首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel immobilization matrix, poly(3-methylthienyl methacrylate)–poly(3-thiopheneacetic acid) (PMTM–PTAA), was synthesized and used for the covalent immobilization of Saccharomyces cerevisiae invertase to produce invert sugar. The immobilization resulted in 87% immobilization efficiency. Optimum conditions for activity were not affected by immobilization and the optimum pH and temperature for both free and immobilized enzyme were found to be 4.5 and 55 °C, respectively. However, immobilized invertase was more stable at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined using the Lineweaver–Burk plot. The Km values were 35 and 38 mM for free and immobilized enzyme, respectively. The Vmax values were 29 and 24 mg glucose/mg enzyme min for free and immobilized enzyme, respectively. Immobilized enzyme could be used for the production of glucose and fructose from sucrose since it retained almost all the initial activity for a month in storage and retained the whole activity in repeated 50 batch reactions.  相似文献   

2.
Antimicrobial activity of the 18 prenylated flavonoids, which were purified from five different medicinal plants, was evaluated by determination of MIC using the broth microdilution methods against four bacterial and two fungal microorganisms (Candida albicans, Saccaromyces cerevisiae, Escherichia coli, Salmonella typhimurium, Staphylococcus epidermis and S. aureus). Papyriflavonol A, kuraridin, sophoraflavanone D and sophoraisoflavanone A exhibited a good antifungal activity with strong antibacterial activity. Kuwanon C, mulberrofuran G, albanol B, kenusanone A and sophoraflavanone G showed strong antibacterial activity with 5–30 μg/ml of MICs. Morusin, sanggenon B and D, kazinol B, kurarinone, kenusanone C and isosophoranone were effective to only gram positive bacteria, and broussochalcone A was effective to C. albicans. IC50 values of papyriflavonol A, kuraridin, sophoraflavanone D, sophoraisoflavanone A and broussochalcone A in HepG2 cells were 20.9, 37.8, 39.1, 22.1, and 22.0 μg/ml, respectively. These results support the use of prenylated flavonoids in Asian traditional medicine to treat microbial infection and indicate a high potential for prenylated flavonoids as antimicrobial agents as well as anti-inflammatory agents.  相似文献   

3.
Several lichen compounds, i.e. lobaric acid (1), a β-orcinol depsidone from Stereocaulon alpinum L., (+)-protolichesterinic acid (2), an aliphatic -methylene-γ-lactone from Cetraria islandica Laur. (Parmeliaceae), (+)-usnic acid (3), a dibenzofuran from Cladonia arbuscula (Wallr.) Rabenh. (Cladoniaceae), parietin (4), an anthraquinone from Xanthoria elegans (Link) Th. Fr. (Calaplacaceae) and baeomycesic acid (5), a β-orcinol depside isolated from Thamnolia vermicularis (Sw.) Schaer. var. subuliformis (Ehrh.) Schaer. were tested for inhibitory activity on platelet-type 12(S)-lipoxygenase using a cell-based in vitro system in human platelets. Lobaric acid (1) and (+)-protolichesterinic acid (2) proved to be pronounced inhibitors of platelet-type 12(S)-lipoxygenase, whereas baeomycesic acid (5) showed only weak activity (inhibitory activity at a concentration of 100 μg/ml: 1 93.4±6.62%, 2 98,5±1.19%, 5 14.7±2.76%). Usnic acid (3) and parietin (4) were not active at this concentration. 1 and 2 showed a clear dose–response relationship in the range of 3.33–100 μg/ml. According to the calculated IC50 values the highest inhibitory activity was observed for the depsidone 1 (IC50=28.5 μM) followed by 2 (IC50=77.0 μM). The activity of 1 was comparable to that of the flavone baicalein, which is known as a selective 12(S)-lipoxygenase inhibitor (IC50=24.6 μM).  相似文献   

