首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The effects of temperature on the aerial tuber initiation ofBegonia evansiana Andr. in response to short-day condition wereinvestigated. Tuberization was inhibited by relatively low and high temperaturesduring the dark periods. The optimal nycto-temperature was 23°and hardly changed by not only photo-temperature but also daylength.There were two temperature-sensitive phases in the dark period;one came at its beginning, and the other later one came at varioustimes depending on the length of the light period. Low temperatureswere effective at both of these sensitive phases, but high temperatureshad an influence only at the later one. Photo-temperatures exerted little influence on tuberizationunder the sub-optimal daylength, but the lower temperatureswere promotive under longer daylengths. (Received August 2, 1963; )  相似文献   

2.
Potato (Solanum tuberosum L.) plants were grown under long days(LD) of 18 h before a subset of the plants was transferred to10-h photosynthetic periods with either a dark night (SD) oran 8-h dim photoperiod extension with incandescent lamps (DE).Temperature was constant at 21 °C. Leaves were sampled atthe beginning and end of the high density light period for starchanalyses. Potato leaves accumulated starch more rapidly underSD than under LD; and this difference continued after a secondmajor sink, the tuber, began to develop. Starch accumulationover 10 h in SD leaves was three times higher than in LD leaves,even after 17 d of treatment. By this time SD gave higher wholeplant relative growth rates than LD, and the tuber mass of SDplants exceeded 30% of their total plant biomass. The DE treatmentresulted in starch accumulation intermediate to the LD and SDtreatments. Genotypes likewise differed: the earlier genotype,more strongly induced to tuberize, had higher leaf starch accumulationthan the later genotype. The effects of photoperiod and genotypewere also present when potatoes were grown at 27 °C, a temperatureunfavourable for tuberization under LD. Thus the formation ofa strong tuber sink was consistently associated with more rapidleaf starch accumulation. Potato, Solanum tuberosum L., cv. Norchip, photoperiod, temperature, genotype, starch accumulation, partitionin  相似文献   

3.
The spectral dependence of Begonia evansiana in supplementarylight periods of photoperiodic tuberization and sprouting wasinvestigated. Supplementary application of red light inhibitedtuber development, thereby stimulating vegetative growth. Supplementaryblue or far-red light also suppressed tuber development, butbarely stimulated vegetative growth. However, both red and blue light, given at 6°C during themain light period or the supplementary light period, permittedthe tuberization under the subsequently given conditions ofeither long-days or darkness at 23°C. Blue light appliedafter 5-days of irradiation with white light at 10°C, showedalmost the same action as far-red light, which suppressed tuberizationin darkness. The nature and function of the pigments concernedin the photoperiodic responses are discussed. (Received October 11, 1968; )  相似文献   

4.
The formation of aerial tubers in Begonia plants, an SD response,was inhibited by IAA, NAA and IBA applied to their leaves duringthe dark periods. The effectiveness of IAA differed accordingto the time of application during the dark periods, and themost sensitive time varied with daylengths employed. In order to inhibit the tuberization under optimal photoperiods(8-hr SDs), IAA had to be applied during the first 2 days orso of the SDs. Under non-optimal photoperiods, however, IAAwas effective even when applied somewhat later. The auxin activity of leaf extracts from the plants subjectedto 8-hr SDs decreased during the first 2 or 3 days to a minimum,and then increased until finally began to decrease, again; undernon-optimal photoperiods, the minimum of auxin activity wasattained more slowly. The paper-chromatographic study suggestedthat the change in auxin activity was mainly due to the changein IAA content. The number of SDs making the auxin content minimal agreed withthe minimum number of SDs required for tuberization. On the basis of the above results, the part played by endogenousauxin in photoperiodic induction is discussed. 1Present address: Institute for Agricultural Research, TôhokuUniversity, Sendai. 2Present address: Biological Institute, Yamaguchi University,Yamaguchi.  相似文献   

