首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of N-methyl-N-nitrosourethane (NMUT) on pancreatic DNA synthesis were investigated at sequential intervals following gavage of Hartley guinea pigs with a single dose of 30 mg/kg. There was a highly significant stimulation of DNA synthesis, as evidenced by increased incorporation of [3H] methyl-thymidine ([3H] TdR), throughout the whole pancreas and particularly in the duodenal segment, at 4 h following NMUT administration, thereafter, DNA synthesis declined sharply up to 24 h, and then recovered gradually to control levels from 24–96 h. DNA synthesis stimulated by NMUT was suppressed by hydroxyurea (HU), and hence is likely to represent replicative, rather than repair, synthesis.  相似文献   

2.
When HeLa cells are irradiated with UV and treated with the DNA synthesis inhibitors hydroxyurea (HU) and 1-beta-D-arabinofuranosylcytosine (ara C), DNA strand breaks accumulate at sites where excision repair of DNA damage has been inhibited after the incision step. This break accumulation occurs in mitotic, G1 and S phase cells. But UV-induced repair synthesis of DNA, as measured by [3H]thymidine incorporation into unreplicated DNA, is not inhibited by HU and ara C in G1 or S phase cells, even though replicative synthesis is virtually abolished. Repair and replication must therefore utilise different DNA precursor pools, or different DNA synthetic systems; and the action of Hu and ara C in causing strand break accumulation may occur at the ligation step of excision repair.  相似文献   

3.
The nature of DNA damage induced by N-methyl-N-nitrosourethane (NMUT) in the guinea pig pancreas, both in vitro and in vivo, and subsequent repair was investigated by alkaline sucrose density gradient analysis, using a non-radioactive fluorimetric procedure for DNA determination in gradient fractions. In vitro exposure of pancreatic slices to 20 mM NMUT for 30 min damaged DNA to less than 2.24 . 10(6) dalton fragments. However, incubation of NMUT-treated slices for 3 h in a fresh medium resulted in the repair of most of DNA damage, as indicated by the conversion of low molecular weight DNA fragments into heavy DNA of molecular weight comparable to DNA from control slices. Additionally, a single administration of NMUT (30 mg/kg, i.p.) to guinea pigs induced extensive DNA damage, to less than 2.24 . 10(6) dalton fragments in the pancreas within 4 h; similar DNA damage was observed in the liver. However, in the pancreas and liver of guinea pigs sacrificed at increasing intervals after NMUT administration, there was a gradual conversion of shortened DNA fragments to heavy high molecular weight DNA, indicating repair of DNA damage. It appears that most of DNA damage in the pancreas and liver was repaired by 14 and 7 days, respectively, following NMUT administration.  相似文献   

4.
We have investigated the effects of fluctuations in deoxynucleoside triphosphate (dNTP) pool size on DNA repair and, conversely, the effect of DNA repair on dNTP pool size. In confluent normal human skin fibroblasts, dNTP pool size was quantitated by the formation of [3H]TTP from [3H]thymidine; DNA repair was examined by repair replication in cultures irradiated with UV light. As defined by HPLC analysis, the [3H]TTP pool was formed within 30 min of the addition of [3H]thymidine and remained relatively constant for the next 6 h. Addition of 2-10 mM hydroxyurea (HU) caused a gradual 2-4-fold increase in the [3H]TTP pool as HU inhibited DNA synthesis but not TTP production. No difference was seen between the [3H]TTP pool size in cells exposed to 20 J/m2 and unirradiated controls, although DNA-repair synthesis was readily quantitated in the former. This result was observed even though the repair replication protocol caused an 8-10-fold reduction in the size of the [3H]TTP pool relative to the initial studies. In the UV excision-repair studies the presence of hydroxyurea did not alter the specific activity of [3H] thymidine 5'-monophosphate incorporated into parental DNA due to repair replication. These results suggest that fluctuations in the deoxynucleoside triphosphate pools do not limit the extent of excision-repair synthesis in human cells and demonstrate that DNA nucleotide excision-repair synthesis does not significantly diminish the size of the [3H]TTP pool.  相似文献   

