首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seasonal variation in abundance and development of Calanusfinmarchicus, Calanus hyperboreus and Calanus glacialis in relationto hydrography and chlorophyll (Chl) a was studied in the Arcticwaters of the East Icelandic Current to the north-east of Icelandfrom March 1995 to February 1996. The sampling was carried outat approximately monthly intervals on a transect of five stationsextending from 67°00'N, 13°55'W to 68°00'N, 12°40'W.In April, May and June, vertical distribution was also investigated.Spring warming of the surface waters began in May, with maximumtemperatures recorded in August (~5°C, mean for uppermost50 m). Below 75 m, temperature remained at <0°C throughoutthe year. The spring bloom of phytoplankton started in earlyMay and the highest Chl a concentrations were measured duringlate May to early June (~1 mg Chl a m-3). Calanus finmarchicusdominated in terms of numbers (~75%), while C. hyperboreus dominatedbiomass (~76%). Calanus glacialis occurred only in low numbers(~1%) and was only a small portion of biomass (~0.7%). The abundanceof all species was low during the winter and peaked once duringsummer: C. finmarchicus in July (~16 000 ind. m-2) and C. glacialisand C. hyperboreus in June (~370 and ~7700 ind. m-2, respectively).The biomass of C. finmarchicus had two maxima, in April (~1.9g m-2) and July (~1.5 g m-2), while C. hyperboreus peaked inJune (~12.3 g m-2). Calanus finmarchicus was estimated to spawnin early May at about the start of the spring bloom, while C.hyperboreus spawned prior to the spring bloom, in late Februaryto early March. On the basis of copepod stage distribution,C. finmarchicus was considered to have a 1-year life cycle andC. hyperboreus at least a 2-year life cycle.  相似文献   

2.
We collected Calanus finmarchicus copepodites CIV, CV and CVIfemales in a deep fjord on the west coast of Norway during April1996, May 1997 and November 1998. Eggs of C. finmarchicus andCalanus glacialis were collected during May 1989 in the BarentsSea. The sinking speeds of animals and eggs were measured ina homogeneous column with seawater of known density, and Stokeslaw was applied to estimate their mass density. Also the densitycontrast between the organisms and seawater was calculated.The mean mass density of C. finmarchicus ranged from 1.0274to 1.0452 g cm–3. During spring copepodite stage CV hada significantly lower mean mass density (1.0345 g cm–3)compared to CIV (1.0381 g cm–3) and CVI females (1.0408g cm–3). Copepods collected during winter had a distinctlylower mass density. The sinking speed of C. glacialis eggs followeda unimodal distribution, with a mean of 25.9 m day–1,while sinking speeds of C. finmarchicus eggs were bimodal, thetwo groups of eggs having a mean sinking speed of 23.3 m day–1and 35.4 m day–1 respectively. Correspondingly the meanmass density was 1.0556 g cm–3 for C. glacialis eggs andfor the two groups of C. finmarchicus eggs 1.0639 g cm–3and 1.0812 g cm–3. Results of earlier work, particularlyusing density gradient methods to determine mass density ofzooplankton, are critically reviewed, and it is suggested thatthis method should not be used to determine the mass densityof small organisms the size of C. finmarchicus.  相似文献   

3.
The response of an optical plankton counter (OPC) to concentrationsof Calanus finmarchicus fifth copepodites (C5) ranging from2 to 1621 copepods m-3 was examined during the summers of 1999–2001over the continental shelf of the northwest Atlantic Ocean.Net tows from either a bongo net or a multiple opening/closingnet and environmental sensing system (MOCNESS) were collocatedwith vertical OPC casts to provide comparable data. OPC-derivedparticle abundance in the 1.5–2.0 mm equivalent circulardiameter range was strongly correlated with net-derived abundanceof C. finmarchicus C5 (r2 = 0.655 and 0.726 for comparisonsin two independent datasets). Particle abundance in this sizerange increased with increases in the descent speed of the verticallyprofiled OPC, which indicated avoidance of the small samplingaperture by C. finmarchicus C5. A regression model was developedto relate OPC particle abundance in the 1.5–2.0 mm sizerange to the abundance of C. finmarchicus C5 and the descentspeed of the OPC. The data fitted the model well (r2 = 0.684)and the inverted model was used as a calibration equation topredict C. finmarchicus C5 abundances from OPC measurementsin an independent comparison to net abundances. In that case,the calibration equation underestimated net abundance by anaverage factor of 2. However, anomalously low OPC particle abundancesfor some casts suggest that spatial heterogeneity (patchiness)can confound such comparisons.  相似文献   