4.
Production, purification and properties of γ-glutamyltranspeptidase from a newly isolated Bacillus subtilis NX-2 was investigated. At the optimum conditions for enzyme formation, a high level, 3.2 U/ml of γ-GTP was obtained. The extracellular γ-GTP from this strain was purified 111.15-fold to homogeneity from the culture supernatant by acetone precipitation, hydrophobic interaction chromatography and ion exchange chromatography. The purified enzyme was a heterodimer consisting of one large subunit (43 kDa) and one small subunit (32 kDa), and exhibited high activity at 40–60 °C, pH 8.0. It preferred basic amino acids as γ-glutamyl acceptor in transpeptidation, and the stereochemistry of the γ-glutamyl acceptor had no influence on the enzyme activity, which was different from other γ-GTPs reported. Furthermore, it was proved that γ-GTP of this strain could catalyze the transfer of l-glutamine to glycylglycine to synthesize Gln–Gly–Gly, which was promising for the synthesis of valuable γ-glutamyl peptides.  相似文献   

5.
Organotins are known to induce imposex (pseudohermaphroditism) in marine neogastropods and are suggested to act as specific endocrine disruptors, inhibiting the enzyme-mediated conversion of steroid hormones. Therefore, we investigated the in vitro effects of triphenyltin (TPT) on human 5-reductase type 2 (5-Re 2), cytochrome P450 aromatase (P450arom), 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD 3), 3β-HSD type 2 and 17β-HSD type 1 activity. First, the present study demonstrates that significant amounts of TPT occurred in the blood of eight human volunteers (0.17–0.67 μg organotin cation/l, i.e. 0.49–1.92 nmol cation/l). Second, TPT showed variable inhibitory effects on all the enzymes investigated. The mean IC50 values were 0.95 μM for 5-Re 2 (mean of n=4 experiments), 1.5 μM for P450arom (n=5), 4.0 μM for 3β-HSD 2 (n=1), 4.2 μM for 17β-HSD 3 (n=3) and 10.5 μM for 17β-HSD 1 (n=3). To exclude the possibility that the impacts of TPT are mediated by oxidizing essential thiol residues of the enzymes, the putative compensatory effects of the reducing agent dithioerythritol (DTE) were investigated. Co-incubation with DTE (n=3) resulted in dose-response prevention of the inhibitory effects of 100 μM deleterious TPT concentrations on 17β-HSD 3 (EC50 value of 12.9 mM; mean of n=3 experiments), 3β-HSD 2 (0.90 mM; n=3), P450arom (0.91 mM; n=3) and 17β-HSD 1 (0.21 mM; n=3) activity. With these enzymes, the use of 10 mM DTE resulted in an at least 80% antagonistic effect, whereas, the effect of TPT on 5-Re 2 was not compensated. In conclusion, the present study shows that TPT acts as an unspecific, but significant inhibitor of human sex steroid hormone metabolism and suggests that the inhibitory effects are mediated by the interaction of TPT with critical cysteine residues of the enzymes.  相似文献   

6.
7.
Cordyceps militaris mycelium produced mainly Cu, Zn containing superoxide dismutase (Cu, Zn-SOD). Cu, Zn-SOD activity was detectable in the culture filtrates, and intracellular Cu, Zn-SOD activity as a proportion protein was highest in early log phase culture. The effects of Cu2+, Zn2+, Mn2+ and Fe2+ on enzyme biosynthesis were studied. The Cu, Zn-SOD was isolated and purified to homogeneity from C. militaris mycelium and partially characterized. The purification was performed through four steps: (NH4)2SO4 precipitation, DEAE-sepharose™ fast flow anion-exchange chromatography, CM-650 cation-exchange chromatography, and Sephadex G-100 gel filtration chromatography. The purified enzyme had a molecular weight of 35070 ± 400 Da and consisted of two equal-sized subunits each having a Cu and Zn element. Isoelectric point value of 7.0 was obtained for the purified enzyme. The N-terminal amino acid sequence of the purified enzyme was determined for 12 amino acid residues and the sequences was compared with other Cu, Zn-SODs. The optimum pH of the purified enzyme was obtained to be 8.2–8.8. The purified enzyme remained stable at pH 5.8–9.8, 25 °C and up to 50 °C at pH 7.8 for 1.5 h incubation. The purified enzyme was sensitive to H2O2, KCN. 2.5 mM NaN3, PMSF, Triton X-100, β-mercaptoethanol and DTT showed no significant inhibition effect on the purified enzyme within 5 h incubation period.  相似文献   

