首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cloning of maltase gene from a methylotrophic yeast, Hansenula polymorpha   总被引:1,自引:0,他引:1  
Liiv L  Pärn P  Alamäe T 《Gene》2001,265(1-2):77-85
The Hansenula polymorpha maltase structural gene (HPMAL1) was isolated from a genomic library by hybridization of the library clones with maltase-specific gene probe. An open reading frame of 1695 nt encoding a 564 amino-acid protein with calculated molecular weight of 65.3 kD was characterized in the genomic DNA insert of the plasmid p51. The protein sequence deduced from the HPMAL1 exhibited 58 and 47% identity with maltases from Candida albicans and Saccharomyces carlsbergesis encoded by CAMAL2 and MAL62, respectively, and 44% identity with oligo-alpha-1,6-glucosidase from Bacillus cereus. The recombinant Hansenula polymorpha maltase produced in Escherichia coli hydrolyzed p-nitrophenyl-alpha-D-glucopyranoside (PNPG), sucrose, maltose and alpha-methylglucoside and did not act on melibiose, cellobiose, trehalose and o-nitrophenyl-beta-D-galactopyranoside (ONPG). The affinity of the recombinant enzyme for its substrates increased in the order maltose 相似文献   

3.
4.
Maltose fermentation in Saccharomyces spp. requires the presence of a dominant MAL locus. The MAL6 locus has been cloned and shown to encode the structural genes for maltose permease (MAL61), maltase (MAL62), and a positively acting regulatory gene (MAL63). Induction of the MAL61 and MAL62 gene products requires the presence of maltose and the MAL63 gene. Mutations within the MAL63 gene produce nonfermenting strains unable to induce the two structural gene products. Reversion of these mal63 nonfermenters to maltose fermenters nearly always leads to the constitutive expression of maltase and maltose permease, and constitutivity is always linked to MAL6. We demonstrated that for one such revertant, strain C2, constitutivity did not require the MAL63 gene, since deletion disruption of this gene did not affect the constitutive expression of the structural genes. In addition, constitutivity was trans acting. Deletion disruption of the MAL6-linked structural genes for maltase and maltose permease in this strain did not affect the constitutive expression of a second, unlinked maltase structural gene. We isolated new maltose-fermenting revertants of a nonfermenting strain which carried a deletion disruption of the MAL63 gene. All 16 revertants isolated expressed maltase constitutively. In one revertant studied in detail, strain R10, constitutive expression was demonstrated to be linked to MAL6, semidominant, trans acting, and residing outside the MAL63-MAL61-MAL62 genes. From these studies we propose the existence of a second trans-acting regulatory gene at the MAL6 locus. We call this new gene MAL64. We mapped the MAL64 gene 2.3 centimorgans to the left of MAL63. The role of the MAL64 gene product in maltose fermentation is discussed.  相似文献   

5.
Hansenula polymorpha uses maltase to grow on maltose and sucrose. Inspection of genomic clones of H. polymorpha showed that the maltase gene HPMAL1 is clustered with genes corresponding to Saccharomyces cerevisiae maltose permeases and MAL activator genes orthologues. We sequenced the H. polymorpha maltose permease gene HPMAL2 of the cluster. The protein (582 amino acids) deduced from the HPMAL2 gene is predicted to have eleven transmembrane domains and shows 39-57% identity with yeast maltose permeases. The identity of the protein is highest with maltose permeases of Debaryomyces hansenii and Candida albicans. Expression of the HPMAL2 in a S. cerevisiae maltose permease-negative mutant CMY1050 proved functionality of the permease protein encoded by the gene. HPMAL1 and HPMAL2 genes are divergently positioned similarly to maltase and maltose permease genes in many yeasts. A two-reporter assay of the expression from the HPMAL1-HPMAL2 intergenic region showed that expression of both genes is coordinately regulated, repressed by glucose, induced by maltose, and that basal expression is higher in the direction of the permease gene.  相似文献   

6.
The MAL1 locus of Saccharomyces cerevisiae comprises three genes necessary for maltose utilization. They include regulatory, maltose transport and maltase genes designated MAL1R, MAL1T and MAL1S respectively. Using a MAL1 strain transformed with an episomal, multicopy plasmid carrying the MAL2 locus, five recessive and one dominant mutant unable to grow on maltose, but still retaining a functional MAL1 locus were isolated. All the mutants could use glycerol, ethanol, raffinose and sucrose as a sole carbon source; expression of the maltase and maltose permease genes was severely and coordinately reduced. Only the dominant mutant failed to accumulate the MAL1R mRNA.  相似文献   

