首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carbon (C) and nitrogen (N) status in forest ecosystems can change upon establishment of plantations because different tree species have different nutrient cycling mechanisms. This study was carried out to evaluate C and N status of litterfall, litter decomposition and soil in three adjacent plantations consisting of one deciduous (larch: Larix leptolepis) and two evergreen (red pine: Pinus densiflora; rigitaeda pine: P. rigida × P. taeda) species planted in the same year (1963). Both the pine plantations showed comparatively higher C input from needle litter but significantly lower N concentration and input than the larch plantation (P < 0.05). During the decomposition process, the deciduous larch needle litter showed low C concentration and C remaining in soil, but high N concentration and N remaining in soil compared to the two evergreen pine needle litters. However, the soil C and N concentration and their content at a soil depth of 0–10 cm were not affected significantly (P > 0.05) by the plantation type. These results demonstrate the existence of considerable variation in C and N status resulting from needle litter input and litter decomposition in these three plantations grown at sites with similar environmental conditions.  相似文献   

2.
Summary Embryogenic and nonembryogenic calli of loblolly pine (Pinus taeda), Eastern white pine (P. strobus), pond pine (P. serotina), white spruce (Picea glauca), and European larch (Larix decidua) were analyzed for biochemical parameters previously shown to be indicative of an embryogenic state in Norway spruce (Picea abies). Concentrations of glutathione and total reductants as well as rates of ethylene evolution and incorporation of radioactive leucine into protein in the two callus types were consistent with the Norway spruce observations. Embryogenic potential of loblolly pine and pond pine callus was predicted by biochemical analysis in advance of the appearance of somatic embryos. Other parameters such as isozyme patterns and SDS-PAGE of soluble proteins could also be used to distinguish embryogenic from nonembryogenic conifer callus. Among the species investigated, white spruce was the most difficult to sort by these methods.  相似文献   

3.
Boron Mobility in Two Coniferous Species   总被引:7,自引:0,他引:7  
In contrast to earlier beliefs, it is now known that boron (B)can be retranslocated complexed with sugar alcohols in someplant species. Conifers had been thought not to translocatesugar alcohols in the phloem. However, 1 d after applying10Benriched boric acid to shoots of Scots pine and Norway spruceseedlings, we found increases in both the amount and proportionof10B in the root systems in both species. We conclude thatB is translocated in the phloem from shoots to roots in spruceand pine, and therefore it is possible that these species retranslocateB. Copyright 2000 Annals of Botany Company Scots pine, Pinus sylvestris, Norway spruce, Picea abies, conifers, boron retranslocation, roots, stable isotopes, sugar alcohols, boron complexes, mineral nutrition, forest trees  相似文献   

4.
Ritter  Eva  Vesterdal  Lars  Gundersen  Per 《Plant and Soil》2003,249(2):319-330
In many European countries, surplus agricultural production and ecological problems due to intensive soil cultivation have increased the interest in afforestation of arable soils. Many environmental consequences which might rise from this alternative land-use are only known from forest establishment on less intensively managed or marginal soils. The present study deals with changes in soil properties following afforestation of nutrient-rich arable soils. A chronosequence study was carried out comprising seven Norway spruce (Picea abies (Karst.) L.) and seven oak (Quercus robur L.) stands established from 1969 to 1997 on former horticultural and agricultural soils in the vicinity of Copenhagen, Denmark. For comparison, a permanent pasture and a ca. 200-year-old mixed deciduous forest were included. This paper reports on changes in pH values, base saturation (BSeff), exchangeable calcium, soil N pools (Nmin contents), and C/N ratios in the Ap-horizon (0–25 cm) and the accumulated forest floor. The results suggest that afforestation slowly modifies soil properties of former arable soils. Land-use history seems to influence soil properties more than the selected tree species. An effect of tree species was only found in the forest floor parameters. Soil acidification was the most apparent change along the chronosequence in terms of a pH decrease from 6 to 4 in the upper 5 cm soil. Forest floor pH varied only slightly around 5. Nitrogen storage in the Ap-horizon remained almost constant at 5.5 Mg N ha–1. This was less than in the mineral soil of the ca. 200-year-old forest. In the permanent pasture, N storage was somewhat higher in 0–15 cm depth than in afforested stands of comparable age. Nitrogen storage in the forest floor of the 0–30-year-old stands increased in connection with the build-up of forest floor mass. The increase was approximately five times greater under spruce than oak. Mineral soil C/N ratios ranged from 10 to 15 in all stands and tended to increase in older stands only in 0–5 cm depth. Forest floor C/N ratios were higher in spruce stands (26.4) as compared to oak stands (22.7). All stands except the youngest within a single tree species had comparable C/N ratios.  相似文献   