8.
Nitric oxide (NO), a potent vasodilator, plays a pivotal role in blood pressure regulation. Endothelial NO synthase gene (NOS3) polymorphisms influence NO levels. Here, we investigated the role of the – 922A/G, – 786T/C, 4b/4a, and 894G/T polymorphisms of the NOS3 and NOx levels in 800 consecutive unrelated subjects comprising 455 patients of essential hypertension and 345 controls. The polymorphisms were investigated independently and as haplotypes. Plasma NOx levels (nitrate and nitrite) were estimated by the Griess method. Genotype frequencies for the –786T/C, 4b/4a, and 894G/T polymorphisms differed significantly (P < 0.001) between patients and controls and were associated with an increased risk of hypertension (OR = 2.0, OR = 3.8, OR = 1.6, respectively). The 4-locus haplotypes ATaG (H1), ATaT (H2), and GCaG (H3) were significantly associated with essential hypertension and served as susceptible haplotypes (P ≤ 0.0001). On the other hand, haplotypes ATbG (H4) and GTbG (H5) were negatively associated with hypertension and served as protective haplotypes (P < 0.0001). NOx levels were significantly lower in patients than controls (P < 0.0001). The individual polymorphisms showed marginal association with NOx level; however, the susceptible haplotype H2 associated significantly with lower NOx levels in patients (P < 0.001) and conversely the haplotype H4 with higher NOx levels in controls (P < 0.001). In conclusion, the 4b/4a and likely – 786T/C polymorphisms were identified as the determinants modifying the risk of hypertension. This study identifies the NOS3 variants and haplotypes as genetic risk factors and as useful markers of increased susceptibility to the risk of essential hypertension.  相似文献   

9.
We report here the synthesis, characterization and in vitro antiamoebic activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones (TSC), 1–5, and their bidentate complexes [Ru(η4-C8H12)(TSC)Cl2] 1a–5a. The biological studies of these compounds were investigated against HK-9 strain of Entamoeba histolytica and the concentration causing 50% cell growth inhibition (IC50) was calculated in the micromolar range. The ligands exhibited antiamoebic activity in the range (2.05–5.29 μM). Screening results indicated that the potencies of the compounds increased by the incorporation of ruthenium(II) in the thiosemicarbazones. The complexes 1a–5a showed antiamoebic activity with an IC50 of 0.61–1.43 μM and were better inhibitors of growth of E. histolytica, based on IC50 values. The most promising among them is Ru(II) complex 2a having 1,2,3,4-tetrahydroquinoline as N4 substitution.  相似文献   

10.
Antifungal compounds in the culture filtrate from Bacillus subtilis NSRS 89-24 that inhibited the growth of Pyricularia grisea and Rhizoctonia solani were mainly heat stable as the filter sterilized culture filtrate showed higher activity than an autoclaved one. The heat stable and labile components were due to an antibiotic and a β-1,3-glucanase, respectively. This β-1,3-glucanase was purified and characterized. Glucanase activity in the culture medium of B. subtilis NSRS 89-24 was inducible in the presence of 0.3% chitin, reaching a maximum on day 5. After purification, activity was associated with a protein of molecular mass of approximately 95.5 kDa by both gel filtration and native PAGE. Two major bands of Mr 64.6 and 32.4 kDa were revealed by SDS–PAGE. The enzyme had a Km of 0.9 mg/ml, and Vmax of 0.11 U, the optimal pH was 6.5–9.5 and was stable up to 50 °C. Both the pure enzyme and the antibiotic extract from the culture filtrate of the B. subtilis separately inhibited R. solani and P. grisea with MIC values of 12.5 and 6.25 mU/ml and 3.13 and 1.56 μg/ml, respectively. The glucanase enzyme in combination with the antibiotic showed a strong synergistic inhibitory effect on the hyphal growth of both fungi.  相似文献   