4.
Copepod daily egg production and growth rates in Bahia Magdalena, Mexico   总被引:2,自引:0,他引:2  
The hydrography, chlorophyll (Chl) a and egg production of thecopepods Paracalanus parvus (Claus), Acartia lilljeborgii Giesbrecht,Acartia clausi Giesbrecht and Centropages furcatus were estimateddaily between 7 February and 5 March 1998 in Bahía Magdalena,Baja California Sur, México. Temperature was homogeneousthroughout the water column during the study (20°C). Positiveanomalies of the sea surface temperature were recorded 10 monthsbefore and during the sampling period compared with a temperature–timeseries, 1982–1989. Chlorophyll a concentration indicatedoligotrophic conditions with <10 Chl a mg m–2 from15 m depth to the surface during the first half of the study,with a pulse of moderate concentration in the second part. Theegg production of these copepod species was usually suboptimal,and not correlated with Chl concentration or temperature. Eachgenus responded differently to Chl a and to environmental variables.The rate of input of turbulent kinetic energy to the ocean bythe winds, indicated by the cube of the wind speed, was negativelycorrelated to copepod egg production, suggesting that turbulencecan disperse phytoplankton patches and may affect the carboninput to these copepod populations. Turbulence and a previouslong warming event observed several months before the winterseason were probably the most important factors in limitingcopepod production and growth rates.  相似文献   

5.
We quantify statistical relationships between hydrography andabundance of Calanus spp. in the Arctic–Atlantic transitionzone around Svalbard (78–82°N) during early autumn.The Atlantic species C. finmarchicus was more abundant in warmerand more saline waters, as expected from its distributionalcore area. Conversely, the Arctic species C. hyperboreus wasmore abundant in colder and fresher waters. However, the Arcticspecies C. glacialis showed opposing relationships with hydrographyin shallow compared with deep regions. In shallow waters, thenumbers of C. glacialis decreased with temperature and salinityas expected, while somewhat surprisingly the opposite trendwas found in deep locations. Sub-surface hydrography between50–150 m was in most cases a better predictor for Calanusspp. abundance than near-surface conditions, the former generallyexplaining up to 50% of the variability in abundance of eachspecies. Despite finding significant relationships between hydrographicproperties and the abundance of each of the three Calanus species,we did not detect significant relationships between the totalCalanus biomass and temperature.  相似文献   

6.
The seasonal variability of phytoplankton in the EquatorialAtlantic was analysed using Sea-viewing Wide Field-of-view Sensor(SeaWiFS)-derived chlorophyll a (Chl a) concentration data from1998 to 2001, together with in situ Chl a and primary productiondata obtained during seven cruises carried out between 1995and 2000. Monthly averaged SeaWiFS Chl a distributions werein agreement with previous observations in the Equatorial Atlantic,showing marked differences between 10° W in the EasternTropical Atlantic (ETRA) and 25° W in the Western TropicalAtlantic (WTRA) provinces (Longhurst et al. 1995. J. PlanktonRes., 17, 1245–1271). The seasonal cycle of SeaWiFS-derivedChl a concentration calculated for 0–10° S, 0–20°W (ETRA) is consistent with in situ Chl a measurements, withvalues ranging from 0.16 mg m–3, from February to April,to 0.52 mg m–3 in August. Lower variability was observedin 10° N–10° S, 20–30° W (WTRA) whereminimum and maximum concentrations occurred in April (0.15 mgm–3) and in August (0.24 mg m–3), respectively.A significant empirical relationship between depth-integratedprimary production and in situ measured sea surface Chl a wasfound for ETRA, allowing us to estimate the seasonal cycle ofdepth-integrated primary production from SeaWiFS-derived Chla. As for Chl a, this model was verified in a small area ofthe Eastern Equatorial Atlantic (0–10° S, 0–20°W), although in this instance it was not completely able todescribe the magnitude and temporal variability of in situ primaryproduction measurements. The annual euphotic depth-integratedprimary production rate estimated for ETRA by our empiricalmodel was 1.4 Gt C year–1, which represents 16% of theopen ocean primary production estimated for the whole AtlanticOcean.  相似文献   