5.
The ability of a variety of chemical and physical agents to stimulate DNA repair synthesis in human cell cultures was tested by a simplified scintillometric procedure, with the use of hydroxyurea (HU) to suppress DNA replicative synthesis. After incubation with [3H]thymidine, the radioactivity incorporated in to DNA was determined in controls (C) and treated (T) cultures and in the corresponding HU series (CHU, THU). The ratios THU/CHU and THU/T:CHU/C, indicating absolute and relative increases of DNA radioactivity, were calculated. When both ratios were significantly higher than 1, they were taken as indices of DNA repair stimulation, whereas, no stimulation in inferred when both of them are ?1. The scintillometric estimate of DNA repair was always in agreement with the autoradiographic observations, so that the procedure adopted can be used as a rapid test for screening investigations.Agents giving a relative but no an absolute increase of DNA radioactivity are generally not inducers of repair synthesis as estimated by autoradiography. However, the same scintillometric results are also occasionally observed with DNA repair inducers, such as methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS), owing to alterations of thymidine pool radioactivity. These chemicals, besides affecting the levels of labelled precursors in the intracellular pool in the T series, differently modified the increase of pool radioactivity which is a regular effect of HU. With such chemicals, DNA repair synthesis can be detected only after normalization of th DNA radioactivity on the basis of pool alterations.The quantitative value of the autoradiographic estimate of DNA repair is also affected by the changes in the radioactivity of the thymidine pool although autoradiography retains its qualitative value.Dimethylnitrosamine, mitomycin C and potassium dichromate, described by other authors as inducers of DNA repair, also gave negative results by the scintillometric procedure after normalization of DNA radioactivities. However, in our hands, these agents were unable to stimulated repair synthesis, according to the results of autoradiography and isopynic centrifugation.The proposed scintillometric procedure is effective in indicating false negative inducers of DNA repair, not giving rise to false positives.  相似文献   

6.
Tumor necrosis factor stimulates DNA synthesis in the liver of intact rats   总被引:6,自引:0,他引:6  
TNF is cytotoxic to tumor cell lines but enhances growth of some nontransformed cells. Because animals administered TNF have an increase in liver size, we studied the [3H]thymidine incorporation into DNA in the liver of intact rats. A significant increase in [3H]thymidine incorporation is seen 20 hours following TNF administration and peaks at 24 hours. The lowest dose of TNF that increases DNA synthesis is 10 micrograms/200 g rat with a maximal increase occurring with 25 micrograms/200 g, considerably less than the dose required for maximally increasing plasma triglycerides. The increase in [3H]thymidine incorporation was shown to be due to an increase in DNA polymerase alpha activity (associated with the replication of DNA) rather than DNA polymerases beta (associated with DNA repair) plus gamma activity. These results indicate that TNF administration stimulates DNA replication in the liver of intact animals.  相似文献   

7.
The induction of DNA repair synthesis by UV radiation and methylmethane sulphonate (MMS) in mammalian cell lines of human (EUE, HeLa, FT, KB) and hamster (CHO, BHK) origin has been evaluated by means of autoradiography and the scintillometric procedure which implied the use of hydroxyurea (HU) to suppress DNA replication.While with UV radiation both methods produce concordant positive results, in the case of MMS the evidence of DNA repair synthesis obtained from the autoradiograms is occasionally accompanied by a lack of increase of DNA radioactivity in the treated cultures, as detected by scintillation counting. In such instances MMS is shown to reverse the enhancement of pool radioactivity in the cultures incubated with HU and even to reduce the radioactivity of thymidine pool below control values. By normalizing DNA radioactivities on the basis of pool variations, the discrepancy between autoradiography and scintillation counting is solved.The chromatographic analysis of thymidine pool components justifies the normalization procedure as it demonstrates that also in cultures treated with MMS or MMS + HU pool variations closely parallel the variations of thymidine triphosphate (dTTP) level.The normalization of DNA radioactivities based on the overall pool radioactivities gives an improved evaluation of the actual rate of DNA synthesis. It can be recommended for screening studies of DNA repair inducers because it allows one to correct false negative results without producing false positive data. Compared with the dTTP levels, overall pool radioactivities used as normalizing factors still produce an underestimate of DNA repair when high doses of MMS are applied to hamster cell cultures.  相似文献   