11.
Several racemic β- and γ-thiolactones were synthesized and kinetic resolutions of them were executed using lipases. While a lipase from Pseudomonas cepacia (PCL) showed the highest enantioselectivity for (S)-form (>99% eeS at 53% conversion, E > 100) in the kinetic resolution of racemic -methyl-β-propiothiolactone (rac-MPTL), it showed no hydrolysis activity in the kinetic resolution of -benzyl--methyl-β-propiothiolactone (rac-BMPTL), suggesting that the changes in the size of alkyl group from rac-MPTL to rac-BMPTL leads to lower hydrolysis activity and enantioselectivity. In contrast, racemic γ-butyrothiolactones were hydrolyzed by several lipases with low enantioselectivity, whereas a lipase from Candida antarctica (CAL) showed moderate enantioselectivity for (S)-form (>99% eeS at 76% conversion, E = 11) in the kinetic resolution of racemic -methyl-γ-butyrothiolactone (rac-MBTL). Computer-aided molecular modeling was also performed to investigate the enantioselectivites and activities of PCL toward β-propiothiolactones. The computer modeling results suggest that the alkyl side chains of β-propiothiolactones and γ-butyrothiolactones interact with amino acid residues around hydrophobic crevice, which affects the activity of PCL.  相似文献   

12.
A highly enantioselective carbonyl reductase produced by a new yeast strain Candida viswanathii MTCC 5158, which was isolated using an acetophenone enriched medium, has been purified and characterized. The enzyme has been purified to near homogeneity using ammonium sulfate precipitation, ion exchange and gel filtration chromatography. The molecular properties of the carbonyl reductase suggested the native enzyme to be tetrameric, with an apparent molecular weight of 120 kDa, the monomer being about 29 kDa. Acetyl aryl ketones were found to be the preferred substrates for the enzyme and the best reaction was the enantioselective reduction of acetophenone. The enzyme yielded (S)-alcohol in preference to (R)-alcohol and utilized NADH, but not NADPH as the cofactor. The purified enzyme exhibited maximum enzyme activity at pH 7.0 and 60 °C. The enzyme retained about 80% of its activity after 7 h incubation at 25 °C in sodium phosphate buffer (50 mM, pH 7.0). The addition of reducing agents like dithiothreitol and β-mercaptoethanol enhanced the enzyme activity while organic solvents, detergents and chaotropic agents had deleterious effect on enzyme activity. Metal chelating agents like hydroxyquinoline and o-phenanthroline have significant effect on enzyme activity suggesting that the carbonyl reductase required the presence of a tightly bound metal ion for activity or stability. The maximum reaction rate (Vmax) and apparent Michaelis–Menten constant (Km) for acetophenone and NADH were 59.21 μmol/(min mg) protein and 0.153 mM and 82.64 μmol/(min mg) protein and 0.157 mM at a concentration range of 0.2–2 mM acetophenone (NADH fixed at 0.5 mM) and 0.1–0.5 mM NADH (acetophenone fixed at 2 mM), respectively.  相似文献   