5.
The first sign of initiation of growth in dormant gemmae ofL. cruciata is the formation of rhizoids. Gemmae in the cupcannot ‘germinate‘ until exposed to substrate conditionsallowing the outward diffusion of a growth inhibitor. Rhizoidproduction depends on temperature and light. With long lightperiods rhizoids are formed over a wide range of temperatures.Transference to darkness after 2 h white light causes about50 per cent of gemmae to produce rhizoids, and these are formedonly between 20 and 25 °C. Outside these temperature limitsthe percentage of gemmae with rhizoids soon drops to zero. Althoughrhizoid production is prevented in total darkness, gemmae remainalive for well over 6 months. Red light for as little as 5 spromoted, and far-red light inhibited, rhizoid formation inthe dark. Coumarin and indol-3yl-acetic acid can substitutefor light and partly reverse the effect of far-red irradiation.  相似文献   

6.
Pretreatment by darkness increased chilling (4°C) injuryin whole cotton (Gossypium hirsutum L.) seedlings and isolatedcotyledonary tissue. Addition of sucrose in the dark periodprevented the effect of darkness. Application of the photosyntheticinhibitor DCMU in light simulated the effect of darkness. ABA(10–5 M) decreased chilling injury when applied in lightas a pretreatment before the onset of chilling. The same pretreatmentin darkness was almost ineffective, unless sucrose was added.ABA applied in light together with DCMU was ineffective in decreasingchilling injury. Lower light intensity resulted in increasedchilling injury and a decreased effect of ABA in the preventionof chilling injury. The antimicrotubular drug colchicine increased the chillinginjury. Pretreatment with ABA in light decreased the chillingand colchicine injury while the same pretreatment in darknesswas ineffective. These results suggest that a deficiency of a photosyntheticproduct increases the chilling sensitivity of the tissue. ABAapparently increases chilling resistance through a metabolicprocess which depends on photosynthetic activity. 3 Incumbent of the Seagram Chair in Plant Sciences (Received November 20, 1980; Accepted January 31, 1981)  相似文献   

7.
Esashi, Y., Oota, H., Saitoh, H. and Kodama, H. 1985. Lightactions in the germination of cocklebur seeds. III. Effectsof pre-treatment temperature on germination responses to far-redlight and on dark germination in the red light-requiring upperseeds.—J. exp. Bot. 36: 1465-1477. Red light (R) responsiveness in R-requiring upper cocklebur(Xanthium pennsylvanicum Wallr.) seeds changed in differentpatterns during a soaking period at different temperatures.At temperatures above 23°C, the responsiveness increasedand then decreased. At lower temperatures (3–18°C),however, it continued to increase throughout an experimentalperiod. The lower temperatures caused germination in the subsequentdark at 33°C, regained the R responsiveness and acquiredthe dark germinability when subsequently exposed to 8°C,to an extent proportional to the duration of the chilling. Far-red (FR) was inhibitory to germination in an earlier soakingperiod at lower temperatures, but its effect gradually decresed,and finally turned promotive. The negative FR response was repeatedlycontrolled by the following R irradiation. However, the positiveFR response was enhanced by an immediate R irradiation, andFR/R reversibility occurred after the second FR. In contrastto the R responsiveness and dark germinability, the positivegermination response to FR was not induced by soaking at 3°C,in which the growth of the axial tissue as a photoreceptivesite did not occur at all. Similarly, it was not manifestedwhen the seeds soaked at 33°C were subsequently subjectedto 8°C. Key words: Cocklebur seeds, dark germination, far-red light, low temperature, red light, seed germination, Xanthium pennsylvanicum  相似文献   

8.
Floral initiation in seedlings of Stylosanthes guianensis var.guianensis cv. Schofield grown at a photoperiod marginal forflowering (12–11.75 h) was promoted by a combination oflow day (25 °C) and low night (16 or 21 °C) temperatures,and completely inhibited by a 35 °C day temperature. Additionally,earliness of floral initiation under naturally decreasing daylengthwas negatively related to temperature regime over the range35/30 to 20/15 °C (day/night). Stylosanthes guianensis var, guianensis, flowering, temperature, photoperiod, short-day plant  相似文献   

