首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Process design for enzymatic adipyl-7-ADCA hydrolysis   总被引:1,自引:0,他引:1  
Adipyl-7-ADCA is a new source for 7-aminodeacetoxycephalosporanic acid (7-ADCA), one of the substrates for antibiotics synthesis. In this paper, a novel process for enzymatic 7-ADCA production is presented. The process consists of a reactor, a crystallization step, a membrane separation step, and various recycle loops. The reactor can either be operated batch-wise or continuously; with both types of processing high yields can be obtained. For batch reactors chemical degradation of 7-ADCA can be neglected. For continuous reactors, chemical stability of 7-ADCA is a factor to be taken into account. However, it was shown that the reaction conditions and reactor configuration could be chosen in such a way that also for continuous operation chemical degradation is not important. Downstream processing consisted of crystallization of 7-ADCA at low pH, followed by a nanofiltration step with which, at low pH, adipic acid could be separated from adipyl-7-ADCA and 7-ADCA. The separation mechanism of the nanofilter is based on size exclusion combined with charge effects. Application of this filtration step opens possibilities for recycling components to various stages of the process. Adipic acid can be recycled to the fermentation stage of the process while both adipyl-7-ADCA and 7-ADCA can be returned to the hydrolysis reactor. In this way, losses of substrates and product can be minimized.  相似文献   

3.
酶法合成头孢环己二烯   总被引:3,自引:0,他引:3  
以环己二烯甘氨酸甲酯盐酸盐为酰基供体,7-氨基脱乙酰氧基头孢烷酸为酰基受体,γ-氧化铝为载体的固定化巨大芽孢杆菌胞外青霉素G酰化酶为酰化剂,合成了头孢环己二烯。5%酰基供体,2%酰基受体,每毫升反应物加44IU固定化酶,pH7.5,25℃振荡反应5h,头孢环己二烯产率为81%。苯乙酸、苯氧乙酸和头孢霉素G对酶法合成有不同程度的抑制作用。  相似文献   

4.
One of the building blocks of cephalosporin antibiotics is 7-amino-deacetoxycephalosporanic acid (7-ADCA). It is currently produced from penicillin G using an elaborate chemical ring-expansion step followed by an enzyme-catalyzed hydrolysis. However, 7-ADCA-like components can also be produced by direct fermentation. This is of scientific and economic interest because the elaborate ring-expansion step is performed within the microorganism. In this article, the hydrolysis of the fermentation product adipyl-7-ADCA is studied. Adipyl-7-ADCA can be hydrolyzed in an equilibrium reaction to adipic acid and 7-ADCA using glutaryl-acylase. The equilibrium reaction yield is described as a function of pH, temperature, and initial adipyl-7-ADCA concentration. Reaction rate equations were derived for adipyl-7-ADCA-hydrolysis using three (pH-independent) reaction rate constants and the apparent equilibrium constant. The reaction rate constants were calculated from experimental data. Based on the equilibrium position and reaction rate equations the hydrolysis reaction was optimized and standard reactor configurations were evaluated. It was found that equilibrium yields are high at high pH, high temperature and low-initial adipyl-7-ADCA concentration. The course of the reaction could be described well as a function of pH (7-9), temperature (20-40 degrees C) and concentration using the reaction rate equations. It was shown that a series of CSTR's is the best alternative for the process.  相似文献   

5.
The growth stoichiometry of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus was determined in glucose-limited chemostat cultivations using a chemically defined medium. This strain produces adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) when it is fed with adipic acid. The biomass yield and maintenance coefficients for the strain were similar to those found for penicillin-producing strains of Penicillium chrysogenum. The maximum specific growth rate in the chemostat was found to be 0.11 h(-1). Metabolic degradation of adipate was found to take place in significant amounts only at dilution rates below 0.03 h(-1). After three to five residence times, adipate degradation and ad-7-ADCA production disappeared, and this allowed determination of the biomass yield coefficient on adipate. The morphology was measured at different dilution rates and the mean total hyphal length and mean number of tips both increased with an increase in dilution rate from 0.015 to 0.065 h(-1). Both variables decreased when the dilution rate was increased above 0.065 h(-1). A correlation between mean total hyphal length and productivity of ad-7-ADCA was found.  相似文献   

