首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weaning in the piglet is a stressful event associated with gastrointestinal disorders and increased disease susceptibility. Although stress is thought to play a role in postweaning intestinal disease, the mechanisms by which stress influences intestinal pathophysiology in the weaned pig are not understood. The objectives of these experiments were to investigate the impact of weaning on gastrointestinal health in the pig and to assess the role of stress signaling pathways in this response. Nineteen-day-old pigs were weaned, and mucosal barrier function and ion transport were assessed in jejunal and colonic tissues mounted on Ussing chambers. Weaning caused marked disturbances in intestinal barrier function, as demonstrated by significant (P < 0.01) reductions in transepithelial electrical resistance and increases in intestinal permeability to [3H]mannitol in both the jejunum and colon compared with intestinal tissues from age-matched, unweaned control pigs. Weaned intestinal tissues exhibited increased intestinal secretory activity, as demonstrated by elevated short-circuit current that was sensitive to treatment with tetrodotoxin and indomethacin, suggesting activation of enteric neural and prostaglandin synthesis pathways in weaned intestinal tissues. Western blot analyses of mucosal homogenates showed increased expression of corticotrophin-releasing factor (CRF) receptor 1 in the jejunum and colon of weaned intestinal tissues. Pretreatment of pigs with the CRF receptor antagonist alpha-helical CRF(9-41), which was injected intraperitoneally 30 min prior to weaning, abolished the stress-induced mucosal changes. Our results indicate that weaning stress induces mucosal dysfunction mediated by intestinal CRF receptors and activated by enteric nerves and prostanoid pathways.  相似文献   

2.
We examined the impact of chronic stress on rat growth rate and intestinal epithelial physiology and the role of mast cells in these responses. Mast cell-deficient (Ws/Ws) rats and +/+ littermate controls were submitted to water avoidance stress or sham stress, 1 h/day, for 5 days. Seven hours after the last sham or stress session, jejunal segments were mounted in Ussing chambers, in which secretion and permeability were measured. Body weight (as a growth index) and food intake were determined daily. Stress increased baseline jejunal epithelial ion secretion (indicated by short-circuit current), ionic permeability (conductance), and macromolecular permeability (horseradish peroxidase flux) in +/+ rats, but not in Ws/Ws rats, compared with nonstressed controls. Stress induced weight loss and reduced food intake similarly in the groups. In +/+ rats, these parameters remained altered 24-72 h after the cessation of stress. Modulation of stress-induced mucosal mast cell activation may help in the management of certain intestinal conditions involving epithelial pathophysiology.  相似文献   

3.
The deleterious effects of stress on the gastrointestinal tract seem to be mainly mediated by the induction of intestinal barrier dysfunction and subsequent subtle mucosal inflammation. Cannabinoid 1 receptor (CB1R) is expressed in the mammalian gut under physiological circumstances. The aim of this investigation is to study the possible role of CB1R in the maintenance of mucosal homeostasis after stress exposure. CB1R knockout mice (CB1R(-/-)) and their wild-type (WT) counterparts were exposed to immobilization and acoustic (IA) stress for 2 h per day during 4 consecutive days. Colonic protein expression of the inducible forms of the nitric oxide synthase and cyclooxygenase (NOS2 and COX2), IgA production, permeability to (51)Cr-EDTA, and bacterial translocation to mesenteric lymph nodes were evaluated. Stress exposure induced greater expression of proinflammatory enzymes NOS2 and COX2 in colonic mucosa of CB1R(-/-) mice when compared with WT animals. These changes were related with a greater degree of colonic barrier dysfunction in CB1R(-/-) animals determined by 1) a significantly lower IgA secretion, 2) higher paracellular permeability to (51)Cr-EDTA, and 3) higher bacterial translocation, both under basal conditions and after IA stress exposure. Pharmacological antagonism with rimonabant reproduced stress-induced increase of proinflammatory enzymes in the colon described in CB1R(-/-) mice. In conclusion, CB1R exerts a protective role in the colon in vivo through the regulation of intestinal secretion of IgA and paracellular permeability. Pharmacological modulation of cannabinoid system within the gastrointestinal tract might be therapeutically useful in conditions on which intestinal inflammation and barrier dysfunction takes place after exposure to stress.  相似文献   