8.
Freezing of Bacillus subtilis in liquid nitrogen results, upon thawing of the cells, in an enhanced deoxyribonucleoside triphosphate and reduced thymidine (Tdr) incorporation into cellular deoxyribonucleic acid (DNA). The DNA synthesized from thymidine triphosphate (TTP) was made by a "repair"-type system as determined by density transfer experiments. The mono- and diphosphate precursors were also incorporated by a "repair"-type synthesis. When Tdr was used as the radioactive precursor in the assay mixture, the product was only that expected from a semiconservative synthesis. Superlethal ultraviolet light exposure of the freeze-treated cells stimulated incorporation of phosphorylated precursors into DNA. Tdr uptake was greatly reduced by ultraviolet exposure, and only repair synthesis was observed. TTP and Tdr do not compete with one another in this system. The possibility that two DNA synthesizing systems exist in separate, non-mixing cellular compartments is considered.  相似文献   

9.
Homologous recombination is an important mechanism in DNA replication to ensure faithful DNA synthesis and genomic stability. In this study, we investigated the role of XRCC2, a member of the RAD51 paralog family, in cellular recovery from replication arrest via homologous recombination. The protein expression of XRCC2, as well as its binding partner RAD51D, is dramatically increased in S- and G2-phases, suggesting that these proteins function during and after DNA synthesis. XRCC2 mutant irs1 cells exhibit hypersensitivity to hydroxyurea (HU) and are defective in the induction of RAD51 foci after HU treatment. In addition, the HU-induced chromatin association of RAD51 is deficient in irs1 mutant. Interestingly, irs1 cells are only slightly sensitive to thymidine and able to form intact RAD51 foci in S-phase cells arrested with thymidine. Irs1 cells showed increased level of chromatin-bound RAD51 as well as the wild type cells after thymidine treatment. Both HU and thymidine induce gamma-H2AX foci in arrested S-phase nuclei. These results suggest that XRCC2 is involved in repair of HU-induced damage, but not thymidine-induced damage, at the stalled replication forks. Our data suggest that there are at least two sub-pathways in homologous recombination, XRCC2-dependent and -independent, for repair of stalled replication forks and assembly of RAD51 foci following replication arrest in S-phase.  相似文献   

10.
The antitumor antibiotic neocarzinostatin that causes DNA strand breaks in vivo and in vitro is shown to induce DNA repair synthesis in HeLa S3 cells. In the repair assay, the parental DNA was prelabeled with 32P and a density label (bromodeoxyuridine) was introduced into the new synthesized DNA. Quantitation of the repair synthesis as measured by the incorporation of [3H]thymidine into the light parental DNA at varying doses of the drug indicate that there is a significant repair response at low levels of the drug (0.2--0.5 microgram/ml) which cause DNA strand breakage and inhibition of DNA synthesis. In isolated HeLa nuclei neocarzinostatin stimulates the incorporation of dTMP many-fold. This enhancement of dTMP incorporation, which requires the presence of a sulfhydryl agent, is a consequence of the drug-induced DNA strand breakage and is in the parental DNA. These results suggest that an intact cell membrane is not required for DNA strand breakage and its subsequent repair.  相似文献   

11.
DNA fibre autoradiography, after incorporation of high specific activity 3H-thymidine and 3H-deoxycytidine, has been used to investigate repair in DNA fibres from single cells following UV, or methyl-methane sulphonate (MMS) treatment. Asynchronously growing human fibroblasts, leucocytes, and HeLa cells at different phases of the cell cycle have been investigated. Isotope incorporation in repair could be differentiated from that involved in replication by the distribution and density of silver grains along the DNA fibres. Grain distribution due to repair was continuous over long stretches of the fibres and was at a low density, occasionally interspersed with short slightly denser segments. Replication labelling on the other hand, was dense and usually in short tandem segments. Repair labelling was of a similar overall density in fibres from a single cell, but differed in intensity from cell to cell. In mutagen treated Go (leucocytes) or G1 (HeLa cells), repair labelling was not increased by the presence of the DNA inhibitors, hydroxyurea (HU) or 5-fluorodeoxyuridine (FUdR). Repair was not detectable in S cells however, without the use of these inhibitors to reduce endogenous nucleoside production. FUdR enhanced the repair labelling in S cells only slightly, while HU increased it beyond that observed in UV irradiated, HU treated, G1 cells. The intensity of repair labelling in fibres from mutagen treated S cells appears to be proportional to the degree of reduction of DNA chain elongation in replicons.  相似文献   