5.
De-Wei Li 《Mycorrhiza》1996,6(2):137-143
 Japanese larch (Larix kaempferi), white spruce (Picea glauca), black spruce (Picea mariana), red spruce (Picea rubens), jack pine (Pinus banksiana), mugo pine (Pinus mugo), red pine (Pinus resinosa), Japanese black pine (Pinus thunbergii) and Douglas-fir (Pseudotsuga menziesii var. menziesii), were inoculated to test the effective host range of the ectomycorrhizal fungus Laccaria proxima and the possibility of utilizing pulp waste as a potting medium for containerized seedling production. Laccaria proxima tended to improve the container growth of Japanese black pine and white spruce, and significantly improved that of jack pine, mugo pine, black spruce, red spruce and Douglasfir. The growth of red pine and Japanese larch were only slightly improved with L. proxima. Pulp waste (33% by volume) had negative effects on tree seedling growth, except for Douglasfir (no significant effect). The interactions of Laccaria proxima and pulp waste varied; the hosts were significantly positive (P<0.01) in the case of jack pine and black spruce, but there was no significant effect for the rest. Negative effects were found with Japanese black pine. Use of pulp waste in seedling production of jack pine, black spruce, mugo pine, red spruce and Douglasfir inoculated with L. proxima and of Japanese black pine both with and without L. proxima is feasible, but further research is necessary to determine the optimal percentage of pulp waste that can be utilized in seedling production of tree species and the field performance of these seedlings. Accepted: 30 August 1995  相似文献   

6.
This study examined the nitrogen (N) dynamics of a black spruce (Picea mariana (Mill.) BSP)-dominated chronosequence in Manitoba, Canada. The seven sites studied each contained separate well- and poorly drained stands, originated from stand-killing wildfires, and were between 3 and 151 years old. Our goals were to (i) measure total N concentration ([N]) of all biomass components and major soil horizons; (ii) compare N content and select vegetation N cycle processes among the stands; and (iii) examine relationships between ecosystem C and N cycling for these stands. Vegetation [N] varied significantly by tissue type, species, soil drainage, and stand age; woody debris [N] increased with decay state and decreased with debris size. Soil [N] declined with horizon depth but did not vary with stand age. Total (live + dead) biomass N content ranged from 18.4 to 99.7 g N m−2 in the well-drained stands and 37.8–154.6 g N m−2 in the poorly drained stands. Mean soil N content (380.6 g N m−2) was unaffected by stand age. Annual vegetation N requirement (5.9 and 8.4 g N m−2 yr−1 in the middle-aged well- and poorly drained stands, respectively) was dominated by trees and fine roots in the well-drained stands, and bryophytes in the poorly drained stands. Fraction N retranslocated was significantly higher in deciduous than evergreen tree species, and in older than younger stands. Nitrogen use efficiency (NUE) was significantly lower in bryophytes than in trees, and in deciduous than in evergreen trees. Tree NUE increased with stand age, but overall stand NUE was roughly constant (∼ ∼150 g g−1 N) across the entire chronosequence.  相似文献   

7.
日本中部10种树木叶片中氮和磷的季节变化及其转移   总被引:4,自引:1,他引:3  
从叶完全展开到生长季结束,对常绿阔叶树种日本米储、具柄冬青、铁冬青、红楠和海桐及落叶阔叶树种袍栎、栓皮栎、日本朴、银杏和日本树五加的叶N和P含量进行了测定.结果表明,在整个生长季中,常绿阔叶树种中的日本米储和铁冬青的新叶和老叶的N和P含量呈现初期高、中期较低、后期上升的趋势;具柄冬青和海桐新叶的N和P含量的变化趋势与日本米储和铁冬青相似,而其老叶的N和P含量随季节推移而逐渐下降;红楠新叶和老叶的N含量呈现上升的趋势,其新叶和老叶的P含量则呈下降趋势;落叶阔叶树种的叶N和P含量随着时间的推移不断减少.各树种的N转移率为43%~75%,P为62%~84%.常绿阔叶树种的N平均转移率与落叶阔叶树种相似,而其P平均转移率大于落叶阔叶树种.所有树种的N平均转移率小于P平均转移率.  相似文献   