6.
Directed evolution of a glutaryl acylase into an adipyl acylase.   总被引:2,自引:0,他引:2  
Semi-synthetic cephalosporin antibiotics belong to the top 10 of most sold drugs, and are produced from 7-aminodesacetoxycephalosporanic acid (7-ADCA). Recently new routes have been developed which allow for the production of adipyl-7-ADCA by a novel fermentation process. To complete the biosynthesis of 7-ADCA a highly active adipyl acylase is needed for deacylation of the adipyl derivative. Such an adipyl acylase can be generated from known glutaryl acylases. The glutaryl acylase of Pseudomonas SY-77 was mutated in a first round by exploration mutagenesis. For selection the mutants were grown on an adipyl substrate. The residues that are important to the adipyl acylase activity were identified, and in a second round saturation mutagenesis of this selected stretch of residues yielded variants with a threefold increased catalytic efficiency. The effect of the mutations could be rationalized on hindsight by the 3D structure of the acylase. In conclusion, the substrate specificity of a dicarboxylic acid acylase was shifted towards adipyl-7-ADCA by a two-step directed evolution strategy. Although derivatives of the substrate were used for selection, mutants retained activity on the beta-lactam substrate. The strategy herein described may be generally applicable to all beta-lactam acylases.  相似文献   

7.
7-phenylacetamidodesacetoxycephalosporanic acid was prepared by transformation of benzylpenicillin. The acid was subjected to potentiometric titration and investigation of its electrophoretic mobility at wide pH ranges. The data of the potentiometric titration and electrophoresis were used for calculation of the acid ionization constant. Minimum solubility of the acid was determined and the curve of its solubility at wide pH ranges was estimated.  相似文献   

8.
The production of adipoyl-7-aminodeacetoxy-cephalosporanic acid (ad-7-ADCA) was studied, using two recombinant strains of Penicillium chrysogenum carrying the expandase gene from Streptomyces clavuligerus. The adipoyl-side chain of this compound may easily be removed using an amidase; and this process therefore represents a new route for the production of 7-ADCA, which serves as a precursor for the production of many semi-synthetic cephalosporins. In this study, one low- and one high-yielding strains were characterised and the specific productivities of ad-7-ADCA and byproducts of the biosynthetic pathway were compared. The fluxes through the biosynthetic pathway were quantified and it was found that there was a 30% higher flux through the expandase in the high-yielding strain. In both strains, there was a significant degradation of adipate. Furthermore, the initial adipate concentration in batch cultures was shown to have a positive effect on the formation of ad-7-ADCA.  相似文献   

9.
Potentiometric titration of the zwitter-ion of 7-aminoacetoxycephalosporanic acid (7-ACA) was performed and the constants of its ionization were estimated. The minimum solubility of the 7-ACA zwitter-ion (20 degrees C, 0.1 M NaCl) was determined and the solubility curve of 7-ACA at wide pH ranges was calculated. Equilibrium of the cationic, zwitter-ionic and anionic forms of 7-ACA was estimated as dependent on pH.  相似文献   

10.
Medically useful semisynthetic cephalosporins are made from 7-aminodeacetoxycephalosporanic acid (7-ADCA) or 7-aminocephalosporanic acid (7-ACA). Here we describe a new industrially amenable bioprocess for the production of the important intermediate 7-ADCA that can replace the expensive and environmentally unfriendly chemical method classically used. The method is based on the disruption and one-step replacement of the cefEF gene, encoding the bifunctional expandase/hydroxylase activity, of an actual industrial cephalosporin C production strain of Acremonium chrysogenum. Subsequent cloning and expression of the cefE gene from Streptomyces clavuligerus in A. chrysogenum yield recombinant strains producing high titers of deacetoxycephalosporin C (DAOC). Production level of DAOC is nearly equivalent (75-80%) to the total beta-lactams biosynthesized by the parental overproducing strain. DAOC deacylation is carried out by two final enzymatic bioconversions catalyzed by D-amino acid oxidase (DAO) and glutaryl acylase (GLA) yielding 7-ADCA. In contrast to the data reported for recombinant strains of Penicillium chrysogenum expressing ring expansion activity, no detectable contamination with other cephalosporin intermediates occurred.  相似文献   

