首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Extensive studies in vertebrate cells have assigned a central role to Rel/NF-kappa B and AP-1 family members in the control of apoptosis. We ask here whether parallel pathways might function in Drosophila by determining if Rel/NF-kappa B or AP-1 family members contribute to the steroid-triggered death of larval salivary glands during Drosophila metamorphosis. We show that two of the three Drosophila Rel/NF-kappa B genes are expressed in doomed salivary glands and that one family member, Dif, is induced in a stage-specific manner immediately before the onset of programmed cell death. Similarly, Djun is expressed for many hours before salivary gland cell death while Dfos is induced in a stage-specific manner, immediately before this tissue is destroyed. We show that null mutations in the three Drosophila Rel/NF-kappa B family members, either alone or in combination, have no apparent effect on this death response. In contrast, Dfos is required for the proper timing of larval salivary gland cell death as well as the proper induction of key death genes. This study demonstrates a role for AP-1 in the stage-specific steroid-triggered programmed cell death of larval tissues during Drosophila metamorphosis.  相似文献   

5.
6.
7.
8.
9.
Ceramide has been implicated as an intermediate in the signal transduction of several cytokines including tumor necrosis factor (TNF). Both ceramide and TNF activate a wide variety of cellular responses, including NF-kappaB, AP-1, JNK, and apoptosis. Whether ceramide transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56(lck) in ceramide- and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, isogeneic Lck-deficient T cells. Treatment with ceramide activated NF-kappaB, degraded IkappaBalpha, and induced NF-kappaB-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56(lck) kinase. These effects were specific to ceramide, as activation of NF-kappaB by phorbol 12-myristate 13-acetate, lipopolysaccharide, H(2)O(2), and TNF was minimally affected. p56(lck) was also found to be required for ceramide-induced but not TNF-induced AP-1 activation. Similarly, ceramide activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. Ceramide also induced cytotoxicity and activated caspases and reactive oxygen intermediates in Jurkat cells but not in JCaM1 cells. Ceramide activated p56(lck) activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56(lck) tyrosine kinase reversed the ceramide-induced NF-kappaB activation and cytotoxicity. Overall our results demonstrate that p56(lck) plays a critical role in the activation of NF-kappaB, AP-1, JNK, and apoptosis by ceramide but has minimal or no role in activation of these responses by TNF.  相似文献   

10.
TALL-1 is a member of the TNF family that is critically involved in B cell survival, maturation, and progression of lupus-like autoimmune diseases. TALL-1 has three receptors, including BCMA, TACI, and BAFF-R, which are mostly expressed by B lymphocytes. Gene knockout studies have indicated that BAFF-R is the major stimulatory receptor for TALL-1 signaling and is required for normal B cell development. The intracellular signaling mechanisms of BAFF-R are not known. In this report, we attempted to identify BAFF-R-associated downstream proteins by yeast two-hybrid screening. This effort identified TNFR-associated factor (TRAF)3 as a protein specifically interacting with BAFF-R in yeast two-hybrid assays. Coimmunoprecipitation experiments indicated that BAFF-R interacts with TRAF3 in B lymphoma cells and this interaction is stimulated by TALL-1 treatment. Domain mapping experiments indicated that both a 6-aa membrane proximal region and the C-terminal 35 aa of BAFF-R are required for its interaction with TRAF3. Moreover, overexpression of TRAF3 inhibits BAFF-R-mediated NF-kappaB activation and IL-10 production. Taken together, our findings suggest that TRAF3 is a negative regulator of BAFF-R-mediated NF-kappaB activation and IL-10 production.  相似文献   

11.
12.
Early in life, mice of four kinds [NZB, (NZB X NZW)F1, MRL/1, and male BXSB] with autoimmune disease spontaneously produced far more (greater than 3 S.D.) anti-hapten antibody-forming cells in spleens and greater concentrations of anti-hapten antibodies in sera than immunologically normal strains of mice (AKR, BALB/c, C57BL/6, DBA/1-J, DBA/2J, LG/J, 129, NZW, and female BXSB). This increased nonspecific antibody production by the abnormal animals' B cells correlated well with the spontaneous development of anti-single-stranded DNA antibodies, but not with serum levels of the viral envelope glycoprotein, gp70. These results suggest that the spontaneous formation of autoantibodies in mice whose immunologic disorder is manifested by a lupus-like disease may result from polyclonal activation of B cells by endogenous or exogenous B cell activators.  相似文献   