8.
Water and nutrient fluxes for single stands of different tree species have been reported in numerous studies, but comparative studies of nutrient and hydrological budgets of common European deciduous tree species are rare. Annual fluxes of water and inorganic nitrogen (N) were established in a 30‐year‐old common garden design with stands of common ash (Fraxinus excelsior), European beech (Fagus sylvatica L.), pedunculate oak (Quercus robur), small‐leaved lime (Tilia cordata Mill.), sycamore maple (Acer pseudoplatanus) and Norway spruce (Picea abies [L.] Karst.) replicated at two sites in Denmark, Mattrup and Vallø during 2 years. Mean annual percolation below the root zone (mm yr?1±SE, n=4) ranked in the following order: maple (351±38)>lime (284±32), oak (271±25), beech (257±30), ash (307±69)? spruce (75±24). There were few significant tree species effects on N fluxes. However, the annual mean N throughfall flux (kg N ha?1 yr?1±SE, n=4) for spruce (28±2) was significantly larger than for maple (12±1), beech (11±1) and oak (9±1) stands but not different from that of lime (15±3). Ash had a low mean annual inorganic N throughfall deposition of 9.1 kg ha?1, but was only present at Mattrup. Annual mean of inorganic N leaching (kg ha?1 yr?1±SE, n=4) did not differ significantly between species despite of contrasting tree species mean values; beech (25±9)>oak (16±10), spruce (15±8), lime (14±8)? maple (1.9±1), ash (2.0±1). The two sites had similar throughfall N fluxes, whereas the annual leaching of N was significantly higher at Mattrup than at Vallø. Accordingly, the sites differed in soil properties in relation to rates and dynamics of N cycling. We conclude that tree species affect the N cycle differently but the legacy of land use exerted a dominant control on the N cycle within the short‐term perspective (30 years) of these stands.  相似文献   

9.
Summary Nitrogen and phosphorus flow in litterfall and throughfall were studied in two California Quercus species (the evergreen Q. agrifolia and deciduous Q. lobata) before, during, and after an outbreak of the California oak moth, Phryganidia californica. All of the foliage of both oak species was removed by the herbivore during the course of this outbreak. During the outbreak, total N and P flow to the ground more than doubled from Q. agrifolia and increased to a lesser extent from Q. lobata over the previous year. The composition of the litter during the outbreak year shifted so that in Q. agrifolia, almost 70% of the total N and P flow to the ground moved through frass and insect remains, while in Q. lobata, approximately 60% of the N and 40% of the P moved through frass and insect remains. Short-term leaching experiments showed that nitrogen was far more rapidly lost from Phryganidia frass than from leaf litter of either species. These results and the relative frequency of Phryganidia outbreaks suggest that this herbivore has significant effects on the nutrient cycling beneath these trees.  相似文献   

10.
东灵山林区不同森林植被水源涵养功能评价   总被引:17,自引:4,他引:13  
莫菲  李叙勇  贺淑霞  王晓学 《生态学报》2011,31(17):5009-5016
森林植被发挥着涵养水源的作用,主要表现在以下几个方面:对降水的截留与再分配;调节河川径流,调节林内小气候,减小林内地表蒸发,改善土壤结构,减少地表侵蚀等. 通过对几种林分各层拦蓄降水和保土功能指标定性评价的基础上,用综合评定法对不同林分水源涵养和保土功能进行综合评价,选择出综合功能最好的林分,以期为北京山区的生态环境建设、植被恢复与保护提供一定的依据。在测定东灵山4种森林植被林冠层、枯枝落叶层和土壤层蓄水和土壤保持功能指标的基础上,采用综合评定法对4种森林植被水源涵养和土壤保持功能进行了评价。结果表明:各植被类型的林冠层截留各不相同,在雨季(6-9 月份) 辽东栎林的截留率最大,华北落叶松的最小;枯落物最大持水深以辽东栎林的最大,油松的最小;土壤水文特性各异,0-80 cm 土层平均容重以落叶阔叶林的最小,华北落叶松的最大;稳渗速率以落叶阔叶林的最大,油松的最小,初渗速率以辽东栎林的最大,油松的最小。不同林分水源涵养和土壤保持综合能力由大到小顺序为落叶阔叶混交林、辽东栎林、华北落叶松林、油松林。常绿阔叶灌丛水源涵养和土壤保持综合能力评价值(0.1039) 比其它植被类型少3个数量级,说明其水源涵养和土壤保持功能明显优于其它植被类型。由此可见,树种组成丰富、林下灌草盖度高、枯落物储量多的落叶阔叶混交林水源涵养和土壤保持能力最强,优于单一的阔叶林,而油松林最差。  相似文献   