7.
Saccharomyces yeasts ferment several alpha-glucosides including maltose, maltotriose, turanose, alpha-methylglucoside, and melezitose. In the utilization of these sugars transport is the rate-limiting step. Several groups of investigators have described the characteristics of the maltose permease (D. E. Kroon and V. V. Koningsberger, Biochim. Biophys. Acta 204:590-609, 1970; R. Serrano, Eur. J. Biochem. 80:97-102, 1977). However, Saccharomyces contains multiple alpha-glucoside transport systems, and these studies have never been performed on a genetically defined strain shown to have only a single permease gene. In this study we isolated maltose-negative mutants in a MAL6 strain and, using a high-resolution mapping technique, we showed that one class of these mutants, the group A mutants, mapped to the MAL61 gene (a member of the MAL6 gene complex). An insertion into the N-terminal-coding region of MAL61 resulted in the constitutive production of MAL61 mRNA and rendered the maltose permease similarly constitutive. Transformation by high-copy-number plasmids containing the MAL61 gene also led to an increase in the maltose permease. A deletion-disruption of MAL61 completely abolished maltose transport activity. Taken together, these results prove that this strain has only a single maltose permease and that this permease is the product of the MAL61 gene. This permease is able to transport maltose and turanose but cannot transport maltotriose, alpha-methylglucoside, or melezitose. The construction of strains with only a single permease will allow us to identify other maltose-inducible transport systems by simple genetic tests and should lead to the identification and characterization of the multiple genes and gene products involved in alpha-glucoside transport in Saccharomyces yeasts.  相似文献   

8.
9.
Molecular genetic analysis is used to characterize the AGT1 gene encoding an α-glucoside transporter. AGT1 is found in many Saccharomyces cerevisiae laboratory strains and maps to a naturally occurring, partially functional allele of the MAL1 locus. Agt1p is a highly hydrophobic, postulated integral membrane protein. It is 57% identical to Mal61p, the maltose permease encoded at MAL6 , and is also a member of the 12 transmembrane domain superfamily of sugar transporters. Like Mal61p, Agt1p is a high-affinity, maltose/proton symporter, but Mal61p is capable of transporting only maltose and turanose, while Agt1p transports these two α-glucosides as well as several others including isomaltose, α-methylglucoside, maltotriose, palatinose, trehalose and melezitose. AGT1 expression is maltose inducible and induction is mediated by the Mal-activator. The sequence of the upstream region of AGT1 is identical to that of the maltose-inducible MAL61 gene over a 469 bp region containing the UASMAL but the 315 bp sequence immediately upstream of AGT1 shows no significant homology to the sequence immediately upstream of MAL61 . The evolutionary origin of the MAL1 allele to which AGT1 maps and the relationship of AGT1 to other α-glucoside fermentation genes is discussed.  相似文献   

10.
11.
Maltotriose utilization by Saccharomyces cerevisiae and closely related yeasts is important to industrial processes based on starch hydrolysates, where the trisaccharide is present in significant concentrations and often is not completely consumed. We undertook an integrated study to better understand maltotriose metabolism in a mixture with glucose and maltose. Physiological data obtained for a particularly fast-growing distiller's strain (PYCC 5297) showed that, in contrast to what has been previously reported for other strains, maltotriose is essentially fermented. The respiratory quotient was, however, considerably higher for maltotriose (0.36) than for maltose (0.16) or glucose (0.11). To assess the role of transport in the sequential utilization of maltose and maltotriose, we investigated the presence of genes involved in maltotriose uptake in the type strain of Saccharomyces carlsbergensis (PYCC 4457). To this end, a previously constructed genomic library was used to identify maltotriose transporter genes by functional complementation of a strain devoid of known maltose transporters. One gene, clearly belonging to the MAL transporter family, was repeatedly isolated from the library. Sequence comparison showed that the novel gene (designated MTY1) shares 90% and 54% identity with MAL31 and AGT1, respectively. However, expression of Mty1p restores growth of the S. cerevisiae receptor strain on both maltose and maltotriose, whereas the closely related Mal31p supports growth on maltose only and Agt1p supports growth on a wider range of substrates, including maltose and maltotriose. Interestingly, Mty1p displays higher affinity for maltotriose than for maltose, a new feature among all the alpha-glucoside transporters described so far.  相似文献   

12.
The amino acid composition of two forms of alpha-glucosidase from the yeast Saccharomyces cerevisiae-II was established and the values of Km, V, kcat and kcat/Km for maltose, maltotriose and p-nitrophenyl-alpha-D-glucopyranoside (PNPG) were determined. PNPG possessed a much higher affinity for the enzyme as compared to sucrose, maltose and maltotriose. The value of V decreased in the following order: PNPG greater than sucrose greater than maltose greater than greater than maltotriose. No differences between the kinetic parameters of individual forms of alpha-glucosidase were observed. Glucose, fructose and methyl-alpha-glucoside act as competitive inhibitors. The two forms of alpha-glucosidase under study have an identical pH optimum and thermal stability.  相似文献   