4.
Dysregulated epithelial cell kinetics associated with mucosal barrier dysfunction may be involved in certain intestinal disorders. We previously showed that chronic psychological stress, in the form of repetitive sessions of water avoidance stress (WAS), has a major detrimental impact on ileal barrier function. We hypothesized that these changes were related to a disturbance in enterocyte kinetics. Rats were submitted to WAS (1 h/day) for 5 or 10 days. As previously shown, permeability to macromolecules was enhanced in rats stressed for 5 and 10 days compared with controls. WAS induced a decrease in crypt depth at day 5 associated with an increased number of apoptotic cells. Cell proliferation was significantly increased at days 5 and 10. Villus height and the specific activity of sucrase were significantly reduced at day 10. We concluded that WAS induces a disturbance of epithelial cell kinetics, with the pattern depending on the duration of the stress period. These findings help to explain the mechanism underlying altered epithelial barrier function resulting from exposure to chronic psychological stress.  相似文献   

5.
Neonatal maternal separation (MS) predisposes adult rats to develop stress-induced mucosal barrier dysfunction/visceral hypersensitivity and rat pups to develop colonic epithelial dysfunction. Our aim was to examine if enhanced epithelial permeability in such pups resulted from abnormal regulation by enteric nerves. Pups were separated from the dam for 3 h/day (days 4-20); nonseparated (NS) pups served as controls. On day 20, colonic tissues were removed and mounted in Ussing chambers. Horseradish peroxidase (HRP) flux was used to measure macromolecular permeability. HRP flux was increased in MS versus NS pups. The enhanced flux was inhibited by the cholinergic muscarinic antagonist atropine and the nicotinic antagonist hexamethonium. The cholinergic component was greater in tissues from MS versus NS pups, suggesting that increased cholinergic activity was responsible for the MS elevated permeability. Western blots and immunohistochemistry of colonic tissues demonstrated increased expression of choline acetyltransferase (ChAT) in MS pups, indicating greater synthesis of acetylcholine. Since a previous study indicated that corticotrophin-releasing factor (CRF) mediates barrier dysfunction in MS pups, we examined if the two pathways were linked. In MS tissues, nonselective CRF receptor antagonism inhibited the enhanced flux, and the addition of atropine did not produce further inhibition. Using selective receptor antagonists, we identified that CRF receptor 2 was involved in mediating this effect. These findings suggest that CRF, via CRF receptor 2, acts on cholinergic nerves to induce epithelial barrier dysfunction. Our study provides evidence that MS stimulates synthesis of acetylcholine, which, together with released CRF, creates a condition conducive to the development of epithelial barrier defects.  相似文献   

6.
Fibrates are peroxisome proliferator-activated receptor-alpha (PPARalpha) ligands in widespread clinical use to lower plasma triglyceride levels. We investigated the effect of fenofibrate and clofibrate on ion transport in mouse intestine and in human T84 colonic adenocarcinoma cells through the use of short-circuit current (I(sc)) and ion flux analysis. In mice, oral administration of fenofibrate produced a persistent inhibition of cAMP-stimulated electrogenic Cl(-) secretion by isolated jejunum and colon without affecting electroneutral fluxes of (22)Na(+) or (86)Rb(+) (K(+)) across unstimulated colonic mucosa. When applied acutely to isolated mouse intestinal mucosa, 100 microM fenofibrate inhibited cAMP-stimulated I(sc) within 5 min. In T84 cells, fenofibrate rapidly inhibited approximately 80% the Cl(-) secretory responses to forskolin (cAMP) and to heat stable enterotoxin STa (cGMP) without affecting the response to carbachol (Ca(2+)). Both fenofibrate and clofibrate inhibited cAMP-stimulated I(sc) with an IC(50) approximately 1 muM, whereas other PPARalpha activators (gemfibrozil and Wy-14,643) were without effect. Membrane permeabilization experiments on T84 cells indicated that fenofibrate inhibits basolateral cAMP-stimulated K(+) channels (putatively KCNQ1/KCNE3) without affecting Ca(2+)-stimulated K(+) channel activity, whereas clofibrate inhibits both K(+) pathways. Fenofibrate had no effect on apical cAMP-stimulated Cl(-) channel activity. Patch-clamp analysis of HEK-293T cells confirmed that 100 microM fenofibrate rapidly inhibits K(+) currents associated with ectopic expression of human KCNQ1 with or without the KCNE3 beta-subunit. We conclude that fenofibrate inhibits intestinal cAMP-stimulated Cl(-) secretion through a nongenomic mechanism that involves a selective inhibition of basolateral KCNQ1/KCNE3 channel complexes. Our findings raise the prospect of fenofibrate as a safe and effective antidiarrheal agent.  相似文献   