13.
Yan QJ  Wang L  Jiang ZQ  Yang SQ  Zhu HF  Li LT 《Bioresource technology》2008,99(13):5402-5410
An extracellular β-xylosidase from the thermophilic fungus Paecilomyces thermophila J18 was purified 31.9-fold to homogeneity with a recovery yield of 2.27% from the cell-free culture supernatant. It appeared as a single protein band on SDS–PAGE with a molecular mass of approx 53.5 kDa. The molecular mass of β-xylosidase was 51.8 kDa determined by Superdex 75 gel filtration. The enzyme was a glycoprotein with a carbohydrate content of 61.5%. It exhibited an optimal activity at 55 °C and pH 6.5, respectively. The enzyme was stable in the range of pH 6.0–9.0 and at 55 °C. The purified enzyme hydrolyzed xylobiose and higher xylooligosaccharides but was inactive against xylan substrates. It released xylose from xylooligosaccharides with a degree of polymerization ranging between 2 and 5. The rate of xylose released from xylooligosaccharides by the purified enzyme increased with increasing chain length. It had a Km of 4.3 mM for p-nitrophenol-β-d-xylopyranoside and was competitively inhibited by xylose with a Ki value of 139 mM. Release of reducing sugars from xylans by a purified xylanase produced by the same organism increased markedly in the presence of β-xylosidase. During 24-hour hydrolysis, the amounts of reducing sugar released in the presence of added β-xylosidase were about 1.5–1.73 times that of the reaction employing the xylanase alone. This is the first report on the purification and characterization of a β-xylosidase from Paecilomyces thermophila.  相似文献   

14.
Esenbeckia febrifuga (Rutaceae) is a plant traditionally used to treat malaria in the Brazilian Amazon region. Ethanol extract of stems displayed a good antiplasmodial activity against Plasmodium falciparum strains W-2 (IC50 15.5±0.71 μg/ml) and 3 D7 (IC50 21.0±1.4 μg/ml). Two coumarins (bergaptene 1 and isopimpinellin 2), five alkaloids (flindersiamine 3, kokusaginine 4, skimmiamine 5, γ-fagarine 6 and 1-hydroxy-3-methoxy-N-methylacridone, 7), besides a limonoid (rutaevine 8), have been isolated for the first time from this species. Antiplasmodial activity of compounds 3, 5–8 has been evaluated in vitro against P. falciparum strains (W-2 and 3D7) and the furoquinolines 5 and 6 were the most potent displaying IC50 values <50 μg/ml; flindersiamine (3) showed a weak activity while alkaloid 7 and rutaevine (8) were inactive (IC50>100 μg/ml).  相似文献   

15.
The subunit composition of RNA polymerase II (polII) was compared between the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. For this purpose, we partially purified the enzyme from S. pombe. Judging from the co-elution profiles in column chromatographies of both the RNA polymerase activity and the two large subunit polypeptides (subunit 1 (prokaryotic β' homologue) and subunit 2 (β homologue)), the minimum number of S. pombe polII-associated polypeptides was estimated to be ten, less than the proposed subunit number of the S. cerevisiae enzyme. These ten putative subunits of S. pombe polII correspond to subunits 1, 2, 3, 5, 6, 7, 8, 10, 11 and 12 of the S. cerevisiae counterparts  相似文献   

16.
In the presence of rutin as sole carbon source, Penicillium decumbens produces two intracellular β-glucosidases named GI and GII, with molecular masses of 56,000 and 460,000 Da, respectively. The two proteins have been purified to homogeneity. GI and GII composed of two and four equal sub-units, respectively and displayed optimal activity at pH 7.0 and temperature 65–75 °C. Both β-glucosidases were competitively inhibited by glucose and glucono-δ-lactone. GI and GII exhibited broad substrate specificity, since they hydrolyzed a range of (1,3)-, (1,4)- and (1,6)-β-glucosides as well as aryl β-glucosides. Determination of kcat/Km revealed that GII hydrolyzed 3–8 times more efficiently the above-mentioned substrates. The ability of GI and GII to deglycosylate various flavonoid glycosides was also investigated. Both enzymes were active against flavonoids glycosylated at the 7 position but GII hydrolyzed them 5 times more efficiently than GI. Of the flavanols tested, both enzymes were incapable of hydrolyzing quercetrin and kaempferol-3-glucoside. The main difference between GI and GII as far as the hydrolysis of flavanols is concerned, was the ability of GII to hydrolyze the quercetin-3-glucoside.  相似文献   