12.
R D Snyder 《Mutation research》1984,131(3-4):163-172
The effects of hydroxyurea (HU) on the DNA-excision repair process in human cells has been systematically examined. It is demonstrated that HU induces DNA single-strand break accumulation in a dose-dependent fashion in ultraviolet-irradiated and MMS-treated confluent but not log-phase fibroblasts and that these breaks are clearly the consequence of the inhibition by HU of the enzyme, ribonucleotide reductase. The breaks form rapidly, are stable for at least 10 h and largely disappear by 20 h. The production of these DNA-strand breaks is antagonized by a combined treatment of 10 microM deoxyadenosine, deoxycytidine and deoxyguanosine whereas thymidine potentiates strand-break formation at low HU concentrations. It is also confirmed that HU, while inhibiting replicative synthesis has no apparent inhibitory effect on unscheduled DNA synthesis (UDS) although the increased uptake of labeled DNA precursors into HU-treated cells makes it difficult to assess the actual effects on the repair-synthetic process. Analysis of the effects of HU on deoxynucleoside triphosphate pool levels and the demonstration of the failure of the HU block to replicative synthesis to be reversed by high (1 mM) concentrations of added deoxynucleosides lend support to the notion of compartmentalized dNTP pools for repair and replication.  相似文献   

13.
We have investigated the effects of fluctuations in deoxynucleoside triphosphate (dNTP) pool size on DNA repair and, conversely, the effect of DNA repair on dNTP pool size. In confluent normal human skin fibroblasts, dNTP pool size was quantitated by the formation of [3H]TTP from [3H]thymidine; DNA repair was examined by repair replication in cultures irradiated with UV light. As defined by HPLC analysis, the [3H]TTP pool was formed within 30 min of the addition of [3H]thymidine and remained relatively constant for the next 6 h. Addition of 2–10 mM hydroxyurea (HU) caused a gradual 2–4-fold increase in the [3H]TTP pool as HU inhibited DNA synthesis but not TTP production. No difference was seen between the [3H]TTP pool size in cells exposed to 20 M/m2 and unrradiated controls, although DNA-repair synthesis was readily quantitated in the former. This result was observed even though the repair replication protocol caused an 8–10-fold reduction in the size of the [3H]TTP pool relative to the initial studies. In the UV excision-repair studies the precense of hydroxyurea did not alter the specific activity of [3H] thymidine 5'-monophospahte incorporated into parental DNA due to repaier replication. These results suggest that fluctuations in the deoxynucleoside triphosphate pools do not limit the extent of excision-repair sythesis in human cells and demonstrate that DNA nucleotide excision-repair synthesis does not significantly diminish the size of the [3H]TTP pool.  相似文献   