7.
Chlorophyll (Chl) a was measured every 10 m from 0 to 150 min the Transition Domain (TD), located between 37 and 45°N,and from 160°E to 160°W, in May and June (Leg 1) andin June and July (Leg 2), 1993–96. Total Chl a standingstocks integrated from 0 to 150 m were mostly within the rangeof 20 and 50 mg m–2. High standing stocks (>50 mg m–2)were generally observed westof 180°, with the exceptionof the sporadic high values at the easternmost station. Thetotal Chl a standing stock tended to be higher in the westernTD (160°E–172°30'E) than in the central (175°E–175°W)and eastern (170°W–160°W) TD on Leg 1, but thesame result was not observed on Leg 2. It was likely that largephytoplankton (2–10 and >10 µm fractions) contributedto the high total Chl a standing stock. We suggest that thehigh total Chl a standing stock on Leg 1, in late spring andearly summer, reflects the contribution of the spring bloomin the subarctic region of the northwestern Pacific Ocean. Thedistribution of total Chl a standing stock on Leg 2 was scarcelyaffected by the spring phytoplankton bloom, suggesting thattotal Chl a standing stock is basically nearly uniform in theTD in spring and summer. Moreover, year-to-year variation inthe total Chl a standing stock was observed in the western TDon Leg 1, suggesting that phytoplankton productivity and/orthe timing of the main period of the bloom exhibits interannualvariations.  相似文献   

8.
Climate-induced variability in Calanus marshallae populations   总被引:1,自引:0,他引:1  
Calanus marshallae is the dominant mesozooplankton copepod speciesover the south-eastern Bering Sea middle shelf. Climate-inducedchanges in the magnitude and timing of production by C. marshallaemay affect the living marine resources of the Bering Sea shelfecosystem. We examined springtime abundance, gonadal maturityand stage distributions of C. marshallae copepodites duringfive consecutive years (1995–1999) that spanned the rangeof variability observed over the past 34 years in terms of watertemperature and ice cover. We compared our results with previouswork conducted during cool (1980) and warm (1981) years [ Smith,S. L. and Vidal, J. (1986) Cont. Shelf Res., 5, 215–239].The spring phytoplankton bloom began relatively early in associationwith ice (1995, 1997, 1999), but began late when ice was absentor retreated early (1996, 1998). Egg production began well beforethe bloom and continued over a long duration. Copepodites, however,were recruited during a relatively short period, coincidentwith the spring phytoplankton bloom. The relationship betweenbrood stock and spring-generation copepodite abundances wasweak. Copepodite concentrations during May were greatest inyears of most southerly ice extent. Copepodite populations werehighly variable among years, reflecting interannual variabilityin the atmosphere–ice–ocean system.  相似文献   

9.
Using size-fractionation filtration (1 µm), we associatedcarboxylase activities (Rubisco, ß-carboxylases) andchlorophyll measurements with cell enumeration by flow cytometryat a permanent site of the central Ligurian Sea in the north-westernMediterranean Sea (73°25'N–7°51' E). The analyseswere carried out over a day/night cycle (at 30 m depth) followinga strong wind event, during the transition period from springmesotrophic to summer oligotrophic conditions. The highest valuesof Rubisco activity and ß-carboxylase activity perchlorophyll a (Chl a) for >1 µm cells were observedduring the light period of the cycle, reaching 18.9 and 4.3nmol CO2 (µg Chl a)–1 h–1, respectively. Thishigher activity is assumed to be correlated with a dominanceof nanoflagellates in the phytoplankton community. Such phytoplanktonspecies generally had higher ß-carboxylase activity,expressed as a percentage of Rubisco activity (the ßC/Rratio), than diatoms. Using flow cytometry analysis to enumeratethose cells <1 µm in size, we followed the values ofRubisco activity and pigment content expressed per cell, forpicophytoplankton cells. The photoautotrophic activity, measuredas the in vitro Rubisco activity for small picoeukaryote cells,was higher than for cyanobacteria cells with lower apparentcell size. These results suggested an optimum of CO2 assimilationreached by the pico- and nano-phytoplankton in accordance withthe cell size and growth rates from previous observations inthe literature.  相似文献   

10.
The geographical distribution, seasonal life cycle, biomassand production of a copepod Calanus sinicus were investigatedin and around Kii Channel of the Inland Sea of Japan. The distributioncenter of the population was located in Kii Channel. The patternof the seasonal variation in abundance of copepodites and adultsdiffered geographically within the study area. In Kii Channel,for example, they were most abundant in June-July and leastabundant in October. Over the study area, the reproduction ofC.sinicus took place throughout the year, indicating the absenceof diapause phase. In adults, females usually outnumbered males.The prosome length of late copepodites and adults was inverselycorrelated with water temperature. The annual mean biomass washighest (4.87 mg C m–3 or 231 mg C m–2) in Kii Channel.The potential production rate of the population exhibited aseasonal variation more or less similar to that of the biomassand the annual potential production rate was 358 mg C m–3year–1 (14.1 g C m–2 year–1) in Kii Channel.Daily production and biomass (P/B) ratios in Kii Channel increasedfrom 0.11 at 11.8°C to 0.26 at 20°C.  相似文献   

