effect was not altered by methysergide (10 microM), but was abolished by tetrodotoxin (3 microM). Excitatory response to 5-HT was partly opposed by atropine (1 microM), potentiated by 5-methoxy-N, N-dimethyltryptamine (1 microM) and was not altered by guanethidine (10 microM). These results indicate that 5-HT activates the pigeon oesophagus indirectly via neural elements and has no direct action on the smooth muscle cells. 5-HT is thought to stimulate three different intramural neuron types: excitatory cholinergic neurons, excitatory non-cholinergic neurons and inhibitory non-cholinergic non-adrenergic neurons. The action on these different neurons seems to be mediated via different receptors.  相似文献   

10.
棕榈酰化是一种可逆的翻译后修饰,其对蛋白质的定位和功能具有重要的调节意义.离子型谷氨酸受体有N-甲基-D-天冬氨酸(NMDA)受体、α-氨基羟甲基恶唑丙酸(AMPA)受体和人海藻酸受体.近期研究发现,它们的棕榈酰化修饰对其膜表面分布和内化均具有重要的意义.其中NMDA受体在其C末端有2个不同的棕榈酰化位点.1个位于C末端近膜区(CysclusterⅠ),它的棕榈酰化可以增高酪氨酸的磷酸化水平,增加受体膜表面分布,影响神经元中NMDA受体的组构性内化;另1个位于C末端中部(CysclusterⅡ),它受到蛋白质酰基转移酶GODZ的调节,使得受体在高尔基体大量积聚,从而影响受体的膜表面分布.与NMDA受体相似,AMPA受体也存在2个棕榈酰化位点.1个位于在第2跨膜域,受蛋白质酰基转移酶GODZ的调节,能导致AMPA受体在高尔基体的积聚.另1个位点在受体C末端近膜区,它的棕榈酰化能降低AMPA受体和4.1N蛋白的相互作用,并调节受体的内化.这两种离子型谷氨酸受体在棕榈酰化机制上虽然存在差异,但均对受体的运输、膜表面分布和内化具有十分重要的作用.  相似文献   

11.
Abstract: The contribution of NMDA receptors to regulation of serotonin (5-HT) release was assessed by in vivo microdialysis in freely behaving rats. During infusion of NMDA (30, 100, and 300 µ M ) into the dorsal raphe nucleus (DRN), 5-HT was increased by ∼25, 100, and 280%, respectively. Competitive and noncompetitive NMDA-receptor antagonists blocked this effect on DRN 5-HT. Infusion of NMDA (300 µ M ) into the DRN also produced an 80% increase in extracellular 5-HT in the nucleus accumbens. During infusion of NMDA (100 and 300 µ M ) into the median raphe nucleus (MRN), 5-HT was increased by ∼15 and 80%, respectively. NMDA-receptor antagonists blocked this effect on MRN 5-HT. Infusion of NMDA into the MRN also produced a significant increase in hippocampal 5-HT. In contrast, infusion of NMDA into the nucleus accumbens, frontal cortex, or hippocampus produced small decreases in 5-HT in these forebrain sites. Taken together, these results suggest that NMDA receptors in the midbrain raphe, but not the forebrain, can have an excitatory influence on 5-HT neurons and, thus, produce increased 5-HT release in the forebrain. Furthermore, in comparison with the MRN, DRN 5-HT neurons were more sensitive to the excitatory effect of NMDA.  相似文献   

12.
Abstract: The present study was undertaken to determine whether basal and stimulus-activated dopamine release in the prefrontal cortex (PFC) is regulated by glutamatergic afferents to the PFC or the ventral tegmental area (VTA), the primary source of dopamine neurons that innervate the rodent PFC. In awake rats, blockade of NMDA or α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors in the VTA, or blockade of AMPA receptors in the PFC, profoundly reduced dopamine release in the PFC, suggesting that the basal output of dopamine neurons projecting to the PFC is under a tonic excitatory control of NMDA and AMPA receptors in the VTA, and AMPA receptors in the PFC. Consistent with previous reports, blockade of cortical NMDA receptors increased dopamine release, suggesting that NMDA receptors in the PFC exert a tonic inhibitory control on dopamine release. Blockade of NMDA or AMPA receptors in the VTA as well as blockade of AMPA receptors in the PFC reduced the dopaminergic response to mild handling, suggesting that activation of glutamate neurotransmission also regulates stimulus-induced increase of dopamine release in the PFC. In the context of brain disorders that may involve cortical dopamine dysfunction, the present findings suggest that abnormal basal or stimulus-activated dopamine neurotransmission in the PFC may be secondary to glutamatergic dysregulation.  相似文献   