9.
1. The seeds ofNasturtium palustreDC. do not germinate, eitherin the light or darkness, at various constant temperatures,but require for their full germination a certain period of alow temperature (5°) applied immediately after light irradiation.These results indicate the existance of at least two processes,a light-dependent process and a low temperature-requiring process,in the initiation of germination ofNasturtiumseeds. Experimentalevidence indicated further that the light exposure causes twodifferent processes in the seed germination. 2. When a dark period at 23° was inserted between the lightirradiation and the low temperature treatment the germinationwas suppressed. The inhibitory effect of the inserted dark periodat 23° was eliminated by a short irradiation during thedarkness (light-break). 3. Prolonged exposure ofNasturtium seeds to any concentrationof gibberellin brought about no germination when exposure wasgiven in complete darkness. The germination was promoted onlywhen light irradiation was applied to the seeds. A short applicationof gibberellin at a fairly high concentration was, however,remarkably effective for the germination even in the darkness,and the germination was inhibited as the gibberellin applicationwas lengthened. It was considered that gibberellin could substitutefor the combined effect of light irradiation and low temperaturetreatment to induce the germination of Nasturtium seeds, andthat gibberellin was inhibitive toward the reactions followingthe above treatments which induced the germination (Received October 31, 1996; )  相似文献   

10.
Effects of night-interruption on the aerial tuber formationof Begonia evansiana Andr. were investigated. Among coloredlights tested, red light was most effective to reduce the photoperiodicresponse. It inhibited tuberization almost completely at lowintensities. The red lightaction was partially reversed by subsequentblue or far-red irradiation under the 12-hour daylength, andthe relation between the red and the blue or far-red lightswas reversible. No reversal, however, was observed under the8-hour daylength. The inhibitory action of red light remainedunchanged on irradiating with red, blue or far-red light beforethe night periods. 1Present address: Department of Horticulture, Purdue University,Lafayette, Indiana, USA  相似文献   

11.
Cyclamen persicum Mill, seeds germinate in a narrow range oftemperature and germination is strongly inhibited by continuousirradiation with white light. The thermal optimum is approx.15 °C in both darkness and light. Seed germination is alsovery sensitive to oxygen deprivation and this sensitivity ismore pronounced at 20 °C than at the optimum 15 °C.Very immature seeds cannot germinate at any temperature, butgerminability increases during seed maturation Seedling development is unusual since seed reserves are usedimmediately for tuber formation. Tuberization is optimal at15–20 °C in light and in darkness. Supra-optimal temperatures(25–30 °C) or hypoxia inhibit tuber formation andlead to very elongated tubers These results allow the producers to improve the productionof homogeneous populations of cyclamen seedlings Wheat seeds, Triticum aestwum L., acetylcholinesterase, electrophoresis, germination, assay  相似文献   

12.
MENZEL  C. M. 《Annals of botany》1980,46(3):259-265
The responses of potato plants (Solanum tuberosum L., cv. Sebago)to high temperatures (32 day/28 C night or 32/18 °C) andgibberellin are similar, in that they promote haulm growth andsuppress tuber production, whereas low temperatures (22/18 °C)abscisic acid and CCC have the opposite effect, promoting tuberproduction and reducing the growth of the haulms. The inhibitoryeffect of the high temperatures on tuber production, under aphotoperiod of 14 h, was almost completely reversed in theseexperiments by the application of CCC, and partly reversed byABA. Single-leaf cuttings from plants grown at the various temperaturesand chemical treatments responded in the same way as the wholeplant. It is suggested that both haulm growth and tuber initiationare influenced by a common hormonal control, and that temperatureexerts its influence by altering the balance between the levelsof endogenous gibberellins and inhibitors. These substancesapparently act directly on the stolon tip, rather than throughtheir general influence on haulm growth. Solanum tuberosum L., potato, tuberization, temperature response, gibberellin, abscisic acid, 2-chloroethyltrimethylammonium chloride (CCC)  相似文献   