7.
Disruption of the intestinal epithelial barrier following spinal cord injury (SCI) seriously affect long-term quality of life. Oxidative stress-induced epithelial cells’ injury contributes to the epithelial barrier dysfunction. Hyperbaric oxygen (HBO) treatment has been proved to alleviate SCI. However, it is unclear whether or not HBO treatment affects intestinal barrier function following SCI. In this study, our purpose was to explore the impact of HBO treatment on intestinal epithelial barrier function and underlying mechanisms following SCI. An SCI model was established in rats, and the rats received HBO treatment. Intestinal injury, mucosal permeability, intercellular junction proteins, and oxidative stress indicators were evaluated in our study. We found that HBO treatment significantly alleviated intestinal histological damage, reduced mucosal permeability, and markedly prevented bacterial translocation. Furthermore, HBO treatment significantly increased the expression of Claudin-1 and E-cadherin, inhibited intestinal tissue oxidative stress as demonstrated by upregulation of superoxide dismutase and glutathione, and HBO downregulated malondialdehyde. Mechanically, we demonstrated that HBO treatment ameliorated intestinal oxidative stress possibly through upregulating nuclear factor E2-related factor 2 (Nrf2) and its downstream targets, Heme oxygenase-1(HO-1), NADH-quinone oxidoreductase-1(NQO-1), and glutamate cysteine ligase catalytic subunit (GCLC). These results suggested that HBO treatment triggered antioxidative effects against intestinal epithelial barrier dysfunction by promoting Nrf2 signaling pathway after SCI.  相似文献   

8.
The present study aimed at detecting the exogenously applied probiotic Lactobacillus farciminis in rats, after exposure to IBS-like chronic stress, based on 4-day Water Avoidance Stress (WAS). The presence of L. farciminis in both ileal and colonic mucosal tissues was demonstrated by FISH and qPCR, with ileum as the preferential niche, as for the SFB population. A different spatial distribution of the probiotic was observed: in the ileum, bacteria were organized in micro-colonies more or less close to the epithelium whereas, in the colon, they were mainly visualized far away from the epithelium. When rats were submitted to WAS, the L. farciminis population substantially decreased in both intestinal regions, due to a stress-induced increase in colonic motility and defecation, rather than a modification of bacterial binding to the intestinal mucin Muc2.  相似文献   

9.
Obesity and irritable bowel syndrome (IBS) are two major public health issues. Interestingly previous data report a marked increase of IBS prevalence in morbid obese subjects compared with non-obese subjects but underlying mechanisms remain unknown. Obesity and IBS share common intestinal pathophysiological mechanisms such as gut dysbiosis, intestinal hyperpermeability and low-grade inflammatory response. We thus aimed to evaluate the link between obesity and IBS using different animal models. Male C57Bl/6 mice received high fat diet (HFD) for 12 weeks and were then submitted to water avoidance stress (WAS). In response to WAS, HFD mice exhibited higher intestinal permeability and plasma corticosterone concentration than non-obese mice. We were not able to reproduce a similar response both in ob/ob mice and in leptin-treated non-obese mice. In addition, metformin, a hypoglycemic agent, limited fasting glycaemia both in unstressed and WAS diet-induced obese mice but only partially restored colonic permeability in unstressed HFD mice. Metformin failed to improve intestinal permeability in WAS HFD mice. Finally, cecal microbiota transplantation from HFD mice in antibiotics-treated recipient mice did not reproduce the effects observed in stressed HFD mice. In conclusion, stress induced a more marked intestinal barrier dysfunction in diet-induced obese mice compared with non-obese mice that seems to be independent of leptin, glycaemia and gut microbiota. These data should be further confirmed and the role of the dietary composition should be studied.  相似文献   