13.
14.
We cloned a novel cDNA derived from the CARD6 gene locus on chromosome 5p12 of 311 amino acids in length. By immunoprecipitation we detected specific binding of this CARD6-encoding protein to Nod1 (CARD4), Cardiak (Rip2/Rick), NAC (NALP1/DEFCAP/CARD7), and TUCAN (CARD8/Cardinal/NDPP/Dakar), caspase recruitment domain (CARD)-containing proteins implicated in NF-kappa B and caspase-1 activation but not to other CARD family proteins. Cardiak and Nod1 (but not other CARD proteins) also exhibited opposing effects on CARD6 protein phosphorylation and expression, providing further evidence of functional interactions among these proteins in cells. In transfection experiments, the CARD6 protein suppressed NF-kappa B induction by Nod1 or Cardiak but did not interfere with NF-kappa B activation by the CARD-containing adapter protein Bcl10 or the cytokine tumor necrosis factor-alpha, demonstrating specificity of CARD6 for Nod-1 and Cardiak-dependent pathways. In contrast to its effects on Nod1- and Cardiak-dependent NF-kappa B activation, CARD6 did not interfere with caspase-1-dependent interleukin-1 beta secretion induced by Cardiak or Nod1. CARD6 also did not affect caspase activation and apoptosis induced by overexpression of Fas, Bax, or other pro-apoptotic stimuli. Thus, CARD6 represents a selective modulator of NF-kappa B activation by Cardiak and Nod1, adding to the repertoire of CARD-family proteins implicated in inflammatory responses and innate immunity.  相似文献   

15.
TAF(II)105, a substoichiometric coactivator subunit of TFIID, is important for activation of anti-apoptotic genes by NF-kappaB in response to the cytokine tumor necrosis factor (TNF)-alpha. In the present study we have analyzed the mechanism of TAF(II)105 function with respect to its regulation of p65/RelA, a component of NF-kappaB. We found two independent p65/RelA-binding domains within the N terminus of TAF(II)105. One of these domains appears to be crucial for TAF(II)105-mediated anti-apoptotic gene activation in response to TNF-alpha. Analysis of the interaction between TAF(II)105 and different NF-kappaB complexes has revealed substantial differences in the affinity of TAF(II)105 toward different p65/RelA-containing dimers. We have identified the TNF-alpha induced anti-apoptotic A20 gene as a target gene of TAF(II)105. A20 has a differential protective effect on cell death induced by TNF-alpha in the presence of either the dominant negative mutant of TAF(II)105 (TAF(II)105DeltaC) or the superdominant IkappaBalpha. The results suggest that the inhibitory effect of TAF(II)105DeltaC on NF-kappaB-dependent genes is restricted to a subset of anti-apoptotic genes while the effect of IkappaBalpha is more general. Thus, an interaction between NF-kappaB and a specific coactivator is important for specifying target gene activation.  相似文献   

16.
Nod1 is an Apaf-1-like molecule composed of a caspase-recruitment domain (CARD), nucleotide-binding domain, and leucine-rich repeats that associates with the CARD-containing kinase RICK and activates nuclear factor kappaB (NF-kappaB). We show that self-association of Nod1 mediates proximity of RICK and the interaction of RICK with the gamma subunit of the IkappaB kinase (IKKgamma). Similarly, the RICK-related kinase RIP associated via its intermediate region with IKKgamma. A mutant form of IKKgamma deficient in binding to IKKalpha and IKKbeta inhibited NF-kappaB activation induced by RICK or RIP. Enforced oligomerization of RICK or RIP as well as of IKKgamma, IKKalpha, or IKKbeta was sufficient for induction of NF-kappaB activation. Thus, the proximity of RICK, RIP, and IKK complexes may play an important role for NF-kappaB activation during Nod1 oligomerization or trimerization of the tumor necrosis factor alpha receptor.  相似文献   

