首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Engelen, Marielle, Janos Porszasz, Marshall Riley, KarlmanWasserman, Kazuhira Maehara, and Thomas J. Barstow. Effects ofhypoxic hypoxia on O2 uptake andheart rate kinetics during heavy exercise. J. Appl.Physiol. 81(6): 2500-2508, 1996.It is unclearwhether hypoxia alters the kinetics ofO2 uptake(O2) during heavy exercise[above the lactic acidosis threshold (LAT)] and how thesealterations might be linked to the rise in blood lactate. Eight healthyvolunteers performed transitions from unloaded cycling to the sameabsolute heavy work rate for 8 min while breathing one of threeinspired O2 concentrations: 21%(room air), 15% (mild hypoxia), and 12% (moderate hypoxia). Breathing12% O2 slowed the time constantbut did not affect the amplitude of the primary rise inO2 (period of first2-3 min of exercise) and had no significant effect on either thetime constant or the amplitude of the slowO2 component (beginning2-3 min into exercise). Baseline heart rate was elevated inproportion to the severity of the hypoxia, but the amplitude andkinetics of increase during exercise and in recovery were unaffected bylevel of inspired O2.We conclude that the predominant effect of hypoxia during heavyexercise is on the early energetics as a slowed time constant forO2 and an additionalanaerobic contribution. However, the sum total of the processesrepresenting the slow component of O2 is unaffected.

  相似文献   

2.
Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia.   总被引:2,自引:0,他引:2  
To test the role of blood flow in tissue hypoxia-related increased veno-arterial PCO(2) difference (DeltaPCO(2)), we decreased O(2) delivery (&Ddot;O(2)) by either decreasing flow [ischemic hypoxia (IH)] or arterial PO(2) [hypoxic hypoxia (HH)] in an in situ, vascularly isolated, innervated dog hindlimb perfused with a pump-membrane oxygenator system. Twelve anesthetized and ventilated dogs were studied, with systemic hemodynamics maintained within normal range. In the IH group (n = 6), hindlimb DO(2) was progressively lowered every 15 min by decreasing pump-controlled flow from 60 to 10 ml. kg(-1). min(-1), with arterial PO(2) constant at 100 Torr. In the HH group (n = 6), hindlimb DO(2) was progressively lowered every 15 min by decreasing PO(2) from 100 to 15 Torr, when flow was constant at 60 ml. kg(-1). min(-1). Limb DO(2), O(2) uptake (VO(2)), and DeltaPCO(2) were obtained every 15 min. Below the critical DO(2), VO(2) decreased, indicating dysoxia, and O(2) extraction ratio (VO(2)/DO(2)) rose continuously and similarly in both groups, reaching a maximal value of approximately 90%. DeltaPCO(2) significantly increased in IH but never differed from baseline in HH. We conclude that absence of increased DeltaPCO(2) does not preclude the presence of tissue dysoxia and that decreased flow is a major determinant in increased DeltaPCO(2).  相似文献   

3.
The consequences of a decreased O2 supply to a contracting canine gastrocnemius muscle preparation were investigated during two forms of hypoxia: hypoxic hypoxia (HH) (n = 6) and CO hypoxia (COH) (n = 6). Muscle O2 uptake, blood flow, O2 extraction, and developed tension were measured at rest and at 1 twitch/s isometric contractions in normoxia and in hypoxia. No differences were observed between the two groups at rest. During contractions and hypoxia, however, O2 uptake decreased from the normoxic level in the COH group but not in the HH group. Blood flow increased in both groups during hypoxia, but more so in the COH group. O2 extraction increased further with hypoxia (P less than 0.05) during concentrations in the HH group but actually fell (P less than 0.05) in the COH group. The O2 uptake limitation during COH and contractions was associated with a lesser O2 extraction. The leftward shift in the oxyhemoglobin dissociation curve during COH may have impeded tissue O2 extraction. Other factors, however, such as decreased myoglobin function or perfusion heterogeneity must have contributed to the inability to utilize the O2 reserve more fully.  相似文献   