13.
Potato plants (Solanum tuberosum L.) were grown at differentair and soil temperatures to determine the effects of high-temperaturestress on root, tuber, and shoot growth. Cooling the soil (17–27C) at high air temperatures (30–40 C) relieved noneof the visible symptoms of heat stress on shoot growth; norwas the degree of induction to tuberize in leaves increased,as reflected in tuberization of leaf-bud cuttings. Heating thesoil (27–35 C) at cool (17–27 C) air temperatureshad no apparent detrimental effect on shoot growth or inductionof leaves to tuberize. However, in each case hot soil largelyeliminated tuber development. In one experiment stolons grewup out of the hot soil and formed aerial tubers upon reachingthe cool air. When leaf-bud cuttings from induced plants wereused as a model system, high soil temperatures inhibited tuberdevelopment from the buried leaf buds, in the absence of anyroot growth. Apparently the induction of leaves to tuberizeis affected principally by air rather than soil temperature,but expression of the signal to tuberize can be blocked by highsoil temperature. Solanum tuberosum L., potato, temperature stress, soil temperature, tuberization  相似文献   

14.
Shoot apices of Spinacia oleracea plants have been induced toflower either by: (a) subjecting leaves to 24 h long day, or(b) exposure to a short photoperiod but displaced by 8 h (displacedshort day) in the usual 24 h short-day cycle, or (c) exposureto low temperature (5 °C) during the dark period of thenormal short day. A quantitative cytochemical assay of pentosephosphate pathway activity during floral induction indicatesan approximate doubling of the rate of activity when comparedto that of vegetative apices (short day) (21 °C). Exposure to either low temperature, or a displaced short photoperiodstimulates pentose phosphate pathway activity in the shoot apexin a manner similar to that seen by long-day induction. Thischange in metabolic activity is accompanied by changes in theshape of the shoot apex which resembles that seen at an earlystage during floral induction. Spinacia oleracea, pentose phosphate pathway, shoot apex, glucose-6-phosphate dehydrogenase, floral induction, chilling, displaced short day  相似文献   

15.
Flowering of Lemna paucicostata 6746, a short-day plant, isinduced by nitrogen deficiency or by the suppression of nitratereductase activity under continuous light. The plant also flowersunder continuous blue or low-intensity white light. However,the nitrate reductase activity and levels of endogenous nitrogenof the plants did not decrease under these conditions. Glutaminesynthetase activity decreased slightly in darkness, but daylength-independentflowering was not induced by the suppression of the enzymaticactivity by methionine sulfoximine. Endogenous nitrogen levels of plants grown on nitrogen-deficientmedium at 30°C fell more rapidly than those of plants grownat 25°C, and thus difference was expressed as an enhancementof flowering at 30°C. Photoperiodic flowering was greatlysuppressed by exposure of plants to a high temperature (30°C)during the dark period, whereas the flowering induced undercontinuous blue or low-intensity white light was enhanced onlyslightly by high temperature during culture. (Received April 24, 1989; Accepted September 20, 1989)  相似文献   

16.
Two experiments are described in which stomatal sensitivityto low-intensity white light was studied for Xanthium pennsylvanicumWall. In the first experiment a daylength extension for 7, 9, or 15hrs. was given using 10, 40, or 160 lux to shorten a basic 16-hr.night, which was also given at its full length as a tenth treatment.Measurements were made of stomatal opening ability on the morningfollowing the different treatments. With a 15-hr. extensionthere was at all intensities a significant response, shown bya reduced rate of opening in the morning. With a 9-hr. extensionusing 40 or 160 lux, opening ability was reduced, but 9 hrs.of 10 lux was insufficinet to produce a detectable effect. The7-hr. extension was ineffective at all three intensities. In the second experiment stomatal behaviour was observed during20 hrs. of either darkness or 10 lux at four temperatures (15,22, 29, and 36°C.). During 20 hrs. of darkness there wasnight opening at all temperatures, but at lower temperaturesit began sooner and lasted longer. These responses to temperaturedid not fit a simple linear relationship, there being a significantcubic term revealed by non-linear regression analysis. Thiscould be explained if the response was considered in terms ofthe magnitude of the change in temperature (from 25°C.)at the beginning of the experiment; there appeared to be sometemperature compensation over a limited range. in 10 lux, nightopening was suppressed at 29° and 36°, but at 15°it was apparently unaffected by the light; at 22° it wasnot completely suppressed by 10 lux but the time of its occurrencewas delayed. Effects of light and temperature are discussed in relation toan endogenous rhythm in darkness which was previoulsy shownto operate in Xanthium pennsylvanicum (Part IX). It is considered that to explain effects of very low intensitylight it will be necessary to recognize a ‘low intensityresponse’ by stomata, which does not operate via changesin guard-cell carbon dioxide.  相似文献   