13.
Tricyclic mono- and dicationic compounds (derivatives of 9-aminoacridine) antagonize AMPA and NMDA glutamate receptors. The aim of the present study was to compare mechanisms of the 9-aminoacridine action on AMPA and NMDA receptors. Experiments were carried out by whole-cell patch-clamp technique on native receptors from rat brain neurons. An important peculiarity of the 9-aminoacridine action on NMDA receptors is the large slope of the concentration dependence, which suggests the binding of two molecules in the channel. AMPA receptors blockade also demonstrated interesting features. In contrast to the NMDA receptor channel block, inhibition of AMPA receptors is voltage-independent. 9-Aminoacridine and its dicationic analog demonstrated similar anti-AMPA activity. For classical AMPA-receptor channel blockers (derivatives of adamantane and phenylcyclohexyl) it was demonstrated that dicationic analogs are much more potent than monocationic analogs. We conclude that 9-aminoacridine binds to a specific site in AMPA receptors. This finding opens a possibility to develop a new family of non-competitive antagonists of AMPA receptors.  相似文献   

14.
The vanilloid receptor VR1 (TRPV1) is a temperature- and capsaicin-sensitive cation channel expressed by a class of primary afferents involved in nociception. To confirm the hypothesis that VR1-positive primary afferents are glutamatergic and contact spinal neurons that express the main classes of ionotropic glutamate receptors, we performed multiple immunofluorescent staining for VR1 and the glutamate transporter VGLUT2 (a specific marker for glutamatergic transmission) or AMPA and NMDA receptor subunits. VR1-positive cells in the dorsal root ganglion and boutons of their central afferent fibers in the dorsal horn expressed VGLUT2, and the latter contacted AMPA- or NMDA receptor-positive perikarya. Based on our previous observations of preferential targeting of VR1-positive primary afferents to spinal neurons that express the neurokinin receptor NK1 (Hwang et al., 2003), we further quantified the frequency of termination of VR1-positive afferents onto NK1-positive neurons co-expressing glutamate receptors. A larger fraction of NK1/NMDA receptors-positive than NK1/AMPA receptors-positive sites were contacted by VR1-positive boutons. We conclude that VR1-positive primary afferents in the rat use glutamate as neurotransmitter and contact postsynaptic sites that co-express NK1 and ionotropic glutamate receptors.  相似文献   

15.
D H Versteeg  W J Florijn 《Life sciences》1987,40(13):1237-1243
The protein kinase C activator 4 beta-phorbol 12,13-dibutyrate (PDB) enhanced the electrically stimulated release of radiolabelled noradrenaline (NA), acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) from dorsal hippocampal slices of the rat in vitro in a concentration-dependent manner. 4 alpha-Phorbol 12,13 didecanoate did not have an effect on the electrically stimulated release of any of the neuromessengers. Carbachol, which when present in the superfusion medium alone inhibited [14C]ACh release, significantly reduced the effect of PDB on the release of this neuromessenger. In the presence of either clonidine or [Leu5]enkephalin, which by themselves inhibited the electrically stimulated release of [3H]NA, the effect of PDB was significantly reduced. The enhancing effects of yohimbine and PDB on the electrically stimulated release of [3H]NA were additive. In all three cases, thus, the net effects of PDB were of a similar magnitude, whether the various compounds were present or not. Taken together, the present data suggest that the diacylglycerol/protein kinase C pathway is involved in the stimulus-evoked release of NA, ACh and 5-HT from dorsal hippocampal nerve terminals. Protein kinase C seems not to be involved in the modulation of the release of NA via presynaptic alpha 2-adrenoceptors and delta-opioid receptors and in that of ACh via presynaptic ACh receptors in that brain region.  相似文献   

16.
Beta amyloid (Abeta), a peptide generated from the amyloid precursor protein (APP) by neurons, is widely believed to underlie the pathophysiology of Alzheimer's disease. Recent studies indicate that this peptide can drive loss of surface AMPA and NMDA type glutamate receptors. We now show that Abeta employs signaling pathways of long-term depression (LTD) to drive endocytosis of synaptic AMPA receptors. Synaptic removal of AMPA receptors is necessary and sufficient to produce loss of dendritic spines and synaptic NMDA responses. Our studies indicate the central role played by AMPA receptor trafficking in Abeta-induced modification of synaptic structure and function.  相似文献   