11.
An enzyme which catalyzes the synthesis of cephalexin fromD -α phenylglycinemethylester (PGM) and 7-amino-3-desacetoxy-cephalosporanic acid (7-ADCA) was prepared from Xanthomonas citri (IFO 3835) and partially purified 30-fold by ammonium sulfate fractionation, DEAE-cellulose, and Sepharose-4B column chromatography. The Km values for 7-ADCA, PGM, and cephalexin were determined as 11.1, 2.1, and 1.61 mM, respectively. The enzymatic cephalexin synthesis follows the reversible bi-uni reaction kinetics. The equilibrium constant is influenced by the initial mole ratios of 7-ADCA and PGM. The cephalexin hydrolysis is catalyzed by the same cephalexin synthesizing enzyme, but methanol does not participate in the hydrolytic reaction. The amount of enzyme in the reaction mixture affects the initial rate but does not influence the equilibrium product concentration. This cephalexin-synthesizing enzyme was immobilized onto several adsorbents. Among these, Kaolin and bentonite showed a higher retention of enzyme activity and stability for reuse. The immobilized-enzyme reaction kinetics were investigated and compared with those of the soluble enzyme. A rate expression for the enzymatic synthesis of cephalexin was derived. The results of computer simulation showed good agreement with the experimental results.  相似文献   

12.
付金衡  赵健  林白雪  许杨  陶勇 《生物工程学报》2014,30(11):1781-1785
头孢类抗生素由于广谱性和低毒性被广泛用于细菌感染的治疗。7-氨基-3-脱乙酰氧基头孢烷酸(7-aminodeacetoxycephalosporanic acid,7-ADCA)作为半合成头孢类抗生素的重要中间体,需求量逐渐增加,而7-ADCA主要由G-7-ADCA(苯乙酰-7ADCA)脱酰基得到。工业上多以化学法合成G-7-ADCA,成本高,污染严重。迫切需要对环境友好且经济高效的合成方法。在前期研究中,构建了一株可以将青霉素G转化为G-7-ADCA的代谢工程菌(E.coli H7/PG15)。本研究通过单因素试验对E.coli H7/PG15的G-7-ADCA合成过程进行优化,包括底物组成及其最适浓度,转化条件(菌体浓度、p H、青霉素浓度、MOPS浓度、葡萄糖浓度,铁离子浓度和时间等)。优化后,建立了全细胞催化法生产G-7-ADCA的工艺流程,使G-7-ADCA的产量稳定在15 mmol/L左右,转化率达到30%,具有操作简便、高效和经济的优势。  相似文献   

13.
From ten genera and 146 bacterial strains, 22 strains producing alpha-amino acid ester hydrolase were selected. Among them, AS 1.586 and 41-2 were the best. The optimal conditions for synthesis of cephalexin by pseudomonas aeruginosa 1.204 were investigated. The optimal pH and temperature for enzymatic synthesis reaction was pH 6.8 and 25 degrees C, respectively. By using 1% 7-ADCA, 3% PGME and 4% biomass, about 70% of 7-ADCA was converted to cephalexin under the mentioned conditions.  相似文献   

14.
Integrated process concepts for enzymatic cephalexin synthesis were investigated by our group, and this article focuses on the integration of reactions and product removal during the reactions. The last step in cephalexin production is the enzymatic kinetic coupling of activated phenylglycine (phenylglycine amide or phenylglycine methyl ester) and 7-aminodeacetoxycephalosporanic acid (7-ADCA). The traditional production of 7-ADCA takes place via a chemical ring expansion step and an enzymatic hydrolysis step starting from penicillin G. However, 7-ADCA can also be produced by the enzymatic hydrolysis of adipyl-7-ADCA. In this work, this reaction was combined with the enzymatic synthesis reaction and performed simultaneously (i.e., one-pot synthesis). Furthermore, in situ product removal by adsorption and complexation were investigated as means of preventing enzymatic hydrolysis of cephalexin. We found that adipyl-7-ADCA hydrolysis and cephalexin synthesis could be performed simultaneously. The maximum yield on conversion (reaction) of the combined process was very similar to the yield of the separate processes performed under the same reaction conditions with the enzyme concentrations adjusted correctly. This implied that the number of reaction steps in the cephalexin process could be reduced significantly. The removal of cephalexin by adsorption was not specific enough to be applied in situ. The adsorbents also bound the substrates and therewith caused lower yields. Complexation with beta-naphthol proved to be an effective removal technique; however, it also showed a drawback in that the activity of the cephalexin-synthesizing enzyme was influenced negatively. Complexation with beta-naphthol rendered a 50% higher cephalexin yield and considerably less byproduct formation (reduction of 40%) as compared to cephalexin synthesis only. If adipyl-7-ADCA hydrolysis and cephalexin synthesis were performed simultaneously and in combination with complexation with beta-naphthol, higher cephalexin concentrations also were found. In conclusion, a highly integrated process (two reactions simultaneously combined with in situ product removal) was shown possible, although further optimization is necessary.  相似文献   