13.
14.
We have identified a cluster of six genes involved in trehalose transport and utilization (thu) in Sinorhizobium meliloti. Four of these genes, thuE, -F, -G, and -K, were found to encode components of a binding protein-dependent trehalose/maltose/sucrose ABC transporter. Their deduced gene products comprise a trehalose/maltose-binding protein (ThuE), two integral membrane proteins (ThuF and ThuG), and an ATP-binding protein (ThuK). In addition, a putative regulatory protein (ThuR) was found divergently transcribed from the thuEFGK operon. When the thuE locus was inactivated by gene replacement, the resulting S. meliloti strain was impaired in its ability to grow on trehalose, and a significant retardation in growth was seen on maltose as well. The wild type and the thuE mutant were indistinguishable for growth on glucose and sucrose. This suggested a possible overlap in function of the thuEFGK operon with the aglEFGAK operon, which was identified as a binding protein-dependent ATP-binding transport system for sucrose, maltose, and trehalose. The K(m)s for trehalose transport were 8 +/- 1 nM and 55 +/- 5 nM in the uninduced and induced cultures, respectively. Transport and growth experiments using mutants impaired in either or both of these transport systems show that these systems form the major transport systems for trehalose, maltose, and sucrose. By using a thuE'-lacZ fusion, we show that thuE is induced only by trehalose and not by cellobiose, glucose, maltopentaose, maltose, mannitol, or sucrose, suggesting that the thuEFGK system is primarily targeted toward trehalose. The aglEFGAK operon, on the other hand, is induced primarily by sucrose and to a lesser extent by trehalose. Tests for root colonization, nodulation, and nitrogen fixation suggest that uptake of disaccharides can be critical for colonization of alfalfa roots but is not important for nodulation and nitrogen fixation per se.  相似文献   

15.
The hyperthermophilic archaeon Pyrococcus furiosus can utilize different carbohydrates, such as starch, maltose and trehalose. Uptake of alpha-glucosides is mediated by two different, binding protein-dependent, ATP-binding cassette (ABC)-type transport systems. The maltose transporter also transports trehalose, whereas the maltodextrin transport system mediates the uptake of maltotriose and higher malto-oligosaccharides, but not maltose. Both transport systems are induced during growth on their respective substrates.  相似文献   

16.
17.
W Klein  W Boos 《Journal of bacteriology》1993,175(6):1682-1686
Trehalose transport in Escherichia coli after growth at low osmolarity is mediated by enzyme IITre of the phosphotransferase system (W. Boos, U. Ehmann, H. Forkl, W. Klein, M. Rimmele, and P. Postma, J. Bacteriol. 172:3450-3461, 1990). The apparent Km (16 microM) of trehalose uptake is low. Since trehalose is a good source of carbon and the apparent affinity of the uptake system is high, it was surprising that the disaccharide trehalose [O-alpha-D-glucosyl(1-1)-alpha-D-glucoside] has no problems diffusing through the outer membrane at high enough rates to allow full growth, particularly at low substrate concentrations. Here we show that induction of the maltose regulon is required for efficient utilization of trehalose. malT mutants that lack expression of all maltose genes, as well as lamB mutants that lack only the lambda receptor (maltoporin), still grow on trehalose at the usual high (10 mM) trehalose concentrations in agar plates, but they exhibit the half-maximal rate of trehalose uptake at concentrations that are 50-fold higher than in the wild-type (malT+) strain. The maltose system is induced by trehalose to about 30% of the fully induced level reached when grown in the presence of maltose in a malT+ strain or when grown on glycerol in a maltose-constitutive strain [malT(Con)]. The 30% level of maximal expression is sufficient for maximal trehalose utilization, since there is no difference in the concentration of trehalose required for the half-maximal rate of uptake in trehalose-grown strains with the wild-type gene (malT+) or with strains constitutive for the maltose system [malT(Con)]. In contrast, when the expression of the lambda receptor is reduced to less than 20% of the maximal level, trehalose uptake becomes less efficient. Induction of the maltose system by trehalose requires metabolism of trehalose. Mutants lacking amylotrehalase, the key enzyme in trehalose utilization, accumulate trehalose but do not induce the maltose system.  相似文献   

