首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In quantitative ultrastructural studies using colloidal gold immunocytochemical techniques, labeling intensities vary according to the size of the probe used. Using postembedded indirect two-sided double labeling and single labeling protocols, the labeling characteristics of four antigens were studied using two probe sizes commonly used in double labeling studies. It was determined that the labeling intensity variation resulting from the use of different probe sizes was unpredictable after correcting for the increased probe size alone. It was possible, however, to obtain comparable labeling densities by first determining the labeling intensities for each probe size with its antigen in single label studies on serial sections and using the same procedure as the double labeling studies. A probe size correction factor for each antigen was calculated from these data. This factor was used to obtain comparable measurements of the relative abundance of each label.  相似文献   

2.
Effect of particle size on labeling intensity in protein A-gold immunocytochemistry was studied. Catalase labeling of rat liver peroxisomes was used as a labeling model. Ultra-thin sections of Lowicryl K4M-embedded rat liver were stained for catalase with protein A-gold (pAg) probes. Five different sizes of colloidal gold probes, from 5 nm to 38 nm in diameter, were prepared. Labeling intensity decreased as the particle size of the pAg probes increased. The highest labeling was obtained by the 5-nm pAg probe and the lowest by the 38-nm pAg probe. Quantitative analysis also showed that labeling density was inversely proportional to the size of gold particles. The results suggest that the pAg probe with small gold particles has high sensitivity.  相似文献   

3.
4.
The toxic dinoflagellate Alexandrium fundyense Balech was grown under temperature- and nutrient-limited conditions, and changes in labeling intensity on intact cells were determined for two probe types: an oligonucleotide probe targeting rRNA and a monoclonal antibody (MAb) targeting a cell surface protein. In nutrient-replete batch culture, labeling with the rRNA probe was up to 400% brighter during exponential phase than during stationary phase, whereas MAb labeling did not change significantly with growth stage at the optimal growth temperature. In cultures grown at suboptimal, low temperatures, there was a significant difference between labeling intensity in stationary versus exponential phase for both probe types, with exponential cells labeling brighter with the rRNA probe and slightly weaker with the MAb. The decrease in rRNA probe labeling with increasing culture age was likely due to lower abundance of the target nucleic acid, as extracted RNA varied in a similar manner. With the MAb and the rRNA probes, slower growing cultures at low, nonoptimal temperature labeled 35% and 50% brighter than cells growing faster at warmer temperatures. Some differences in labeling intensity per cell disappeared when the data were normalized to surface area or volume, which indicated that the number of target antigens or rRNA molecules was relatively constant per unit area or volume, respectively. Slow growth accompanying phosphorus and nitrogen limitation resulted in up to a 400% decrease in labeling intensity with the rRNA probe compared to nutrient-replete levels, whereas the MAb labeling intensity increased by a maximum of 60%. With both probes, labeling was more intense under phosphorus limitation than under nitrogen limitation, and for all conditions tested, labeling intensity was from 600% to 3600% brighter with the MAb than with the rRNA probe. Thus, it is clear that significant levels of variability in labeling intensity can be expected with both probe types because of the influence of environmental conditions and growth stage on cellular biochemistry, cell size,rRNA levels, and the number or accessibility of cell surface proteins. Of the two probes tested, the rRNA probe was the most variable, suggesting that in automated, whole-cell assays, it can be used only in a semiquantitative manner. For manual counts, the human eye will likely accommodate the labeling differences. The MAb probe was less variable, and thus should be amenable to both manual and automated counts.  相似文献   

5.
The experiments described in the present paper were performed in order to determine whether the Biomek-1000 (Beckman Instruments, Fullerton, CA, USA) automated laboratory workstation can be used in a fully automated DNA labeling method followed by automated gravity-driven size exclusion purification of molecular probes. To this aim, we performed random oligodeoxyribonucleotide priming of a HIV-1 LTR probe that was used for molecular hybridization to Southern blotted polymerase chain reaction products. The results obtained demonstrate that the automatically labeled probe can be efficiently purified by automated and gravity-driven Sephadex G-50 chromatography, without any major changes in hybridization property. This robotic methodology can be used in several procedures employing radioisotope labeling.  相似文献   