17.
成年小鼠前脑NMDA受体参与神经元的动作电位发放   总被引:2,自引:2,他引:0  
Wang GD  Zhuo M 《生理学报》2006,58(6):511-520
谷氨酸是中枢神经系统主要的快速兴奋性递质。AMPA受体和海人藻酸受体主要参与突触传递,而NMDA受体主要参与突触可塑性。基因操作的方法增强NMDA受体的功能,可以增强动物在正常生理状态下的学习能力,及在组织损伤情况下的反应敏感性。NMDA受体参与生理功能的主要机制是长时程增强(long—term potentiation,LTP)。我们的研究表明,NMDA受体不仅参与刺激前扣带皮层的第五层细胞或刺激白质诱导的突触反应,而且参与在胞体施加去极化跃阶电流诱导的动作电位的发放。钙一钙调蛋白敏感的腺苷酸环化酶1(adenylyl cyclase 1,AC1)和cAMP信号通路可能介导了这些反应。由于扣带皮层神经元在伤害性刺激和痛中发挥重要作用,我们的结果为前脑NMDA受体参与突触传递和动作电位发放,以及与前脑相关的行为,如感受伤害性刺激和痛,提供了一个新的机制。  相似文献   

18.
Abstract: The K+-evoked overflow of endogenous glutamate from cerebellar synaptosomes was inhibited by serotonin [5-hydroxytryptamine (5-HT); pD2 = 8.95], 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT; pD2 = 7.35), and sumatriptan (pD2 = 8.43). These inhibitions were prevented by the selective 5-HT1D receptor antagonist N -[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)(1,1-biphenyl)-4-carboxamide (GR-127935). The three agonists tested also inhibited the cyclic GMP (cGMP) response provoked in slices by K+ depolarization; pD2 values were 9.37 (5-HT), 9.00 (8-OH-DPAT), and 8.39 (sumatriptan). When cGMP formation was elevated by directly activating glutamate receptors with NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), the inhibition of the cGMP responses displayed the following pattern: 5-HT (pD2 values of 8.68 and 8.72 against NMDA and AMPA, respectively); 8-OH-DPAT (respective pD2 values of 9.15 and 9.00); sumatriptan (0.1 µ M ) was ineffective. The 5-HT1A receptor antagonist ( S )-(+) N-tert -butyl-3-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylpropionamide dihydrochloride [(+)-WAY 100135] did not prevent the inhibition of glutamate release by 5-HT but blocked the inhibition by 8-OH-DPAT of the NMDA/AMPA-evoked cGMP responses. It is suggested that presynaptic 5-HT1D receptors mediate inhibition directly of glutamate release and indirectly of the cGMP responses to the released glutamate; on the other hand, activation of (postsynaptic) 5-HT1A receptors causes inhibition of the cGMP responses linked to stimulation of NMDA/AMPA receptors.  相似文献   

19.
We investigated the effect of the excitatory amino acid (EAA) receptor agonists L-glutamate, N-methyl-D-aspartate (NMDA), (RS)-a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainic acid on KCl-induced contractions of rabbit tracheal smooth muscle, as well as the role of epithelium and endogenously produced nitric oxide and prostaglandins on these responses. L-Glutamate decreased KCI-induced contractions up to 30%. This effect was attenuated by epithelium removal, tetrodotoxin, methylene blue and indomethacin but not by NG-nitro-L-arginine methyl ester. While NMDA, AMPA and kainic acid had no effect, the combination of NMDA + kainic acid decreased KCI-induced contractions. These results suggest that, in rabbit trachea, L-glutamate has, at least in part, an epithelium-dependent effect mediated via prostaglandin formation and that the EAA receptors involved are non-classical.  相似文献   

20.
Soluble oligomers of the amyloid-β peptide (AβOs) accumulate in the brains of Alzheimer disease (AD) patients and are implicated in synapse failure and early memory loss in AD. AβOs have been shown to impact synapse function by inhibiting long term potentiation, facilitating the induction of long term depression and inducing internalization of both AMPA and NMDA glutamate receptors, critical players in plasticity mechanisms. Because activation of dopamine D1/D5 receptors plays important roles in memory circuits by increasing the insertion of AMPA and NMDA receptors at synapses, we hypothesized that selective activation of D1/D5 receptors could protect synapses from the deleterious action of AβOs. We show that SKF81297, a selective D1/D5 receptor agonist, prevented the reduction in surface levels of AMPA and NMDA receptors induced by AβOs in hippocampal neurons in culture. Protection by SKF81297 was abrogated by the specific D1/D5 antagonist, SCH23390. Levels of AMPA receptor subunit GluR1 phosphorylated at Ser(845), which regulates AMPA receptor association with the plasma membrane, were reduced in a calcineurin-dependent manner in the presence of AβOs, and treatment with SKF81297 prevented this reduction. Establishing the functional relevance of these findings, SKF81297 blocked the impairment of long term potentiation induced by AβOs in hippocampal slices. Results suggest that D1/D5 receptors may be relevant targets for development of novel pharmacological approaches to prevent synapse failure in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号