18.
The hyperthermophilic marine archaeon Thermococcus litoralis exhibits high-affinity transport activity for maltose and trehalose at 85 degrees C. The K(m) for maltose transport was 22 nM, and that for trehalose was 17 nM. In cells that had been grown on peptone plus yeast extract, the Vmax for maltose uptake ranged from 3.2 to 7.5 nmol/min/mg of protein in different cell cultures. Cells grown in peptone without yeast extract did not show significant maltose or trehalose uptake. We found that the compound in yeast extract responsible for the induction of the maltose and trehalose transport system was trehalose. [14C]maltose uptake at 100 nM was not significantly inhibited by glucose, sucrose, or maltotriose at a 100 microM concentration but was completely inhibited by trehalose and maltose. The inhibitor constant, Ki, of trehalose for inhibiting maltose uptake was 21 nM. In contrast, the ability of maltose to inhibit the uptake of trehalose was not equally strong. With 20 nM [14C]trehalose as the substrate, a 10-fold excess of maltose was necessary to inhibit uptake to 50%. However, full inhibition was observed at 2 microM maltose. The detergent-solubilized membranes of trehalose-induced cells contained a high-affinity binding protein for maltose and trehalose, with an M(r) of 48,000, that exhibited the same substrate specificity as the transport system found in whole cells. We conclude that maltose and trehalose are transported by the same high-affinity membrane-associated system. This represents the first report on sugar transport in any hyperthermophilic archaeon.  相似文献   

19.
Identification of new genes involved in disaccharide fermentation in yeast   总被引:4,自引:0,他引:4  
Summary Maltose non-fermenting mutants were obtained from strains carrying a MAL4 allele which permits constitutive synthesis of maltase. Cells carrying this allele are able to utilize sucrose in the absence of the classical sucrose genes. All maltose non-fermenting mutants were also sucrose non-fermenters. Eight mutants had become maltase negative; 19 mutants could still form maltase constitutively.In crosses with segregational maltose and sucrose non-fermenting strains, enzyme negative mutants gave diploids unable to ferment maltose and sucrose. Enzyme positive, non-fermenting mutants gave diploids which readily fermented maltose and sucrose. This latter type of mutants was designated dsf (disaccharide fermentation) mutants.The diploids derived from crossing non-fermenting mutants with segregational non-fermenters were subjected to tetrad analysis. Enzyme negative non-fermenters gave only non-fermenting progeny. The dsf mutants segregated both fermenting and non-fermenting progeny, some of which showed the dsf phenotype. This indicated that none of the dsf mutants had a defect in a gene closely linked to MAL4. Crosses between dsf mutants and strains carrying the maltose genes MAL2 and MAL3 showed that the mutations affected maltose fermentation in general. Sucrose fermentation in the presence of the classical sucrose gene SUC3 was not affected, nor were fermentation of glucose, fructose and galactose.The uptake of radioactivity from uniformly labeled maltose appeared to be blocked in mutants of at least four of the dsf genes. Only one non-leaky and a leaky mutant showed a significant uptake.These results suggest that there is an extremely complex transport system for maltose and sucrose or that the utilization of these disaccharides requires a complex series of metabolic reactions.  相似文献   

20.
We have studied the transport of trehalose and maltose in the thernophilic bacterium Thermus thermophilus HB27, which grows optimally in the range of 70 to 75 degrees C. The K(m) values at 70 degrees C were 109 nM for trehalose and 114 nM for maltose; also, a high K(m) (424 nM) was found for the uptake of sucrose. Competition studies showed that a single transporter recognizes trehalose, maltose, and sucrose, while d-galactose, d-fucose, l-rhamnose, l-arabinose, and d-mannose were not competitive inhibitors. In the recently published genome of T. thermophilus HB27, two gene clusters designated malEFG1 (TTC1627 to -1629) and malEFG2 (TTC1288 to -1286) and two monocistronic genes designated malK1 (TTC0211) and malK2 (TTC0611) are annotated as trehalose/maltose and maltose/maltodextrin transport systems, respectively. To find out whether any of these systems is responsible for the transport of trehalose, the malE1 and malE2 genes, lacking the sequence encoding the signal peptides, were expressed in Escherichia coli. The binding activity of pure recombinant proteins was analyzed by equilibrium dialysis. MalE1 was able to bind maltose, trehalose, and sucrose but not glucose or maltotetraose (K(d) values of 103, 67, and 401 nM, respectively). Mutants with disruptions in either malF1 or malK1 were unable to grow on maltose, trehalose, sucrose, or palatinose, whereas mutants with disruption in malK2 or malF2 showed no growth defect on any of these sugars. Therefore, malEFG1 encodes the binding protein and the two transmembrane subunits of the trehalose/maltose/sucrose/palatinose ABC transporter, and malK1 encodes the ATP-binding subunit of this transporter. Despite the presence of an efficient transporter for trehalose, this compound was not used by HB27 for osmoprotection. MalE1 and MalE2 exhibited extremely high thermal stability: melting temperatures of 90 degrees C for MalE1 and 105 degrees C for MalE2 in the presence of 2.3 M guanidinium chloride. The latter protein did not bind any of the sugars examined and is not implicated in a maltose/maltodextrin transport system. This work demonstrates that malEFG1 and malK1 constitute the high-affinity ABC transport system of T. thermophilus HB27 for trehalose, maltose, sucrose, and palatinose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号