4.
5.
6.
7.
Acclimatization to hypoxia has minimal effect on maximal O2 uptake (Vo2 max). Prolonged hypoxia shows reductions in cardiac output (Q), maximal heart rate (HR-max), myocardial beta-adrenoceptor (beta-AR) density, and chronotropic response to isoproterenol. This study tested the hypothesis that exercise training (ET), which attenuates beta-AR downregulation, would increase HRmax and Q of acclimatization and result in higher Vo2 max. After 3 wk of ET, rats lived at an inspired Po2 of 70 Torr for 10 days (acclimatized trained rats) or remained in normoxia, while both groups continued to train in normoxia. Controls were sedentary acclimatized and nonacclimatized rats. All rats exercised maximally in normoxia and hypoxia (inspired Po2 of 70 Torr). Myocardial beta-AR density and the chronotropic response to isoproterenol were reduced, and myocardial cholinergic receptor density was increased after acclimatization; all of these receptor changes were reversed by ET. Normoxic Vo2 max (in ml.min-1.kg-1) was 95.8 +/- 1.0 in acclimatized trained (n = 6), 87.7 +/- 1.7 in nonacclimatized trained (P < 0.05, n = 6), 74.2 +/- 1.4 in acclimatized sedentary (n = 6, P < 0.05), and 72.5 +/- 1.2 in nonacclimatized sedentary (n = 8; P > 0.05 acclimatized sedentary vs. nonacclimatized sedentary). A similar distribution of Vo2 max values occurred in hypoxic exercise. Q was highest in trained acclimatized and nonacclimatized, intermediate in nonacclimatized sedentary, and lowest in acclimatized sedentary groups. ET preserved Q in acclimatized rats thanks to maintenance of HRmax as well as of maximal stroke volume. Q preservation, coupled with a higher arterial O2 content, resulted in the acclimatized trained rats having the highest convective O2 transport and Vo2 max. These results show that ET attenuates beta-AR downregulation and preserves Q and Vo2 max after acclimatization, and support the idea that beta-AR downregulation partially contributes to the limitation of Vo2 max after acclimatization in rats.  相似文献   

8.
9.
We studied the contributions of hypoxemia, hypocapnia, and hyperpnea to the acute hypoxic diuretic response (HDR) in humans and evaluated the role of peripheral O(2) chemosensitivity and renal hormones in HDR. Thirteen healthy male subjects (age 19-38 yr) were examined after sodium equilibration (intake: 120 mmol/day) during 90 min of normoxia (NO), poikilocapnic hypoxia (PH), and isocapnic hypoxia (IH) (days 1-3, random order, double blind), as well as normoxic voluntary hyperpnea (HP; day 4), matching ventilation during IH. O(2) saturation during PH and IH was kept equal to a mean level measured between 30 and 90 min of breathing 12% O(2) in a pretest. Urine flow during PH and IH (1.81 +/- 0.92 and 1.94 +/- 1.03 ml/min, respectively) but not during HP (1.64 +/- 0.96 ml/min) significantly exceeded that during NO (control, 1.38 +/- 0.71 ml/min). Urine flow increases vs. each test day's baseline were significant with PH, IH, and HP. Differences in glomerular filtration rate, fractional sodium clearance, urodilatin, systemic blood pressure, or leg venous compliance were excluded as factors of HDR. However, slight increases in plasma and urinary endothelin-1 and epinephrine with PH and IH could play a role. In conclusion, the early HDR in humans is mainly due to hypoxia and hypocapnia. It occurs without natriuresis and is unrelated to O(2) chemosensitivity (hypoxic ventilatory response).  相似文献   