15.
During enzymatic kinetic synthesis of cephalexin, an activated phenylglycine derivative (phenylglycine amide or phenylglycine methyl ester) is coupled to the nucleus 7-aminodeacetoxycephalosporanic acid (7-ADCA). Simultaneously, hydrolysis of phenylglycine amide and hydrolysis of cephalexin take place. This results in a temporary high-product concentration that is subsequently consumed by the enzyme. To optimize productivity, it is necessary to develop models that predict the course of the reaction. Such models are known from literature but these are only applicable for a limited range of experimental conditions. In this article a model is presented that is valid for a wide range of substrate concentrations (0-490 mM for phenylglycine amide and 0-300 mM for 7-ADCA) and temperatures (273-298 K). The model was built in a systematic way with parameters that were, for an important part, calculated from independent experiments. With the constants used in the model not only the synthesis reaction but also phenylglycine amide hydrolysis and cephalexin hydrolysis could be described accurately. In contrast to the models described in literature, only a limited number (five) of constants was required to describe the reaction at a certain temperature. For the temperature dependency of the constants, the Arrhenius equation was applied, with the constants at 293 K as references. Again, independent experiments were used, which resulted in a model with high statistic reliability for the entire temperature range. Low temperatures were found beneficial for the process because more cephalexin and less phenylglycine is formed. The model was used to optimize the reaction conditions using criteria such as the yield on 7-ADCA or on activated phenylglycine. Depending on the weight of the criteria, either a high initial phenylglycine amide concentration (yield on 7-ADCA) or a high initial 7-ADCA concentration (yield on phenylglycine amide) is beneficial.  相似文献   

16.
聚丙烯腈纤维固定化青霉素酰化酶合成头孢氨苄的研究   总被引:4,自引:0,他引:4  
将巨大芽孢杆菌胞外青霉素酰化酶通过共价键结合到聚丙烯腈纤维的衍生物上。制成的丝状固定化青霉素酰化酶表现活力达 1 5 3U g(湿重 )。固定化酶合成头孢氨苄的最适pH为 6 5 ,最适温度为 40℃。 7 ADCA的投料浓度以 4%为好 ,7 ADCA与PGME的投料量比率为1∶2 ,最佳用酶量为 1 70U g 7 ADCA。在pH6 5、温度 3 0℃时 ,固定化酶对 7 ADCA的表观米氏常数K7 ADCA为 0 1 6 2mol L ,对PGME的表观米氏常数KPGME为 0 3 6 4mol L ,最大反应速度Vmax为0 0 4 6 2mol·L- 1·min- 1,用固定化酶合成头孢氨苄 ,使用 5 0次保留酶活力 83 9%  相似文献   

17.
The production kinetics of a transformed strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was investigated in chemostat cultivations. The recombinant strain produces adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) as the major product; however, during the cultivations, the appearance of a major unknown and poorly secreted product was observed. Investigations using high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectroscopy (LC-MS) showed that this byproduct has a six-membered dihydrothiazine ring, which is characteristic for cephalosporins. The byproduct may be formed via isopenicillin N by as-yet unknown mechanisms, but involving expandase. It is likely that the unknown compound (UC) is deacetoxycephalosporin C (DAOC). Investigation of the instability of the various beta-lactams produced showed higher instability for compounds with a five-membered thiazolidine ring than those with a six-membered dihydrothiazine ring. Furthermore, secretion of products and byproducts was shown to be quite different. The productivity was studied as a function of the dilution rate in the range 0.015 to 0.090 h(-1). The specific productivity of total beta-lactams was compared with that of the penicillin-G-producing host strain, and it was found to be lower at dilution rates of <0.06 h(-1). Quantification of the fluxes through the pathway leading to ad-7-ADCA showed a decrease in flux toward ad-7-ADCA, and an increase in flux toward UC as the dilution rate increased. Northern analysis of the biosynthetic genes showed that expression of the enzymes involved in the ad-7-ADCA pathway decreased as the dilution rate increased.  相似文献   