10.
Chronic psychological stress causes intestinal barrier dysfunction and impairs host defense mechanisms mediated by corticotrophin-releasing factor (CRF) and mast cells; however, the exact pathways involved are unclear. Here we investigated the effect of chronic CRF administration on colonic permeability and ion transport functions in rats and the role of mast cells in maintaining the abnormalities. CRF was delivered over 12 days via osmotic minipumps implanted subcutaneously in wild-type (+/+) and mast cell-deficient (Ws/Ws) rats. Colonic segments were excised for ex vivo functional studies in Ussing chambers [short-circuit current (Isc), conductance (G), and macromolecular permeability (horseradish peroxidase flux)], and analysis of morphological changes (mast cell numbers and bacterial host-interactions) was determined by light and electron microscopy. Chronic CRF treatment resulted in colonic mucosal dysfunction with increased Isc, G, and horseradish peroxidase flux in+/+but not in Ws/Ws rats. Furthermore, CRF administration caused mast cell hyperplasia and abnormal bacterial attachment and/or penetration into the mucosa only in+/+rats. Finally, selective CRF agonist/antagonist studies revealed that stimulation of CRF-R1 and CRF-R2 receptors induced the elevated secretory state and permeability dysfunction, respectively. Chronic CRF causes colonic barrier dysfunction in rats, which is mediated, at least in part, via mast cells. This information may be useful in designing novel treatment strategies for stress-related gastrointestinal disorders.  相似文献   

11.
Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Sprague–Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction.  相似文献   

12.
Hasegawa  Tatsuya  Mizugaki  Ami  Inoue  Yoshiko  Kato  Hiroyuki  Murakami  Hitoshi 《Amino acids》2021,53(7):1021-1032

Intestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.

  相似文献   

13.
The development of a culture of the normal mammalian jejunum motivated this work. Isolated crypt cells of the dog jejunum were induced to form primary cultures on Snapwell filters. Up to seven subcultures were studied under the electron microscope and in Ussing chambers. Epithelial markers were identified by RT-PCR, Western blot, and immunofluorescent staining. Confluent monolayers exhibit a dense apical brush border, basolateral membrane infoldings, desmosomes, and tight junctions expressing zonula occludens-1, occludin-1, and claudin-3 and -4. In OptiMEM medium fortified with epidermal growth factor, hydrocortisone, and insulin, monolayer transepithelial voltage was -6.8 mV (apical side), transepithelial resistance was 1,050 Omega.cm(2), and short-circuit current (I(sc)) was 8.1 microA/cm(2). Transcellular and paracellular resistances were estimated as 14.8 and 1.1 kOmega.cm(2), respectively. Serosal ouabain reduced voltage and current toward zero, as did apical amiloride. The presence of mRNA of alpha-epithelial Na(+) channel (ENaC) was confirmed. Na-d-glucose cotransport was identified with an antibody to Na(+)-glucose cotransporter (SGLT) 1. The unidirectional mucosa-to-serosa Na(+) flux (19 nmol.min(-1).cm(-2)) was two times as large as the reverse flux, and net transepithelial Na(+) flux was nearly double the amiloride-sensitive I(sc). In plain Ringer solution, the amiloride-sensitive I(sc) went toward zero. Under these conditions plus mucosal amiloride, serosal dibutyryl-cAMP elicited a Cl(-)-dependent I(sc) consistent with the stimulation of transepithelial Cl(-) secretion. In conclusion, primary cultures and subcultures of the normal mammalian jejunum form polarized epithelial monolayers with 1) the properties of a leaky epithelium, 2) claudins specific to the jejunal tight junction, 3) transepithelial Na(+) absorption mediated in part by SGLT1 and ENaC, and 4) electrogenic Cl(-) secretion activated by cAMP.  相似文献   

14.
Necrotizing enterocolitis (NEC) is the most common intestinal disease of premature infants. Although increased mucosal permeability and altered epithelial structure have been associated with many intestinal disorders, the role of intestinal barrier function in NEC pathogenesis is currently unknown. We investigated the structural and functional changes of the intestinal barrier in a rat model of NEC. In addition, the effect of EGF treatment on intestinal barrier function was evaluated. Premature rats were divided into three groups: dam fed (DF), formula fed (NEC), or fed with formula supplemented with 500 ng/ml EGF (NEC + EGF); all groups were exposed to asphyxia/cold stress to develop NEC. Intestinal permeability, goblet cell density, mucin production, and composition of tight junction (TJ) proteins were evaluated in the terminal ileum, the site of NEC injury, and compared with the proximal jejunum, which was unaffected by NEC. Animals with NEC had significantly increased intestinal paracellular permeability compared with DF pups. Ileal goblet cell morphology, mucin production, and TJ composition were altered in animals with NEC. EGF treatment significantly decreased intestinal paracellular permeability, increased goblet cell density and mucin production, and normalized expression of two major TJ proteins, occludin and claudin-3, in the ileum. In conclusion, experimental NEC is associated with disruption of the intestinal barrier. EGF treatment maintains intestinal integrity at the site of injury by accelerating goblet cell maturation and mucin production and normalizing expression of TJ proteins, leading to improved intestinal barrier function.  相似文献   