10.
This study assessed whether the elevated sensitivity of ventilation to hypoxia during exercise is accounted for by an elevation of esophageal temperature (T(es)). Eleven males volunteered for two exercise sessions on an underwater, head-out cycle ergometer at a steady-state rate of oxygen consumption (V(.)(O(2))) of approximately 0.87 l/min (SD 0.07). In one exercise session, 31.5 degrees C (SD 1.4) water held T(es) at a normothermic level of approximately 37.1 degrees C, and in the other exercise session, water at 38.2 degrees C (SD 0.1) maintained a hyperthermic T(es) of approximately 38.5 degrees C. After a 30-min rest and 20-min warm-up, exercising participants inhaled air for 10 min [Euoxia 1 (E1)], an isocapnic hypoxic gas mixture with 12% O(2) in N(2) (H1) for the next 10 min and air again [Euoxia 2 (E2)] for the last 10 min. A significant increase in V(.)(E) during all hyperthermia conditions (0.01< P < 0.048) was evident; however, during hyperthermic hypoxia, there was a disproportionate and significant (P = 0.017) increase in V(.)(E) relative to normothermic hypoxia. This was the main explanation for a significant esophageal temperature and gas type interaction (P = 0.012) for V(.)(E). Significant effects of hyperthermia, isocapnic hypoxia, and their positive interaction remained evident after removing the influence of (V(.)(O(2))) on V(.)(E). Serum lactate and potassium concentrations, as well as hemoglobin oxygen saturation, were each not significantly different between normothermic and hyperthermic-hypoxic conditions. In conclusion, the elevated sensitivity of exercise ventilation to hypoxia during exertion appears to be modulated by elevations in esophageal temperature, potentially because of a temperature-mediated stimulation of the peripheral chemoreceptors.  相似文献   

11.
We measured ventilation in nine young adults while they breathed pure O2 after breathing room air and after 5 and 25 min of hypoxia. With isocapnic hypoxia (arterial O2 saturation 80 +/- 2%) mean ventilation increased at 5 min and then declined, so that at 25 min values did not differ from those on room air. After 3 min of O2 breathing, ventilation was greater than that on room air or after 25 min of isocapnic hypoxia, whether the hyperoxia had been preceded by hypoxia or normoxia. During transitions to pure O2 breathing, ventilation was analyzed breath by breath with a moving average technique, searching for nadirs before and after increases in PO2. After both 5 and 25 min of hypoxia, O2 breathing was associated with transient depressions of ventilation, which were greater after 25 min than after 5 min. Significant depressions were not observed when hyperoxia followed room air breathing, and O2-induced nadirs after hypoxia were lower than those observed during room air breathing. O2 transiently depressed ventilation after hypoxia but not after room air breathing. These results suggest that the normal ventilatory response to isocapnic hypoxia has two components, an excitatory one from peripheral chemoreceptors, which is turned off by O2 breathing, and a slower inhibitory one, probably of central origin, which is affected less promptly by O2 breathing.  相似文献   

12.
13.
Expired gas concentrations were measured during a multibreath washin of He in one female and seven male subjects at rest (seated) and during cycle exercise at work rates of 70-210 W. In a computational model, the ventilation distribution was represented as a log-normal distribution with standard deviation (sigmaV); values of sigmaV were obtained by fitting the output of the model to the data. At rest, sigmaV was 0.89 +/- 0.18; during exercise, sigmaV was 0.60 +/- 0.13, independent of the level of exercise. These values for the width of the functional ventilation distribution at the scale of the acinus are approximately two times larger than those obtained from anatomic measurements in animals at a scale of 1 cm3. The values for sigmaV, together with data from the literature on the width of the functional ventilation-perfusion distribution, show that ventilation and perfusion are highly correlated at rest, in agreement with anatomic data. The structural sources of nonuniform ventilation and perfusion and of the correlation between them are unknown.  相似文献   