11.
1. In a laboratory study of maturation feeding of female pine weevil Hylobius abietis on current and 1‐year‐old stem bark of transplants of Scots and Corsican pine, Norway and Sitka spruce, Douglas fir, and hybrid larch, the length of the pre‐oviposition period was influenced by the species on which weevils fed. The shortest pre‐oviposition period was on hybrid larch (11.8 days) and the longest on Douglas fir (15.5 days). 2. The species on which weevils fed also affected fecundity but there was evidence of a species–year interaction. Over a period of 36 days, most eggs were laid by weevils feeding on current stem of Norway spruce and Corsican and Scots pine and fewest on current stem of Sitka spruce. 3. Significant maternal effects on egg size were observed both in relation to female size and conifer species. The largest eggs were laid on Corsican pine and the smallest on Douglas fir, with no evidence of a trade‐off between number of eggs laid and their size. 4. There was a positive relationship between egg and larval size and between larval size and survival on logs of four conifer species. Residual resistance mechanisms in the bark of recently cut stumps and larval competition are discussed briefly in relation to the importance of the observed maternal effects on weevil population dynamics.  相似文献   

12.
The effects of partial defoliation on photosynthesis, whole-seedling carbon allocation, partitioning and growth were studied for two species with contrasting foliar traits. Field-grown seedlings of deciduous Japanese larch ( Larix leptolepis ) and evergreen red pine ( Pinus resinosa ) were defoliated by hand in early summer for 2 consecutive years. In the first year (1990), seedlings were defoliated by removing the distal 0, 25, 50 or 75% of each needle. In the second year (1991), seedlings were defoliated either 0 or 50%, regardless of previous defoliation treatments. Defoliation had little effect on photosynthesis and starch concentration in whole seedlings of either species in the first year. In the second year, photosynthesis increased in both species in response to the 1991 defoliation treatment, and in red pine also increased in response to the 1990 defoliation treatment. Further, in 1991 both larch and pine had decreased whole-seedling total non-structural carbohydrate concentrations in all seedlings that were defoliated at least once over the 2-yr period. This decrease was noted mostly in the starch component of the non-structural carbohydrates, and was similar in both species. In 1991, biomass was similarly decreased in both species in response to 1991 defoliation. Both species showed overcompensation in total and component biomass in seedlings defoliated by 25% in 1990. Overall, the results do not support the widely held belief that evergreen trees are substantially more affected than deciduous trees by defoliation.  相似文献   

13.
In this study, we provide a detailed analysis of tree growth and water status in relation to climate of three major species of forest trees in lower regions of Bavaria, Southern Germany: Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and common oak (Quercus robur). Tree-ring chronologies and latewood δ13C were used to derive measures for drought reaction across trees of different dimensions: growth reduction associated with drought years, long-term growth/climate relations and stomatal control on photosynthesis. For Scots pine, growth/climate relations indicated a stronger limitation of radial growth by high summer temperatures and low summer precipitation in smaller trees in contrast to larger trees. This is corroborated by a stronger stomatal control on photosynthesis for smaller pine trees under average conditions. In dry years, however, larger pine trees exhibited stronger growth reductions. For Norway spruce, a significantly stronger correlation of tree-ring width with summer temperatures and summer precipitation was found for larger trees. Additionally, for Norway spruce there is evidence for a change in competition mode from size-asymmetric competition under conditions with sufficient soil water supply to a more size-symmetric competition under dry conditions. Smaller oak trees showed a weaker stomatal control on photosynthesis under both dry and average conditions, which is also reflected by a significantly faster recovery of tree-ring growth after extreme drought events in smaller oak trees. The observed patterns are discussed in the context of the limitation-caused matter partitioning hypothesis and possible species-specific ontogenetic modifications.  相似文献   