11.
The Queen Charlotte Islands, Canada, lie at the northern extremeof the coastal upwelling system of the eastern North PacificOcean (51–54°N). In this study, the first observationsof spatial and inter-annual patterns in nutrient inventories,chlorophyll (Chl) a and phytoplankton assemblages are reportedand related to oceanographic conditions in near-shore watersof the island archipelago. Stronger and more persistent upwellingin 2002 coincided with higher nutrient and Chl a standing stockscompared to 2001 and a higher proportion of diatoms. Dinoflagellateswere more prevalent in 2001, including several potentially harmfulspecies. At sub-seasonal scales, Chl a concentrations were greatestduring downwelling conditions and smallest during upwellingconditions. On the west coast, weak water column stratification,high relative proportions of diatoms and large nutrient inventoriesaccompanied upwelling-favourable conditions, whereas on theeast coast, there was no direct relationship between the BakunUpwelling Index and water column stability. According to redundancyanalysis, variability in species composition was best explainedby sea surface temperature, the depth of the euphotic zone andnutrient inventories. The east coast supported blooms of coccolithophoreswithin protected bays, confirming previous satellite observationsthat showed bright patches in these areas. The data illustratethat moderate upwelling can have an important influence on near-shorealgal standing stocks and species composition at the northernextreme of the upwelling system off the west coast of NorthAmerica, and that topographical complexity may be importantfor the development of phytoplankton blooms.  相似文献   

12.
The spatial variation in zooplankton biomass, abundance andspecies composition in relation to hydrography and chlorophylla (Chl a) was studied in the subarctic waters of Hudson Bayand Hudson Strait. Sampling was carried out in early September1993 at 21 stations arranged along a transect following theQuébec coast from James Bay, in Hudson Bay, to the vicinityof Ungava Bay in Hudson Strait. Both the biomass and the abundanceof total zooplankton were low along the lower part of HudsonBay (averaging 1.6 g DM m–2 and 9432 ind. m–2) andincreased sharply toward the upper end of the Bay and in HudsonStrait (averaging 6.0 g DM m–2 and 40 583 ind. m–2).A total of 80 zooplankton taxa was identified in the samples.Copepods were clearly numerically dominant at all sampling stations,accounting for more than 85% and 93% of the zooplankton communityin the Bay and the Strait, respectively. Clustering samplesby their relative species composition revealed four groups distributedalong well defined environmental gradients characterizing thedistribution of physical variables and Chl a. The first group,located in the most southern region of Hudson Bay and fartheroffshore, northwest of the Belcher and Sleeper Islands, wasstrongly influenced by freshwater run-off from James Bay andother major rivers around the Bay, and was characterized bythe presence of two euryhaline copepod species (Acartia longiremisand Centropages hamatus). The second and the third groups occupiedthe largest region along the sampling transect, from the middleof Hudson Bay to the western region of Hudson Strait, and werecharacterized by a typical arctic zooplankton fauna relatedto the cyclonic circulation in central Hudson Bay. The fourthgroup was located in the easternmost part of the sampling transectin Hudson Strait where the highest phytoplankton biomass valueswere observed (Chl a ~220 mg m–2). The zooplankton assemblagethere showed an important increase in the abundance of the largeherbivorous copepod Calanus glacialis/finmarchicus, which werenumerically four times more abundant in the central Strait region(averaging 15 251 ind. m–2) than in the western side ofHudson Strait and in Hudson Bay (3629 ind. m–2). Theseresults support the hypothesis that the structure in the localbiological community is influenced by the local hydrodynamicfeatures which, through their action on surface water temperature,salinity, stratification and mixing conditions, lead to spatialdifferentiation of the phytoplankton and zooplankton communities.  相似文献   