14.
15.
The breathing of gas mixtures containing 8-9% O2 during irradiation of tumors has been tested at several cancer clinics (in Russia and abroad) with the purpose of decreasing the morbidity of normal issues, thus providing the possibility to increase the dose of radiation. Previous experiments have demonstrated a broad spectrum of dose modification factors (DMF) for different normal tissues as well as for different transplanted tumors, with in general larger protection of normal tissues. The present study was designed to assess the radioprotective effect for mouse kidney of breathing a gas mixture containing 8% O2 by morphometry of histological specimens. Both kidneys were locally irradiated using single fractions (11-19 Gy in air and 13-19 Gy in hypoxia) or 5 fractions separated by 24 h intervals (25-35 Gy in air and 30-40 Gy in hypoxia). Histological examination was performed 8 and 10 months after treatment. The DMF for glomeruli damage (glomerulosclerosis, ecstatic capillaries, hemorrhage) was in the range 1.25-1.29. Tubular damage showed a DMF of 1.28-1.37. Using the endpoint of development of interstitial tissue in the cortex a DMF of 1.32-1.37 was found after a single treatment, and 1.48 after fractionated irradiation. The radioprotective effect for arteriolar lesions was lower than measured using the above endpoints, namely 1.13-1.15 after single and 1.16-1.18 after fractionated irradiation. It was shown previously on groups of animals treated in the same manner that the DMF was between 1.24-1.26 when renal damage was assessed by hematocrit measurements, between 1.32-1.28 when it was evaluated by urination frequency, and 1.23-1.27 when kidney wet and dry weights were used as end-points. All these data witness that breathing 8% oxygen increases the tolerance of kidney function with a DMF above 1.2. The impact of low protection of arterioli on renal function in the late period after radiotherapy needs additional study.  相似文献   

16.
Acetazolamide (Acz) is used at altitude to prevent acute mountain sickness, but its effect on exercise capacity under hypoxic conditions is uncertain. Nine healthy men completed this double-blind, randomized, crossover study. All subjects underwent incremental exercise to exhaustion with an inspired O(2) fraction of 0.13, hypoxic ventilatory responses, and hypercapnic ventilatory responses after Acz (500 mg twice daily for 5 doses) and placebo. Maximum power of 203 +/- 38 (SD) W on Acz was less than the placebo value of 225 +/- 40 W (P < 0.01). At peak exercise, arterialized capillary pH was lower and Po(2) higher on Acz (P < 0.01). Ventilation was 118.6 +/- 20.0 l/min at the maximal power on Acz and 102.4 +/- 20.7 l/min at the same power on placebo (P < 0.02), and Borg score for leg fatigue was increased on Acz (P < 0.02), with no difference in Borg score for dyspnea. Hypercapnic ventilatory response on Acz was greater (P < 0.02), whereas hypoxic ventilatory response was unchanged. During hypoxic exercise, Acz reduced exercise capacity associated with increased perception of leg fatigue. Despite increased ventilation, dyspnea was not increased.  相似文献   

17.
The purpose of this study was to examine a new method for calculating the O(2) deficit that considered the O(2) uptake (VO(2)) kinetics during exercise as two separate phases in light of previous research in which it was shown that the traditional O(2) deficit calculation overestimated the recovery O(2) consumption (ROC). Eight subjects completed exercise transitions between unloaded cycling and 25% (heavy, H) or 50% (very heavy, VH) of the difference between the lactic acid threshold (LAT) and peak VO(2) for 8 min. The O(2) deficit, calculated in the traditional manner, was significantly greater than the measured ROC for both above-LAT exercises: 4.03 +/- 1.01 vs. 2.63 +/- 0.80 (SD) liters for VH and 2.36 +/- 0.91 vs. 1.74 +/- 0.63 liters for H for the O(2) deficit vs. ROC (P < 0.05). When the kinetics were viewed as two separate components with independent onsets, the calculated O(2) deficit (2.89 +/- 0.79 and 1.71 +/- 0.70 liters for VH and H, respectively) was not different from the measured ROC (P < 0.05). Subjects also performed the same work rate for only 3 min. These data, from bouts terminated before the slow component could contribute appreciably to the overall VO(2) response, show that the O(2) requirement during the transition is less than the final steady state for the work rate, as evidenced by symmetry between the O(2) deficit and ROC. This new method of calculating the O(2) deficit more closely reflects the expected O(2) deficit-ROC relationship (i.e., ROC >/= O(2) deficit). Therefore, estimation of the O(2) deficit during heavy exercise transitions should consider the slow component of VO(2) as an additional deficit component with delayed onset.  相似文献   