14.
Normal human fibroblasts treated with r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) yielded DNA polymerase alpha with elevated levels of activity, incorporated [3H]thymidine as a function of unscheduled DNA synthesis, and exhibited restoration of normal DNA-strand length as a function of unscheduled DNA synthesis. Lipoprotein-deficient fibroblasts treated with BPDE did not show elevated levels of DNA polymerase alpha activity, exhibited minimal [3H]thymidine incorporation, and had fragmented DNA after 24 h of repair in the absence of lipoprotein or phosphatidylinositol supplementation. When DNA polymerase beta activity was inhibited, cells with normal lipoprotein uptake exhibited [3H]thymidine incorporation into BPDE-damaged DNA but did not show an increase in DNA-strand length. DNA polymerase alpha activity and [3H]thymidine incorporation in lipoprotein-deficient fibroblasts increased to normal levels when the cells were permeabilized and low-density lipoproteins or phosphatidylinositol were introduced into the cells. DNA polymerase alpha isolated from normal human fibroblasts, but not from lipoprotein-deficient fibroblasts, showed increased specific activity after the cells were treated with BPDE. When BPDE-treated lipoprotein-deficient fibroblasts were permeabilized and 32P-ATP was introduced into the cells along with lipoproteins, 32P-labeled DNA polymerase alpha with significantly increased specific activity was isolated from the cells. These data suggest that treatment of human fibroblasts with BPDE initiates unscheduled DNA synthesis, as a function of DNA excision repair, which is correlated with increased activity of DNA polymerase alpha, and that increased DNA polymerase alpha activity may be correlated with phosphorylation of the enzyme in a reaction that is stimulated by low-density lipoprotein or by the lipoprotein component, phosphatidylinositol.  相似文献   

15.
The effect of 3-aminobenzamide, a potent inhibitor of poly(ADP-ribosyl)ation, on UV-induced DNA excision repair was investigated. HeLa cells were treated with DNA replication inhibitors, hydroxyurea (HU) and 1-beta-D-arabinofuranosyl cytosine (araCyt), before and after ultraviolet light (UV) irradiation, to accumulate DNA single-strand breaks. The activity of poly(ADP-ribosyl)ation measured in the permeable cell system of HeLa cells was enhanced in a UV dose-dependent manner after the combined treatment with HU and araCyt in vivo. However, DNA repair synthesis in vitro was not affected by addition of 1 mM 3-aminobenzamide or nicotinamide, while incorporation of [3H]NAD in the same system was completely inhibited. Furthermore, neither the magnitude of UV-induced DNA single-strand breaks accumulated by the combined treatment of HU and araCyt nor the rate of their rejoining after release from the HU and araCyt block were influenced even in the presence of 10 mM 3-aminobenzamide. As the cytotoxicity of UV irradiation was significantly potentiated by 5 mM 3-aminobenzamide, these results suggest that poly(ADP-ribosyl)ation is involved in a process other than DNA excision repair induced by UV irradiation.  相似文献   

16.
DNA synthesis in hepatocytes was studied by incorporation of [3H]thymidine administered to portal vein of gamma-irradiated (80 Gy) rats. It was shown that the rate of replicative DNA synthesis decreased in hepatocytes of the regenerating liver and unscheduled DNA synthesis was induced at the nuclear matrix of resting cells of the intact liver. In addition to repair synthesis, DNA synthesis resembling replicative one ("aberrant" DNA synthesis) accounts for a considerable fraction of gamma-radiation-induced synthesis of DNA at the nuclear matrix.  相似文献   

17.
Unscheduled DNA synthesis induced by 254-nm UV radiation in chicken embryo fibroblasts was examined for 24 h following irradiation, while cells were kept in the dark. The effect on this repair process of a 2-4 h exposure to photoreactivating light immediately after UV was studied. Initial [3H]thymidine incorporation in the light-treated cells was only slightly different from that in cells not exposed to light, but a distinct difference in rate and cumulative amount of unscheduled DNA synthesis was seen several hours after irradiation. By varying the UV dose and the time allowed for photoreactivation, the amount of dimers (determined as sites sensitive to a M. luteus UV-endonuclease) and non-dimers could be changed. The results of these experiments suggest that excision repair of dimers, rather than non-dimer products, is responsible for the unscheduled DNA synthesis seen after UV irradiation.  相似文献   