6.
In situ investigations in living cell membranes are important to elucidate the dynamic behaviors of membrane proteins in complex biomembrane environments. Protein-specific labeling is a key technique for the detection of a target protein by fluorescence imaging. The use of post-translational labeling methods using a genetically encodable tag and synthetic probes targeting the tag offer a smaller label size, labeling with synthetic fluorophores, and precise control of the labeling ratio in multicolor labeling compared with conventional genetic fusions with fluorescent proteins. This review focuses on tag–probe labeling studies for live-cell analysis of membrane proteins based on heterodimeric peptide pairs that form coiled-coil structures. The robust and simple peptide–peptide interaction enables not only labeling of membrane proteins by noncovalent interactions, but also covalent crosslinking and acyl transfer reactions guided by coiled-coil assembly. A number of studies have demonstrated that membrane protein behaviors in live cells, such as internalization of receptors and the oligomeric states of various membrane proteins (G-protein-coupled receptors, epidermal growth factor receptors, influenza A M2 channel, and glycopholin A), can be precisely analyzed using coiled-coil labeling, indicating the potential of this labeling method in membrane protein research.  相似文献   

7.
从固体平板挑取转化带有目的基因的单菌落 ,用特异引物通过聚合酶链式反应可直接扩增和标记目的基因 ,不需经过菌的液体培养、质粒提取和酶解反应等复杂过程 ,能快速获得目的基因扩增产物和进行目的基因探针的标记。  相似文献   

8.
The effect of hormones on phospholipid metabolism, pool size, 32P labeling and changes in fatty acid of human adult fibroblasts was determined. Simultaneously the change in membrane fluidity of single cells was recorded via fluorescence recovery after photobleaching under the influence of hormones. From all substances tested (isoproterenol, phenylephrine, adrenalin, histamine, angiotensin II, dansylcadaverine, propranolol) only isoproterenol and adrenalin slightly decreased total amount of phosphatidylcholine (PC). The amount of the other phospholipids analyzed remained unchanged. The 32P incorporation rate into phospholipids (PC, phosphatidylinositol (PI), phosphatidylethanolamine (PE)) was affected basicly different analyzing either PC, PI or PE. Histamine and propranolol provoked the highest incorporation of 32P (240% increase in PI labeling). Isoproterenol and adrenalin decreased PC labeling (45% and 18%) whereas isoproterenol decreased 32P incorporation into PI (18%), and adrenalin led to an increase (37%). PE labeling showed no or a slight increase in 32P incorporation applying the other agonists or antagonists. The fatty acid pattern of the respective phospholipids changed only to a minor extend. A decrease in hexadecanoic acid content of PI was found after administration of either isoproterenol, adrenalin or histamine. Parallel determination of membrane fluidity of single cells by fluorescence recovery after photobleaching showed an increase in the diffusion coefficient of a fluorescent lipid probe sticking in the membrane, following administration of isoproterenol and adrenalin, other substances tested exerted no effect. A relationship to changes in phospholipid metabolism became obvious. These results are discussed considering known mechanisms of receptor coupling and change in phospholipid metabolism and fluidity.  相似文献   