13.
The photosynthesis-irradiance relationships (P-I curves) ofnatural plankton samples were studied in the Weddell Sea ice-edgezone, between Elephant Island and South Orkney Islands, duringthe austral summer of 1988–89. Three water bodies weredistinguished in the region: Bellingshausen Sea waters modifiedafter flowing through Drake Passage and Bransfield Strait, WeddellSea waters and Weddell Sea waters modified by melting. The stationssituated in modified Bellingshausen waters showed a net phytoplanktoncomposition which was different from that of the other two waterbodies. Weddell Sea waters and Weddell Sea waters modified bymelting of sea ice had the same net phytoplankton composition.In the area of modified Weddell Sea waters, there was an accumulationof phytoplankton in the upper 40 m (>4 mg Chl m–1).pB, and  相似文献   

14.
The spatial distribution of phytoplankton cell abundance, carbon(C) biomass and chlorophyll a (Chl a) concentration was analysedduring three summers (1996, 1997 and 1999) in a seasonal sea-icearea, west of the Antarctic Peninsula. The objective of thestudy was to assess interannual variability in phytoplanktonspatial distribution and the mechanisms that regulate phytoplanktonaccumulation in the water column. Phytoplankton C biomass andChl a distributions were consistent from year to year, exhibitinga negative on/offshore gradient. The variations in C concentrationhad a close and non-linear relationship with the upper mixedlayer depth, suggesting that the vertical mixing of the watercolumn is the main factor regulating phytoplankton stock. Themagnitude of C gradients was 5-fold higher during 1996 thanduring 1997 and 1999. This was ascribed to interannual variationsin the concentration of diatom blooms in the region influencedby sea-ice melting. Vertical distribution of the phytoplankton,as estimated from Chl a profiles, also varied along an on/offshoregradient: Chl a was distributed homogeneously in the upper mixedlayer in coastal and mid-shelf stations and concentrated inthe deep layer (40–100 m) occupied by the winter waters(WW, remnants of the Antarctic surface waters during summer)in more offshore stations. The region with a deep Chl a maximumlayer (DCM layer) was dominated by a phytoplankton assemblagecharacterized by a relatively high concentration of diatoms.The extent of this region varied from year to year: it was restrictedto pelagic waters during 1996, extended to the shelf slope during1997 and occupied a major portion of the area during 1999. Itis hypothesized that iron depletion in near surface waters dueto phytoplankton consumption, and a higher concentration inWW, regulated this vertical phytoplankton distribution pattern.Furthermore, we postulate that year-to-year variations in thespatial distribution of the DCM layer were related to interannualvariations in the timing of the sea-ice retreat. The similaritybetween our results and those reported in literature for otherareas of the Southern Ocean allows us to suggest that the mechanismsproposed here as regulating phytoplankton stock in our areamay be applicable elsewhere.  相似文献   

15.
We determined the productivity (µg C µg–1Chi a h–1) of size-fractionated phytoplankton in the northernNorth Pacific and the Bering Sea in summer and winter. Picoplankton(<2 µm) were more productive than larger sized phytoplankton(2–10 and 10–200 µm) in the subtropical region,where the in situ temperature was >10°C; whereas picoplanktonin the subarctic region were similar in productivity or lessproductive than larger sized plankton, where the in situ temperaturewas <10°C. The result from the subtropical region inthis study agrees with previous results from tropical and subtropical waters, which indicate that phytoplankton productivitytends to decrease with increasing cell size. The result fromthe subarctic region, however, differs from previous results.We observed a positive linear regression for in situ temperatureand picoplankton productivity, but this trend was not seen inthe larger sized phytoplankton. The results show that the productivityof picoplankton is markedly influenced by in situ temperaturecompared with that of larger sized plankton. Low tem peratureappears to account largely for the observation that the productivityof picoplankton is not significantly higher than that of largersized phytoplankton in the subarctic region.  相似文献   