18.
We have examined the suitability of the continuous rat hepatoma cell line 2sFou for testing the genotoxicity of chemicals in comparison with that of primary rat hepatocyte cultures (HPC). The capacity of the cells for metabolic activation was assessed by measuring induction of DNA-repair synthesis and inhibition of replicative DNA synthesis by the test compounds dimethylnitrosamine (DMN), diethylnitrosamine (DEN), hydroxyurea (HU) and benzo[a]pyrene (BaP), which are substrates for major hepatic and extrahepatic forms of cytochrome P-450 dependent monooxygenases. The cellular capacity for DNA-repair synthesis was assessed using UV-light as a DNA-damaging agent. Repair-specific incorporation of [3H]deoxycytidine (3H-dCyd) caused by UV-light was higher in 2sFou cells than in HPC. In contrast, background repair incorporation of 3H-dCyd in 2sFou cells was only 1/3 that found in HPC. All the test agents induced DNA repair and inhibited DNA synthesis in both 2sFou cells and HPC. The two nitrosamines were more effective in HPC than in 2sFou cells. HU and BaP affected DNA repair and DNA synthesis in the two cell systems at a similar range of concentrations. In general, DNA repair in the 2sFou cells increased near linearly with the concentrations of the test compounds. The data indicate that 2sFou cells are capable of activating hepatotropic pro-mutagens/carcinogens such as dialkylnitrosamines, and are sensitive indicators of DNA damage. In contrast, BaP, a non-hepatotoxic compound, caused only little DNA repair in these cells. Thus, continuously growing cells, such as 2sFou, show a qualitatively similar response to genotoxic chemicals as HPC and offer a potential alternative to HPC for genotoxicity testing.  相似文献   

19.
Unscheduled DNA synthesis (UDS) was studied in confluent rat pleural mesothelial cells (RPMCs) arrested in G0/G1 with hydroxyurea (HU) and treated with various fibre types, i.e., chrysotile, crocidolite or attapulgite. In addition, the effects of UV light and of benzo[a]pyrene were determined as references. Using autoradiography after [3H]thymidine incorporation ([3H]dThd), RPMCs treated with 4 micrograms/cm2 of chrysotile fibres exhibited a low but significant enhancement of net grains compared to untreated cells. Treatment with higher doses of chrysotile was not possible because of the impairment of microscopic observation due to the presence of the fibres. Using liquid scintillation counting, RPMCs treated with chrysotile or crocidolite showed a significant dose-dependent increase in [3H]dThd incorporation compared to untreated cells. In contrast, attapulgite did not enhance [3H]dThd incorporation compared to untreated cells. Treatment of RPMCs with 1, 2 or 4 micrograms/ml of benzo[a]pyrene resulted in a significant increase in [3H]dThd incorporation. In order to discount a possible role of S cells in the augmentation of [3H]dThd incorporation, despite the presence of 5 mM HU, S cells were counted by autoradiography. Results indicated that the percentage of S cells was similar in asbestos-treated and untreated cultures. Stimulation of the S phase also seems unlikely because treatment of RPMCs with asbestos fibres in the absence of HU resulted in a reduction of [3H]dThd incorporation attributed to an impairment of the S phase by the fibres. 1-4 micrograms/ml benzo[a]pyrene or 10-50 J/m2 UV light resulted in an approximate doubling of [3H]dThd incorporation. The effects of inhibitors of DNA repair were determined in chrysotile-treated RPMCs. [3H]dThd incorporation was inhibited by cytosine arabinoside and nalidixic acid. These results show that asbestos produces UDS in RPMCs.  相似文献   

20.
When Raji cells were cultured for 3 days in serum-free medium, addition of 2-deoxy-D-ribose at the start of culture inhibited incorporation of [3H]thymidine and cell division. At deoxyribose concentrations between 1 and 5 mM, viability was 80% or greater after 3 days of culture even though 5 mM deoxyribose inhibited thymidine incorporation 95-99%. Inhibition by deoxyribose could be completely reversed if the culture medium was replaced with fresh medium up to 8 hr after the start of culture. The inhibition was specific for deoxyribose since other monosaccharides had no effect. Inhibition of DNA synthesis did not appear to be due to depletion of essential nutrients in the medium since the percentage inhibition of thymidine incorporation by cells cultured either in suboptimal serum-free media or in media supplemented with 0.025-5% human AB serum was similar. When DNA repair synthesis was measured as hydroxyurea-resistant thymidine incorporation, addition of deoxyribose to Raji cultures caused increased thymidine incorporation. These results, together with data from others, suggest that deoxyribose damages DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号