18.
Using directed evolution, we have selected an adipyl acylase enzyme that can be used for a one-step bioconversion of adipyl-7-aminodesacetoxycephalosporanic acid (adipyl-7-ADCA) to 7-ADCA, an important compound for the synthesis of semisynthetic cephalosporins. The starting point for the directed evolution was the glutaryl acylase from Pseudomonas SY-77. The gene fragment encoding the beta-subunit was divided into five overlapping parts that were mutagenized separately using error-prone PCR. Mutants were selected in a leucine-deficient host using adipyl-leucine as the sole leucine source. In total, 24 out of 41 plate-selected mutants were found to have a significantly improved ratio of adipyl-7-ADCA versus glutaryl-7-ACA hydrolysis. Several mutations around the substrate-binding site were isolated, especially in two hot spot positions: residues Phe-375 and Asn-266. Five mutants were further characterized by determination of their Michaelis-Menten parameters. Strikingly, mutant SY-77(N266H) shows a nearly 10-fold improved catalytic efficiency (k(cat)/K(m)) on adipyl-7-ADCA, resulting from a 50% increase in k(cat) and a 6-fold decrease in K(m), without decreasing the catalytic efficiency on glutaryl-7-ACA. In contrast, the improved adipyl/glutaryl activity ratio of mutant SY-77(F375L) mainly is a consequence of a decreased catalytic efficiency toward glutaryl-7-ACA. These results are discussed in the light of a structural model of SY-77 glutaryl acylase.  相似文献   

19.
In an enzymatic synthesis of cephalexin (CEX) using an acylase from Xanthomonas citri, the effect of polyethylene glycol (PEG) on the synthetic reaction of 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) and D-alpha-phenyl-glycine methyl ester (PGM) to CEX was investigated. The addition of PEG (MW 300-20,000) increased the yield significantly. This yield enhancement effect tended to increase with the increasing molecular weight of PEG. Addition of PEG to the reaction system did not affect both the CEX and PGM hydrolytic reactions. The PEG added to the reaction medium used in these experiments did not depress the water activity significantly, and the product yield improvement could not be explained by the activity alone. The PEG stabilized the enzyme activity to some extent, but this stabilizing effect was only partially attributable to the yield enhancement of CEX. The enhancing effect of PEG on the synthetic yield increased with the increasing PEG molecular weight or the length of the poly(oxy-1,2-ethanediyl) chain, which increases the hydrophobicity of PEG. This finding consequently has led to the conclusion that the PEG structure renders the affinity between enzyme and 7-ADCA, which is a hydrophobic substrate. The microenvironmental hydrophobicity of PEG and its interaction with the hydrophobic substrate was found to be the main reason for the improvement of the CEX yield. In fact, the Michaelis-Menten kinetic constant for 7-ADCA, K(7-ADCA) in the presence of PEG was smaller than that in the control system (without PEG addition). (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
We studied enzymatic adipyl-7-ADCA hydrolysis as a new process for the production of 7-aminodeacetoxycephalosporanic acid (7-ADCA), one of the building blocks for cephalosporin antibiotics like cephalexin and cefadroxil. Adipyl-7-ADCA hydrolysis carried out with immobilised glutaryl acylase was considerably enhanced by addition of phenylglycine amide, the side-chain donor used for cephalexin synthesis; unlike reactions carried out with free enzyme. The rate enhancing effect was not specifically related to phenylglycine amide; we found a linear relationship between the reaction rate and the buffering capacity of the added substance. These observations can be explained by a pH-gradient in the immobilised enzyme, the pH inside the particle being lower (corresponding to low enzyme activity) than outside. It was concluded that the buffer reduced the pH-gradient inside the biocatalyst, and therewith, caused the reaction rate enhancing effects. Further, chloride ions decreased the reaction rate strongly, while sodium, magnesium, sulphate, and potassium did not influence the reaction rate much. For an actual process, it is important to use a buffer that is appropriate for the reaction-pH. In that way the amount of enzyme required in a process can be reduced considerably, in our case a factor of three was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号