17.
The effect of light quality on the induction and release ofbud dormancy in aerial tubers of Begonia evansiana ANDR. andthe relation in controlling the mechanism of dormancy betweenlight and temperature were investigated using aerial tubersin different dormant states; immature tubers which were sproutedby irradiation and mature ones which were sprouted only afterchilling. Blue or far-red light induced photo-sprouting in immature tubersat higher temperatures and also promoted release of dormancyin mature tubers caused by chilling (2–5°C). Blueor far-red light, however, failed to break mature tuber dormancyat room temperature. The induction of dormancy in immature tubers was advanced atlow temperatures (15–17°C) which were inoperativefor photo-sprouting. Lower temperatures showed conflicting dualeffects of inducing and breaking dormancy. Red light inhibitednot only photo-sprouting in immature tubers but also dormancyrelease in mature tubers at low temperatures. These light- and temperature-dependent reactions are independentlyinvolved in dormancy regulation, the former is overcome by thelatter with dormancy development. (Received December 3, 1968; )  相似文献   

18.
Flowering and tuber formation in high-mountain potato species Solanum sparsipilum Bitt., S. acaule Bitt., S. punae Juz., S. demissum Lindl., and a tuber crop Ullucus tuberosus Caldas. were investigated. All these species are characterized by absolute requirement of long day-length for flowering and short day-length for tuberization. Plants were grown under the following conditions: natural day-length with a photoperiod of 17 h or longer (treatment 1), short days with a photoperiod of 12 h and warm nights (15–20°C) (treatment 2), and short days with cold nights (5–6°C) (treatment 3). In the first treatment, plants produced flowers but no tubers. In the second treatment, plants produced tubers but no flowers. In the third treatment, plants produced both flowers and tubers. In leaves of S. acaule and U. tuberosus, the levels of gibberellins and ABA were determined. A high activity of gibberellins in the third treatment was similar to that in the first treatment, whereas high ABA activity in the third treatment was similar to that in the second treatment. It is supposed that cold nights retard the destruction of GA in plants during the dark period of diurnal cycle and ensure a permanently high level of gibberellins, which facilitates flowering of long-day species under short-day conditions. The high level of ABA is considered a plant response to short-day conditions, which is favorable for tuberization.  相似文献   

19.
BALDEV  B. 《Annals of botany》1962,26(2):173-174
Stem tips of Cuscuta reflexa, cultured on modified White's medium,were subjected to different light and dark conditions. The culturesflowered when maintained either in continuous darkness or exposedto 14 hours of daily dark period. Thus Cuscuta reflexa behavesas a typically short-day plant. The presence of 5 per cent.sucrose in the medium completely obviates the requirement forhigh-intensity light exposures, otherwise essential for SDP.It appears that the bud itself is sensitive to photoinduction.In spite of the presence of natural tissue-bridge between thehost and the parasite, provided by the haustorial connexions,there is no transportation of flower-forming substance fromone plant to another. The flowering periods of host and parasiteare independent of each other.  相似文献   

20.
P. tuberosus, a native species of the Amazon region, was cultivatedunder different thermal regimes and photoperiods in an attemptto relate these stimuli to flower initiation and tuberous rootformation. It is shown that P. tuberosus is an intermediate-dayplant (flowers only under photoperiods above 9 h and below 16h). With regard to tuberization P. tuberosus may be considereda short-day plant: tuberization occurs only in photoperiodsbelow 16 h. High thermal regimes 30/25 C (13 h day/11 h night)delay and reduce flowering and completely inhibit tuberous rootformation. Thermal regimes of 25/20 C and 20/15 C (13 h day/11h night) were the most suitable for flowering and tuberization. Pachyrrhizus tuberosus, yam-bean, flowering, tuberization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号