17.
Mast cell (MC) deficiency in KitW-sh/W-sh mice and inhibition with disodium chromoglycate (DSCG) or ketotifen reduced obesity and diabetes in mice on a high-cholesterol (1.25%) Western diet. Yet, Kit-independent MC-deficient mice and mice treated with DSCG disproved MC function in obesity and diabetes when mice are fed a high-fat diet (HFD) that contains no cholesterol. This study reproduced the obesity and diabetes inhibitory activities of DSCG and ketotifen from mice on a Western diet. Yet, such inhibitory effects were diminished in mice on the HFD. DSCG and ketotifen MC inhibitory activities were recovered from mice on the HFD supplemented with the same amount of cholesterol (1.25%) as that in the Western diet. DSCG and ketotifen effectively blunted the high-cholesterol diet-induced elevations of blood histamine and adipose tissue MC degranulation. Pearson's correlation test demonstrated significant and positive correlations between plasma histamine and total cholesterol or low-density lipoprotein-cholesterol (LDL). In cultured bone marrow-derived MCs, plasma from mice following a Western diet or a cholesterol-supplemented HFD, but not those from HFD-fed mice, induced MC degranulation and the release of β-hexosaminidase, histamine, and serotonin. IgE, LDL, very low-density lipoprotein, and high-density lipoprotein also induced MC activation, which can be inhibited by DSCG and ketotifen depending on the doses and types of MC inhibitors and cholesterol, and also the MC granule molecules of interest. DSCG or ketotifen lost their activities in inhibiting LDL-induced activation of MCs from LDL receptor-deficient mice. These results indicate that dietary cholesterol critically influences the function of mouse MCs.  相似文献   

18.
19.
20.
During insulin-dependent diabetes mellitus, immune cells which infiltrate pancreatic islets mediate beta cell destruction over a prolonged asymptomatic prediabetic period. The molecular mechanisms of beta cell death in vivo remain unresolved. At least two major molecular processes of destruction have been proposed. One involves the Fas–FasL (Fas–Fas ligand) system and the other, the perforin pathway. Here, dual-label immunohistochemistry was employed to examine the intra-islet expression, distribution and cellular sources of Fas and FasL in the NOD mouse, during spontaneous diabetes (days 21, 40 and 90) and following acceleration of diabetes with cyclophosphamide (days 0, 4, 7, 11 and 14 after cyclophosphamide administration). The expression of the proteins was correlated with advancing disease. FasL was expressed constitutively in most beta cells but not in glucagon or somatostatin cells or islet inflammatory cells and paralleled the loss of insulin immunolabelling with advancing disease. It was also expressed in beta cells of non-diabetes prone CD-1 and C57BL/6 mice from a young age (day 21). Strong immunolabelling for Fas was first observed in extra-islet macrophages and those close to the islet in NOD and non-diabetes-prone mice. During spontaneous and cyclophosphamide diabetes, it was observed in a higher proportion of islet infiltrating macrophages than CD4 and CD8 T cells, concomitant with advancing insulitis. In cyclophosphamide-treated mice, the proportion of Fas-positive intra-islet CD4 and CD8 T cells at day 14 (with and without diabetes) was considerably higher than at days 0, 4, 7 and 11. At days 11 and 14, a proportion of Fas-positive intra-islet macrophages co-expressed interleukin-1 and inducible nitric oxide synthase. Fas was not detectable in beta cells and other islet endocrine cells during spontaneous and cyclophosphamide induced diabetes. Our results show constitutive expression of FasL in beta cells in the NOD mouse and predominant expression of Fas in intra-islet macrophages and to a lesser extent in T cells prior to diabetes onset. Interleukin-1 in intra-islet macrophages may induce Fas and inducible nitric oxide synthase expression in an autocrine and paracrine manner and mediate beta cell destruction or even death of some macrophages and T cells. However, other mechanisms of beta cell destruction during spontaneous and cyclophosphamide-accelerated diabetes and independent of Fas–FasL, require examination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号