16.
Results are presented from size fractionated chlorophyll a (Chla) and primary production studies along a transect between Antarcticaand southern Africa during the second South African AntarcticMarine Ecosystem Study (SAAMES II), conducted in late australsummer (January to February) 1993. Total integrated Chl a alongthe transect was highest in the vicinity of the Marginal IceZone (MIZ) and Antarctic Polar Front (APF). At these stations,integrated Chl a biomass was always >25 mg Chl a m–2and was dominated by microphytoplankton. Although nominal increasesinChl a biomass were also associated with the Subantarctic Front(SAF) and Subtropical Convergence (STC), total Chl a biomassin these regions was dominated by nanophytoplankton. Withinthe inter-frontal regions, total integrated Chl a biomass waslower, generally <25 mg Chl a m–2, and was always dominatedby nanophytoplankton. An exception was found in the AgulhasReturn Current (ARC) where picophytoplankton dominated. Totaldaily integrated production along the transect ranged between60 and 436 mg C m–2 day–1. Elevated production rateswere recorded at stations occupied in the vicinity of the MIZand at all the major oceanic frontal systems. The contributionsof the various size fractions to total daily production displayedthe same spatial pattern as integrated biomass, with microphytoplanktonbeing the most important contributor in areas characterizedby elevated phytoplankton biomass. Outside these regions, nanophytoplanktondominated the total phytoplankton production. Again, an exceptionwas found in the ARC north of the STC where picophytoplanktondominated total production. There, the lowest production alongthe entire transect was recorded, with total daily integratedproduction always <90 mg C m–2 day–1. The increasedproduction rates recorded in the MIZ appeared to result fromincreased water column stability as indicated by a shallow mixed-layerdepth. Within the inter-frontal regions, the existence of adeep mixed layer appeared to limit phytoplankton production.Low silicate concentrations in the waters north of the APF mayalso have limited the growth of large microphytoplankton.  相似文献   

17.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

18.
The phytoplankton and ice algal assemblages in the SiberianLaptev Sea during the autumnal freeze-up period of 1995 aredescribed. The spatial distribution of algal taxa (diatoms,dinoflagellates, chrysophytes, chlorophytes) in the newly formedice and waters at the surface and at 5 m depth differed considerablybetween regions. This was also true for algal biomass measuredby in situ fluorescence, chlorophyll (Chl) a and taxon-specificcarbon content. Highest in situ fluorescence and Chl a concentrations(ranging from 0.1 to 3.2 µg l–1) occurred in surfacewaters with maxima in Buor Khaya Bay east of Lena Delta. Thealgal standing stock on the shelf consisted mainly of diatoms,dinoflagellates, chrysophytes and chlorophytes with a totalabundance (excluding unidentified flagellates <10 µm)in surface waters of 351–33 660 cells l–1. Highestalgal abundance occurred close to the Lena Delta. Phytoplanktonbiomass (phytoplankton carbon; PPC) ranged from 0.1 to 5.3 µgC l–1 in surface waters and from 0.3 to 2.1 µg Cl–1 at 5 m depth, and followed the distribution patternof abundances. However, the distribution of Chl a differed considerablyfrom the distribution pattern shown by PPC. The algal assemblagein the sea ice, which could not be quantified due to high sedimentload, was dominated by diatom species, accompanied by dinoflagellates.Thus, already during the early stage of autumnal freeze-up,incorporation processes, selective enrichment and subsequentgrowth lead to differences between surface water and sea icealgal assemblages.  相似文献   

19.
The impact of grazing by natural assemblages of microzooplanktonwas estimated in an upwelling area (Concepción, Chile)during the non-upwelling season in 2003 and 2004. Seawater dilutionexperiments using chlorophyll a (Chl a) as a tracer were usedto estimate daily rates of phytoplankton growth and microzooplanktongrazing. Initial Chl a concentrations ranged from 0.4 to 1.4mg Chl a m–3 and phytoplankton prey biomass and abundancewere numerically dominated by components <20 µm. Phytoplanktongrowth and microzooplankton grazing rates were 0.19–0.25day–1 and 0.26–0.52 day –1, respectively.These results suggest that microzooplankton exert a significantremoval of primary production (>100%) during the non-upwellingperiod.  相似文献   

20.
Physical–chemical variables, phytoplankton biomass, speciescomposition and photosynthesis–irradiance (P-I) parameterswere analysed during 1 year in the Santo André Lagoon,SouthwestPortugal – a land-locked coastal ecosystem withtemporary connections with the sea. When the lagoon stayed closedthe observed phytoplankton blooms were mainly caused by Prorocentrumminimum, a potentially toxic dinoflagellate. It was dominantduring most of the year but the seawater inflow to the lagoontriggered a decrease in phytoplankton biomass and an abruptshift in species composition. The maximum photosynthetic rate(Pmax) ranged from 2.0 to 22.5 mg C (mg chlorophyll a)–1h–1 and the light saturation index (Ik), ranged from 5.2to 335.0 µE m–2 s–1, with winter minima andsummer maxima. Pmax and Ik were both positively correlated totemperature. Abundance ofP. minimum was associated with highnitrate concentrations whereas diatoms appear when ammonium,salinity and wind velocity are high. A mathematical model todescribe photosynthetic rate as a function of irradiance andtemperature [P (I, t)] was applied to the samples in which P.minimum was the dominant species  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号