9.
Three heterobifunctional photoaffinity probes, N-(p-azidobenzyl)-N-methyl-p-aminobenzylamine (I), N-(p-azidobenzyl)-N-methyl-p-aminophenethylamine (II), and N-(p-azidophenethyl)-N-methyl-p-aminophenethylamine (III), were synthesized and characterized. These probes, containing a photolabile azido-group and an amino-group on opposite sides of the molecule, were designed for photoaffinty labeling of the cytochrome P450 (CYP) 2B active site cavity differing in distance from the heme iron. Spectroscopic studies proved that probes I and II coordinated with the heme iron via their amino-group in the enzyme active center, whereas probe III did not. This result in conjunction with data from kinetic studies suggests probes I and II are appropriate for photoaffinity labeling of the CYP 2B active center. Thus, probe II was used to identify amino acid residues within a distance of the probe length (about 16.5 A) from the heme. Analysis of a Lys-C digest of the probe II-labeled CYP 2B4 revealed a single labeled hexapeptide corresponding to position 192-197 of the CYP 2B4 sequence. Using postsource decay/matrix-assisted laser desorption ionization-time of flight, Arg197 was identified as a probe II target. The location of the labeled site in three-dimensional structures of bacterial CYPs and in CYP 2B homology models is discussed.  相似文献   

10.
To improve labeling-intensity of whole-cell fluorescence in situ hybridization (FISH) in the molecular identification of toxic Alexandrium tamiyavanichii, two DNA probes (TAMID2 plus TAMIS1 designed from the LSU and SSU rDNA regions, respectively) were used to test the labeling intensity of targeted cultured A. tamiyavanichii cells. The cross-reactivity of the DNA probe to natural seawater samples and six Alexandrium species: A. affine, A. catenella, A. fraterculus, A. insuetum, A. pseudogonyaulax and A. tamarense, was also tested. The labeling intensity of the DNA probe TAMID2S1, a combination of two separate probes that target different regions of the rRNA, was 1.7–2.7 times higher than that of the single DNA probe TAMID2. With cultured A. tamiyavanichii cells in the dead growth phase at 30 days, the TAMID2S1 intensity was 1.9 times higher than that of TAMID2. During a 30-day culture, the labeling intensity of A. tamiyavanichii cells hybridized with TAMID2S1 decreased to 49.4% of the original intensity. No cross-reactivity to various microorganisms in natural seawater samples was found. The two DNA probes together, designated as TAMID2S1, readily detected A. tamiyavanichii added to natural seawater samples, even aged cultured cells.  相似文献   

11.
A method for sequential protein A-gold immunolabeling is described whereby the binding of second gold probe to the first antibody-protein A-gold complex is reduced to acceptably minimal levels. Immunolabeling of thin sections of embedded pituitary tissue was used as a model system. After an initial immunolabeling for prolactin, sections were incubated in normal serum (rabbit) followed by a monovalent fragment of protein A. These latter two incubations reduced artifactual second gold probe label over prolactin-labeled secretory granules to minimal levels (much less than 1 particle per granule) when sections were subsequently immunolabeled with normal serum. The combination of normal serum and protein A fragment incubations saturates IgG and protein A binding sites on the first antibody-gold probe complex. The latter is thereafter unable to bind further IgG (and thus gold probe) because of the monovalent nature of the protein A fragment. It is suggested that this methodology may be extended to multiple immunolabeling procedures for electron microscopy. In addition, when used before single labeling this method may be an effective way to minimize nonspecific IgG binding in cases where the tissue or antibody under study may be a problem.  相似文献   

12.
Guerra CE 《BioTechniques》2006,41(1):53-56
A simple enzymatic labeling procedure is described to determine spot quality in oligonucleotide microarrays. By using fluorescently labeled dideoxynucleotides or ribonucleotides as substrate for terminal deoxynucleotidyl transferase (TdT), a single fluorophore can be covalently attached at the 3' end of each oligonucleotide probe molecule in the spot. Fluorescein-12-ddUTP CyTM3-ddUTP Cy5-UTP, and Cy3-UTP were compared as TdT substrates for 3' end labeling an array of 1273 hexamer probes. Cy5-UTP was found to show minimal bias toward probe base composition and is therefore well suited for quantitative analysis of microarray spots where the oligonucleotide probes are coupled via a 5' end linkage to the solid phase.  相似文献   