18.
High hemoglobin affinity for O2 [low PO2 at 50% saturation of hemoglobin (P50)] could degrade exercise performance in normoxia by lowering mean tissue PO2 but could enhance O2 transport in hypoxic exercise by increasing arterial O2 saturation. We measured O2 transport at rest and at graded levels of steady-state exercise in tracheostomized dogs with normal P50 (28.8 +/- 1.8 Torr) and again after P50 was lowered (19.5 +/- 0.7 Torr) by sodium cyanate infusions. Measurements were made during ventilation with room air (RA), 12% O2 in N2, or 10% O2 in N2. Cardiac output (QT) as a function of O2 consumption (VO2) was not altered by low P50 at any inspired O2 fraction (P greater than 0.05). With RA exercise, arterial content (CaO2) and O2 delivery (QT X CaO2) were unchanged at low P50, whereas mixed venous PO2 was reduced at each level of VO2. With exercise in hypoxia, CaO2 and O2 delivery were significantly improved at low P50 (P less than 0.05). Mixed venous PO2 was lower than control during 12% O2 (P less than 0.05) but not different from control during 10% O2 exercise at low P50. Despite a presumed decrease in tissue PO2 during RA and 12% O2 exercise, exercise performance and base excess decline were not significantly worse than control levels. We conclude that, in canine steady-state exercise, hemoglobin P50 is not an important determinant of tissue O2-extraction capacity during normoxia or moderate hypoxia. In extreme hypoxia, low P50 may help to maintain tissue PO2 by enhancing systemic O2 delivery at each level of QT.  相似文献   

19.
The time course of changes in rat myocardial alpha(1)- and beta-adrenoceptors and of muscarinic cholinergic (M-Ach) receptor characteristics was studied parallel with the changes in exercise systemic O(2) transport during a 21-day period of hypoxia (barometric pressure 380 Torr) to assess the effects of receptor modification during acclimatization on maximal exercise capacity. Hypoxia resulted in polycythemia, pulmonary hypertension, right ventricular hypertrophy, and transient left ventricular weight loss. Maximal O(2) consumption at 30 min of hypoxia was reduced to 60% of the normoxic value and remained unchanged. This was partly due to a gradual decrease in maximal cardiac output and heart rate (HR(max)), which offset the increase in blood O(2) content. HR(max) correlated positively (r = 0.994) with beta-adrenoceptor density and negatively (r = -0.964) with M-Ach-receptor density, suggesting that HR(max) reduction results from intrinsic changes in myocardial receptor characteristics leading to reduced responses to adrenergic stimulation and elevated responses to cholinergic stimulation. alpha-Adrenoceptor density in both ventricles increased initially to eventually fall below normoxic values. The dissociation between the different patterns of right and left ventricular weight and the similar pattern of alpha-adrenoceptor change in both ventricles do not support a role for these receptors on right ventricular myocardial hypertrophy.  相似文献   

20.
The kinetics of O2 up-take (VO2), CO2 output (VCO2), ventilation (VE), and heart rate (HR) were studied during exercise in normoxia and hypoxia [inspired O2 fraction (FIO2) 0.14]. Eight male subjects each completed 6 on- and off-step transitions in work rate (WR) from low (25 W) to moderate (100-125 W) levels and a pseudorandom binary sequence (PRBS) exercise test in which WR was varied between the same WRs. Breath-by-breath data were linearly interpolated to yield 1-s values. After the first PRBS cycle had been omitted as a warm-up, five cycles were ensemble-averaged before frequency domain analysis by standard Fourier methods. The step data were fit by a two-component (three for HR) exponential model to estimate kinetic parameters. In the steady state of low and moderate WRs, each value of VO2, VCO2, VE, and HR was significantly greater during hypoxic than normoxic exercise (P less than 0.05) with the exception of VCO2 (low WR). Hypoxia slowed the kinetics of VO2 and HR in on- and off-step transitions and speeded up the kinetics of VCO2 and VE in the on-transition and of VE in the off-transition. Frequency domain analysis confined to the range of 0.003-0.019 Hz for the PRBS tests indicated reductions in amplitude and greater phase shifts in the hypoxic tests for VO2 and HR at specific frequencies, whereas amplitude tended to be greater with little change in phase shift for VCO2 and VE during hypoxic tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号