15.
BACKGROUND: Intestinal mucus not only facilitates substrate absorption, but also forms a hydrophobic, phosphatidylcholine (PC) enriched, barrier against luminal gut contents. METHODS: For evaluation of the origin of PC in intestinal mucus, we first analyzed the mucus PC in mice with absent biliary phospholipid secretion (mdr2 (-/-) mice) using electrospray ionization (ESI) tandem mass spectroscopy (MS/MS). Second, in situ perfused rat jejunum, ileum and colon were analyzed after i.v. bolus injections of 155 pmol [(3)H]-PC. Additional in vitro experiments were performed with isolated mucosal cells after incubation with the PC precursor [(3)H]-choline. RESULTS: In mdr2 (-/-) mice and control animals no significant quantitative difference in mucus PC was found, indicating that mucus PC is of intestinal and not biliary origin. In situ perfusion studies detected intestinal secretion of [(3)H]-PC, which was stimulated in presence of 2 mM taurocholate (TC). Secretion rates of [(3)H]-PC were highest in ileum (9.0+/-0.8 fmol h(-1)xcm(-1)), lower in jejunum (4.3+/-0.5) and minimal in colon (0.8+/-0.2). It compares to an intestinal secretion of native PC originating to 64% from bile, 9% from jejunum, 28% from ileum, and 1% from colon. Complementary in vitro studies showed 30-min secretion rates for [(3)H]-PC to be highest in enterocytes from ileum (26.5+/-5.3% of intracellular [(3)H]-PC) and jejunum (19.8+/-2.9%), and significantly lower in colonocytes (8.4+/-1.3%). CONCLUSION: PC in the intestinal mucus originates from secretion by ileal and jejunal enterocytes.  相似文献   

16.
Liang C  Luo H  Liu Y  Cao J  Xia H 《PloS one》2012,7(2):e31774

Objective

To study the relationship between brain-gut peptides, gastrointestinal hormones and altered motility in a rat model of repetitive water avoidance stress (WAS), which mimics the irritable bowel syndrome (IBS).

Methods

Male Wistar rats were submitted daily to 1-h of water avoidance stress (WAS) or sham WAS (SWAS) for 10 consecutive days. Plasma hormones were determined using Enzyme Immunoassay Kits. Proximal colonic smooth muscle (PCSM) contractions were studied in an organ bath system. PCSM cells were isolated by enzymatic digestion and IKv and IBKca were recorded by the patch-clamp technique.

Results

The number of fecal pellets during 1 h of acute restraint stress and the plasma hormones levels of substance P (SP), thyrotropin-releasing hormone (TRH), motilin (MTL), and cholecystokinin (CCK) in WAS rats were significantly increased compared with SWAS rats, whereas vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and corticotropin releasing hormone (CRH) in WAS rats were not significantly changed and peptide YY (PYY) in WAS rats was significantly decreased. Likewise, the amplitudes of spontaneous contractions of PCSM in WAS rats were significantly increased comparing with SWAS rats. The plasma of WAS rats (100 µl) decreased the amplitude of spontaneous contractions of controls. The IKv and IBKCa of PCSMs were significantly decreased in WAS rats compared with SWAS rats and the plasma of WAS rats (100 µl) increased the amplitude of IKv and IBKCa in normal rats.

Conclusion

These results suggest that WAS leads to changes of plasma hormones levels and to disordered myogenic colonic motility in the short term, but that the colon rapidly establishes a new equilibrium to maintain the normal baseline functioning.  相似文献   