14.
Sardans  Jordi  Rodà  Ferran  Peñuelas  Josep 《Plant Ecology》2004,174(2):307-319
Aleppo pine (Pinus halepensis) and the evergreen holm oak (Quercus ilex) dominate forest areas of the Mediterranean Basin. Both species regenerate abundantly after fires: pine through seedlings and holm oak through resprouts. Cumulative nutrient losses caused by frequent fires may have decreased soil nutrient availability in such areas. To assess the role of nitrogen and phosphorus as limiting factors for growth of these species during post-fire recovery, a field fertilisation and competition experiment was conducted in a 5-year post-fire shrubland on calcareous soil, where naturally-regenerated saplings of Aleppo pine and resprouts of interior holm oak (Quercus ilex subsp. rotundifolia) coexist. Three years after fertilisation, relative basal area increment was 56% greater in pines fertilised with 250 kg P ha–1 than in non fertilised ones. N fertilisation had small or no effects. Interactions between N and P fertilisation were not observed. Growth of Aleppo pine only increased with P fertilisation when neighbours were removed. Hence, the negative effect of neighbours on growth was greater when P availability was enhanced by fertilisation. In contrast, holm oak was able to grow more (110%) in response to increased P supply even without neighbour removal. A common garden experiment was then conducted with potted seedlings to investigate whether the suggested higher competitive capacity of holm oak for P held under a range of P amendments on different soils and competitive situations. P fertilisation increased seedling biomass yield of both species. When P availability increased, a negative effect of neighbours on growth was observed for holm oak and in 70 a lesser extent for Aleppo pine. In conclusion, in the field, holm oak resprouts showed higher competitive ability for P uptake compared to Aleppo pine saplings, but in potted seedlings in common garden conditions this trend was not observed. Therefore holm oak is not always competitively superior to Aleppo pine for P. Potted seedlings of both species had a notable plasticity in shoot/root biomass allocation, but only holm oak increased its proportional allocation to roots when neighbours were present. P availability can be a key factor in growth and competitive relations of these two species, but effects differ depending on soil type, individual age, regeneration type (i.e., seedling versus resprouts), and competitive situation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The recent warming trend, and associated shifts in growing season length, challenge the principle of uniformitarianism, i.e., that current relations are persistent over time, and complicates the uncritical inferences of past climate from tree-ring data. Here we conduct a comparison between tree-ring width chronologies of Pinus sylvestris L. (Scots pine), Picea abies (L.) Karst. (Norway spruce) and Betula pubescens Ehrh. (Downy birch) and phenological observations (budburst and leaf senescence) of Fagus sylvatica L. (European beech), Quercus robur L. (European oak), Betula sp. (Birch), Norway spruce and Scots pine) in Sweden to assess to what extent the tree-ring width–temperature relationship and the timing of phenological phases are affected by increased temperature. Daily meteorological observations confirm a prolongation of the thermal growing season, most consistently observed as an earlier onset of around 1–2 weeks since the beginning of the 20th century. Observations of budburst closely mimic this pattern, with budburst of the deciduous trees occurring 1–2.5 weeks earlier. In contrast to the changes seen in phenology and observational temperature data, the tree-ring width–temperature relationships remain surprisingly stable throughout the 20th century. Norway spruce, Scots pine and Downy birch all show consistently significant correlations with at least one 30 day-long window of temperature starting in late June–early July season. Norway spruce displays the largest degree of stability, with a consistent 60 day-long temperature window with significant correlation starting around Julian calendar day 150. Thus, our results suggest that the principle of uniformitarianism is not violated during the period covered by modern meteorological observations. Further research is needed to determine at what thresholds the temperature sensitivity of these species may alter or deteriorate as a consequence of the ongoing climate change.  相似文献   

16.
广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式   总被引:1,自引:0,他引:1  
土壤养分供给性大小是否影响植物氮和磷再吸收效率仍存在争议。调查了广西猫儿山不同海拔常绿和落叶树种成熟和衰老叶片的氮和磷含量,探讨营养再吸收是否受到叶片习性和海拔的影响。所有树种氮和磷再吸收效率的平均值分别为56.5%和52.1%。常绿树种比落叶树种有显著较高的氮再吸收效率(P0.001)和磷再吸收效率(P0.01),这与前者有较低的衰老叶片氮和磷含量密切相关。随着海拔的上升,氮再吸收效率显著下降(P0.01),磷再吸收效率显著提高(P0.05)。氮再吸收效率与土壤氮:磷比(r=-0.41,P0.05)和成熟叶片氮:磷比(r=-0.37,P0.05)负相关,磷再吸收效率与土壤氮:磷比(r=0.44,P0.05)和成熟叶片氮:磷比(r=0.47,P0.01)正相关,表明了树种对低海拔氮限制的适应逐渐转变为对高海拔磷限制的适应。此外,氮再吸收效率与年均温正相关(r=0.43,P0.05)而磷再吸收效率与年均温负相关(r=-0.45,P0.01),这表明气温也是调节树木营养再吸收格局的重要影响因素。不同海拔树种氮和磷再吸收模式的差异可能是引起广西猫儿山常绿树种沿海拔形成双峰分布的原因之一。  相似文献   