13.
Applications of universal probe on DNA hybridization   总被引:1,自引:0,他引:1  
A convenient method for DNA hybridization termed "Universal probe" is described which is based on the principle of sandwich hybridization. This system consists of two probes: primary probe which is single-stranded DNA prepared from a chimeric phage-plasmid vector containing the complementary sequence to a target; and labeled secondary probe which has an opposite strand of the primary probe without the complementary sequence. By use this universal probe human beta-globin gene was able to be detected on Southern blots of genomic DNA. A potential advantage of this method is that the single-stranded primary probe is prepared easily by the chimeric phage-plasmid vector system and tedious labeling is not needed each time.  相似文献   

14.
The secretin receptor, a prototypic family B G protein-coupled receptor, forms a constitutive homodimeric complex that is stable even in the presence of hormone. Recently, a model of this agonist-bound receptor was built based on high resolution structures reported for amino-terminal domains of other family members. Although this model provided the best solution for all extant data, including 10 photoaffinity labeling constraints, a new such constraint now obtained with a position 16 photolabile probe was inconsistent with this model. As the secretin receptor forms constitutive homodimers, we explored whether secretin might dock across both protomers of the complex, an observation that could also contribute to the negative cooperativity observed. To directly explore this, we prepared six secretin analogue probes that simultaneously incorporated two photolabile benzoylphenylalanines as sites of covalent attachment, in positions known to label distinct receptor subdomains. Each bifunctional probe was a full agonist that labeled the receptor specifically and saturably, with electrophoretic migration consistent with labeling a single protomer of the homodimeric secretin receptor. No band representing radiolabeled receptor dimer was observed with any bifunctional probe. The labeled monomeric receptor bands were cleaved with cyanogen bromide to demonstrate that both of the photolabile benzoylphenylalanines within a single probe had established covalent adducts with a single receptor in the complex. These data are consistent with a model of secretin occupying a single secretin receptor protomer within the homodimeric receptor complex. A new molecular model accommodating all constraints is now proposed.  相似文献   

15.
S C Tu  J Henkin 《Biochemistry》1983,22(2):519-523
A photoaffinity probe 1-diazo-2-oxoundecane has been synthesized and used to examine the aldehyde-binding site of the nonidentical dimeric luciferase (alpha beta) from Vibrio harveyi cells. In the dark, the probe competes against aldehyde in binding to luciferase. Irradiation of luciferase and the probe at 254 nm resulted in primarily specific labeling of both alpha and beta subunits with concomitant enzyme inactivation, but significant (congruent to 40%) nonspecific labeling of mainly the beta subunit also occurred. The addition of decanal to protect the active center reduced the rate of inactivation. When 2-mercaptoethanol was included to quench the nonspecific labeling, the amounts of probe incorporated into alpha and beta correlated stoichiometrically with the quantities of enzyme photoinactivated. On the basis of these findings, we postulate that the aldehyde binding site is at or near the subunit interface of luciferase.  相似文献   

16.
A photoaffinity labeling method was developed to identify and characterize high affinity fatty acid-binding proteins in membranes. The specific labeling of these sites requires the use of low concentrations (nanomolar) of the photoreactive fatty acid 11-m-diazirinophenoxy-[11-3H]undecanoate. It was delivered as a bovine serum albumin (BSA) complex which serves as a reservoir for fatty acid and thus allows precise control of unbound fatty acid concentrations. ThefadL protein ofE. coli, which is required for fatty acid permeation of its outer membrane, was labeled by the photoreactive fatty acid neither specifically nor saturably when the probe was added in the absence of BSA; however when a nanomolar concentration of the uncomplexed probe was maintained in the presence of BSA, the labeling of thefadL protein was highly specific and saturable. This photoaffinity labeling method was also used to characterize a 22 kDa, high affinity fatty acid-binding protein which we have recently identified in the plasma membrane of 3T3-L1 adipocytes. This protein bound the probe with a Kd of 216 nM. The approach described is easily capable of identifying membrane-bound fatty acid-binding proteins and can distinguish between those of high and low affinities for fatty acids. It represents a general method for the identification and characterization of fatty acid-binding proteins.Abbreviations BSA Bovine Serum Albumin - DAP m-Diazirinophenoxy - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis  相似文献   