17.
In this study, we have used the mouse intestine and the Ussing short circuit technique to compare the effects and mechanism of action of somatostatin (SST, 0.1 microM) on cAMP- and Ca(2+)-mediated ion secretion in the duodenum and colon of the Swiss-Webster mouse. The cAMP-dependent secretagogues, prostaglandin E(2) (1 microM) and dibutyryl-cAMP (150 microM) increased short circuit current (I(sc)) in both regions, but only the colonic response was inhibited by SST. This inhibition was independent of enteric nerves, suggesting a direct action on the epithelial cells. The Ca(2+)-dependent secretagogue carbachol (10 microM) stimulated a transient increase in I(sc) in both intestinal segments. In the duodenum, SST partially inhibited this increase in I(sc) and both the responses to carbachol and SST were independent of enteric nerves. In the colon, while SST inhibited the carbachol induced increase in I(sc), pre-treatment with tetrodotoxin (750 nM) profoundly inhibited the carbachol induced increase in I(sc), thus markedly reducing the inhibitory effect of SST. This indicates an involvement of the enteric nervous system in the response to carbachol and the action of SST in the colon. These data indicate marked regional differences within the mouse intestine of the effects of SST on ion secretion and demonstrate different mechanisms of action of SST in the duodenum and colon.  相似文献   

18.
Our previous work has demonstrated that weaning at 19 days of age has deleterious effects on mucosal barrier function in piglet intestine that are mediated through peripheral CRF receptor signaling pathways. The objectives of the present study were to assess the impact of piglet age on weaning-associated intestinal dysfunction and to determine the role that mast cells play in weaning-induced breakdown of mucosal barrier function. Nursing Yorkshire-cross piglets were either weaned at 19 days of age (early-weaned, n = 8) or 28 days of age (late-weaned, n = 8) and housed in nursery pens. Twenty-four hours postweaning, segments of midjejunum and ascending colon from piglets within each weaning age group were harvested and mounted on Ussing chambers for measurements of transepithelial electrical resistance and serosal-to-mucosal [(3)H]mannitol fluxes. Early weaning resulted in reductions in transepithelial electrical resistance and increases in mucosal permeability to [(3)H]mannitol in the jejunum and colon (P < 0.01). In contrast, postweaning reductions in intestinal barrier function were not observed in piglets weaned at 28 days of age. Early-weaned piglet intestinal mucosa had increased expression of CRF receptor 1 protein, increased mucosal mast cell tryptase levels, and evidence of enhanced mast cell degranulation compared with late-weaned intestinal mucosa. Pretreatment of piglets with the mast cell stabilizer drug cromolyn, injected intraperitoneally 30 min prior to weaning, abolished the early-weaning-induced intestinal barrier disturbances. Our results indicate that early-weaning stress induces mucosal dysfunction mediated by intestinal mast cell activation and can be prevented by delaying weaning.  相似文献   

19.
Chronic psychological stress impacts many functions of the gastrointestinal tract. However, the effect of stress on nutrient absorption is poorly documented. This study was designed to investigate glucose transporters in rats submitted to different periods of water-avoidance stress (WAS). Rats were subjected to WAS (1 h/day) for 1, 5, or 10 consecutive days. Four hours after the last WAS session, rats were killed and segments of jejunum were mounted in Ussing chambers to study electrophysiological properties of the jejunum and Na+-dependent glucose absorption kinetics. Mucosa was obtained to prepare brush-border membrane vesicles (BBMV) used to measure [14C]fructose uptake as well as sodium-glucose transporter 1 (SGLT-1) and GLUT2 expression by Western blot analysis. Exposure of animals to WAS induced a decrease in Na+-dependent glucose absorption Vmax after 1, 5, and 10 days without any change in SGLT-1 expression. Potential difference across the jejunum was decreased for all stressed groups. Furthermore, we observed an increase in phloretin-sensitive uptake of [14C]fructose by BBMV after 1, 5, or 10 days of WAS, which was not present in control animals. This suggested the abnormal appearance of GLUT2 in the brush border, which was confirmed by Western blot analysis. We concluded that psychological stress induces major changes in glucose transport with a decrease in Na+-dependent glucose absorption and an increase in GLUT2 expression at the brush-border membrane level.  相似文献   

20.
J R Moran  A Lyerly 《Life sciences》1985,36(26):2515-2521
To determine whether intestinal amino acid losses might occur during zinc deficiency, labeled aminoisobutyric acid was given parenterally to zinc deficient rats and to appropriate zinc-sufficient controls. After 24 hours, the aminoisobutyric acid loss into the intestinal lumen was measured by in situ perfusion of isolated intestinal segments under conditions of either net water absorption or water secretion. Net amino acid losses were larger in the jejunum of the zinc deficient rats and losses were exacerbated during net water secretion in the jejunum and colon segments. The contribution of amino acid losses to fecal nitrogen, particularly during osmotic diarrhea, may be important in the growth retardation of zinc deficiency. Further, these alterations may indicate defective enterocyte transport functions during severe deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号