17.
18.
An evergreen oak species, Cyclobalanopsis multinervis, and a deciduous oak species, Quercus aliena var. acuteserrata were grown from acorns under two light levels (full sunlight and shade at about 18 % of full sunlight, simulating the light intensities in forest clearings and gaps, respectively) for one growing season. Three hypotheses were tested: (i) the deciduous species grows faster than the evergreen species in forest gaps and clearings; (ii) the deciduous species responds more strongly in terms of growth and morphology to variation in light climate than the evergreen species; and (iii) seedling size is positively correlated to acorn size. The results showed: (i) at both light levels, the deciduous seedlings gained significantly more growth in biomass and height than the evergreen seedlings; (ii) both species produced significantly more biomass in full sunlight than in shade, without showing any significant difference in height between treatments. Increase in light intensity improved the growth of the deciduous seedlings more strongly; (iii) at a similar age, the deciduous seedlings showed a greater response in leaf morphology and biomass allocation to variation in light levels, but when compared at a similar size, biomass allocation patterns did not differ significantly between species; (iv) bigger acorns tended to produce larger seedlings, larger leaf sizes and more leaf area, between and within species. These differences demonstrate that the deciduous species is gap-dependent and has the advantage over the evergreen species in forest gaps and clearings.  相似文献   

19.
Tree growth is an indicator of tree vitality and its temporal variability is linked to species resilience to environmental changes. Second-order statistics that quantify the cross-scale temporal variability of ecophysiological time series (statistical memory) could provide novel insights into species resilience. Species with high statistical memory in their tree growth may be more affected by disturbances, resulting in lower overall resilience and higher vulnerability to environmental changes. Here, we assessed the statistical memory, as quantified with the decay in standard deviation with increasing time scale, in tree water use and growth of co-occurring European larch Larix decidua and Norway spruce Picea abies along an elevational gradient in the Swiss Alps using measurements of stem radius changes, sap flow and tree-ring widths. Local-scale interspecific differences between the two conifers were further explored at the European scale using data from the International Tree-Ring Data Bank. Across the analysed elevational gradient, tree water use showed steeper variability decay with increasing time scale than tree growth, with no significant interspecific differences, highlighting stronger statistical memory in tree growth processes. Moreover, Norway spruce displayed slower decay in growth variability with increasing time scale (higher statistical memory) than European larch; a pattern that was also consistent at the European scale. The higher statistical memory in tree growth of Norway spruce in comparison to European larch is indicative of lower resilience of the former in comparison to the latter, and could potentially explain the occurrence of European larch at higher elevations at the Alpine treeline. Single metrics of resilience cannot often summarize the multifaceted aspects of ecosystem functioning, thus, second-order statistics that quantify the strength of statistical memory in ecophysiological time series could complement existing resilience indicators, facilitating the assessment of how environmental changes impact forest growth trajectories and ecosystem services.  相似文献   

20.
Abstract

Fine roots (<2 mm) are very dynamic and play a key role in forest ecosystem carbon and nutrient cycling and accumulation. We reviewed root biomass data of three main European tree species European beech, (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), in order to identify the differences between species, and within and between vegetation zones, and to show the relationships between root biomass and the climatic, site and stand factors. The collected literature consisted of data from 36 beech, 71 spruce and 43 pine stands. The mean fine root biomass of beech was 389 g m?2, and that of spruce and pine 297 g m?2 and 277 g m?2, respectively. Data from pine stands supported the hypothesis that root biomass is higher in the temperate than in the boreal zone. The results indicated that the root biomass of deciduous trees is higher than that of conifers. The correlations between root biomass and site fertility characteristics seemed to be species specific. There was no correlation between soil acidity and root biomass. Beech fine root biomass decreased with stand age whereas pine root biomass increased with stand age. Fine root biomass at tree level correlated better than stand level root biomass with stand characteristics. The results showed that there exists a strong relationship between the fine root biomass and the above-ground biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号