17.
Thirty five bacterial isolates from diverse environmental sources such as contaminated food, nitrogen rich soil, activated sludges from pesticide and oil refineries effluent treatment plants were found to belong to Bacillus, Bordetella, Enterobacter, Proteus, and Pseudomonas sp. on the basis of 16S rRNA gene sequence analysis. Under dark fermentative conditions, maximum hydrogen (H2) yields (mol/mol of glucose added) were recorded to be 0.68 with Enterobacter aerogenes EGU16 followed by 0.63 with Bacillus cereus EGU43 and Bacillus thuringiensis EGU45. H2 constituted 63–69% of the total biogas evolved. Out of these 35 microbes, 18 isolates had the ability to produce polyhydroxybutyrate (PHB), which varied up to 500 mg/l of medium, equivalent to a yield of 66.6%. The highest PHB yield was recorded with B. cereus strain EGU3. Nine strains had high hydrolytic activities (zone of hydrolysis): lipase (34–38 mm) – Bacillus sphaericus strains EGU385, EGU399 and EGU542; protease (56–62 mm) – Bacillus sp. strains EGU444, EGU447 and EGU445; amylase (23 mm) – B. thuringiensis EGU378, marine bacterium strain EGU409 and Pseudomonas sp. strain EGU448. These strains with high hydrolytic activities had relatively low H2 producing abilities in the range of 0.26–0.42 mol/mol of glucose added and only B. thuringiensis strain EGU378 had the ability to produce PHB. This is the first report among the non-photosynthetic microbes, where the same organism(s) – B. cereus strain EGU43 and B. thuringiensis strain EGU45, have been shown to produce H2 – 0.63 mol/mol of glucose added and PHB – 420–435 mg/l medium.  相似文献   

18.
The AL 112 strain, isolated from 361 yeast strains in Sicilian musts and wines, has been identified by biochemical and molecular methods as belonging to Pichia anomala, and your endogenous β-glucosidase (βG, EC 3.2.1.21) subsequently characterised. This strain not only has extremely high specific productivity of βG, but above all shows arabinosidase (Ara, EC 3.2.1.55) activity, essential for aroma enhancement of wine. βG from Al 112 is activated by ethanol at the concentrations typically found in wine; it is not inhibited by fructose, whilst glucose, a non-competitive inhibitor, despite lowering activity, actually protects the enzyme from factors that could damage it. It has an optimum temperature of 20 °C, compatible with typical cellar conditions, and stability in model must-wine and wine solutions ≥40 days.  相似文献   

19.
20.
In the construction of luminescent yeast cell based fibre-optic biosensors, we demonstrate a novel approach for estrogenic endocrine disrupting chemical (EDC) biodetection by entrapping genetically modified Saccharomyces cerevisiae cells, containing the estrogen receptor alpha-mediated expression of the luc reporter gene, in hydrogel matrices based on calcium alginate or PVA. In order to insure a significant signal, an optimal immobilization ratio of 1:2 alginate 3% (w/v): 5 × 106 [cells/ml], respectively, was used with the highest 17-β-estradiol (β-E2) induction factor after 2.5 h of incubation with 10 [nM] β-E2. It was shown that biocompatible alginate beads, 4.27–4.55 × 105 [CFU/bead], which were characterized by a detection limit of 0.08 [μg l−1] and an EC50 of 0.64 [μg l−1] for β-E2, retained their viability for luminescence measurements after 1 month of storage at −80 °C slow freeze condition, and thus repeated cell cultivations were not required. The assay reproducibility for each tested EDC, represented by the coefficients of variation (CV), ranged from 4.35 to 18.47%. An alternative immobilization method, based on a room temperature partial drying of polyvinyl alcohol (PVA) solution (LentiKat® Liquid) and cell suspension mix, was investigated with only a slightly lower detection limit for β-E2 than that reported with alginate beads. Alginate yeast based hydrogels may also be applicable to the analysis of environmental water samples since the trend of detected estrogenic activities with alginate beads roughly correlated with LC–MS–MS analytical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号