17.
A new photoaffinity probe, 5-(1-hydroxy-4-azidophenylazo)-1,2,3-benzenetricarboxylic acid, was synthesized and characterized. This reagent can be potentially used in photoaffinity labeling of the mitochondrial tricarboxylate carrier, as well as of enzymes interacting with tricarboxylic acids. Inhibition and labeling of the mitochondrial tricarboxylate carrier is presented.  相似文献   

18.
The use of bromodeoxyuridine (BrdU) and subsequent immunocytochemical visualization for studying cell proliferation in plant meristems was investigated in Allium cepa L. root-tips. We describe the optimization of an indirect immunoperoxidase method for detecting incorporation of this DNA precursor in pulse-labeled cells. The basic object of this study is to quantify the extent to which the fraction of S-phase cells can reliably be estimated in asynchronous populations. A matrix of parallel labeling schedules with tritiated-thymidine or BrdU was developed, and the labeling indices provided by autoradiography or immunocytochemistry were compared. Thus, 0.5 mM BrdU assured saturation S-phase labeling after an exposure time of 30 min, and the mean length of the S-phase determined under such conditions was similar to that previously reported for this plant system. Interestingly, Feulgen staining did not interfere with subsequent detection of the BrdU probe. This allowed comparative evaluations of the nuclear DNA content by Feulgenmicrodensitometry and the position of a given cell in G1, S or G2 compartments. We also explored the possibility of quantifying BrdU-incorporation in single nuclei by densitometry measurement of the peroxidase label.  相似文献   

19.
The use of bromodeoxyuridine (BrdU) and subsequent immunocytochemical visualization for studying cell proliferation in plant meristems was investigated in Allium cepa L. root-tips. We describe the optimization of an indirect immunoperoxidase method for detecting incorporation of this DNA precursor in pulse-labeled cells. The basic object of this study is to quantify the extent to which the fraction of S-phase cells can reliably be estimated in asynchronous populations. A matrix of parallel labeling schedules with tritiated-thymidine or BrdU was developed, and the labeling indices provided by autoradiography or immunocytochemistry were compared. Thus, 0.5 mM BrdU assured saturation S-phase labeling after an exposure time of 30 min, and the mean length of the S-phase determined under such conditions was similar to that previously reported for this plant system. Interestingly, Feulgen staining did not interfere with subsequent detection of the BrdU probe. This allowed comparative evaluations of the nuclear DNA content by Feulgenmicrodensitometry and the position of a given cell in G1, S or G2 compartments. We also explored the possibility of quantifying BrdU-incorporation in single nuclei by densitometry measurement of the peroxidase label.  相似文献   

20.
We have used in situ hybridization at the ultrastructural level to localize non-encapsidated and encapsidated herpes simplex virus type 1 (HSV-1) genomes in nuclei of infected rabbit fibroblasts. A biotinylated cloned subgenomic HSV DNA fragment was used as hybridization probe. The probe hybridized to the viral DNA accessible at the surface of Lowicryl sections was revealed by immunogold labeling. Non-encapsidated viral DNA was detected exclusively within the virus-induced central region of 4 h to 17 h infected nuclei. Localization of the probe either near the nuclear envelope or within marginated host chromatin was found only on HSV DNA which was packaged into viral nucleoids. The use in parallel of in situ hybridization with specific staining for DNA and autoradiography after tritiated thymidine incorporation, followed by either conventional fixation of the cells or the nucleoprotein loosening procedure, indicated that non-encapsidated viral DNA and marginated host chromatin formed two juxtaposed compartments without interpenetration even after experimentally produced mild dispersion of the nuclear components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号