首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
The creation of precise clinical mutations by gene targeting is important in elucidating disease pathogenesis using mouse models. 'Hit and run' gene targeting is an elegant method to achieve this goal. This uses first a positive selection to introduce the targeting vector carrying the required mutation and then a negative selection to identify clones which have removed vector and wild-type sequences by intrachromosomal recombination. However, this approach has only been successfully used in a handful of cases. We used this procedure to introduce precise clinical mutations into the exon 10 region of the cystic fibrosis transmembrane conductance regulator (Cftr) gene. Using a CMV promoter driven hygromycin/thymidine kinase (hyg/tk) fusion gene as both our dominant and negative selectable marker, we targeted the Cftr locus very efficiently but only identified false runs after the negative selection step. This defect in thymidine kinase induced toxicity to gancyclovir correlated with methylation of the transgene. Consequently we devised a stringent screening procedure to select only true 'run' clones. Unfortunately these 'run' clones had lost the mutation so we altered the vector design to bias the run step to retain the mutation and used a different tk selection cassette with a HSVtk promoter sequence. This new vector design allowed both efficient 'hit and run' for two cystic fibrosis (CF) mutations with no false positives and successful germline transmission of the novel G480C missense mutation.  相似文献   

3.
We have investigated coelectroporation as a method for introducing minor genetic changes into specific genes in embryonic stem cells. A selectable marker (neo) and a targeting replacement vector designed to insert a 4-bp insertion into exon 3 of the mouse hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene were coelectroporated into embryonic stem cells and selected in G418 and 6-thioguanine (6-TG). HPRT-negative clones were obtained at a frequency of approximately 1 per 520 G418r clones. Southern analysis and the polymerase chain reaction were used to demonstrate that 3 of 36 of the 6-TG-resistant clones had the desired 4-bp insertion without any other disruption of the HPRT locus. Initial studies indicated that the other 33 6-TG-resistant clones probably resulted from the targeted integration of a concatemer containing both the targeting construct and the selectable neo gene.  相似文献   

4.
Vector for pop-in/pop-out gene replacement in Pichia pastoris   总被引:3,自引:0,他引:3  
Soderholm J  Bevis BJ  Glick BS 《BioTechniques》2001,31(2):306-10, 312
Gene replacement in yeast is often accomplished by using a counterselectable marker such as URA3. Although ura3 strains of Pichia pastoris have been generated, these strains are inconvenient to work with because they grow slowly, even in the presence of uracil. To overcome this limitation, we have developed an alternative counterselectable marker that can be used in any P. pastoris strain. This marker is the T-urf13 gene from the mitochondrial genome of male-sterile maize. Previous work showed that expression of a mitochondrially targeted form of T-urf13 in Saccharomyces cerevisiae rendered the cells sensitive to the insecticide methomyl, and similar results have now been obtained with P. pastoris. We have incorporated T-urf13 into a vector that also contains an ARG4 marker for positive selection. The resulting plasmid allows for pop-in/pop-out gene replacement in P. pastoris.  相似文献   

5.
6.
Abstract

Five replacement vectors (RV) and one insertion vector (IV) were constructed in which ca. 10 kb of genomic Gi2α sequence, flanked on one (IV) or both (RV) sides by a thymidine kinase (TK) marker, were disrupted by a Neo marker inserted into the Ncol site of exon 3. G418RFIAUR clones corresponding to ca. 4×108 ES cells electroporated with replacement vectors were analyzed and revealed no targeting event. The insertion vector, however, was integrated by a single reciprocal recombination resulting in a duplication of homology (Hit step; G418RFIAUSS, which was lost-together with the plasmid and the TK sequences - by intrachromosomal recombination (Run step; G418RFIAUR). Thus, the Hit and Run strategy can be used with a selectable marker disrupting the targeted gene, giving rise to the same targeted product that would have been expected to arise from a double crossover with a replacement vector.  相似文献   

7.
Gene targeting has been used to direct mutations into specific chromosomal loci in murine embryonic stem (ES) cells. The altered locus can be studied in vivo with chimeras and, if the mutated cells contribute to the germ line, in their offspring. Although homologous recombination is the basis for the widely used gene targeting techniques, to date, the mechanism of homologous recombination between a vector and the chromosomal target in mammalian cells is essentially unknown. Here we look at the nature of gene targeting in ES cells by comparing an insertion vector with replacement vectors that target hprt. We found that the insertion vector targeted up to ninefold more frequently than a replacement vector with the same length of homologous sequence. We also observed that the majority of clones targeted with replacement vectors did not recombine as predicted. Analysis of the recombinant structures showed that the external heterologous sequences were often incorporated into the target locus. This observation can be explained by either single reciprocal recombination (vector insertion) of a recircularized vector or double reciprocal recombination/gene conversion (gene replacement) of a vector concatemer. Thus, single reciprocal recombination of an insertion vector occurs 92-fold more frequently than double reciprocal recombination of a replacement vector with crossover junctions on both the long and short arms.  相似文献   

8.
A novel method for constructing gene-targeting vectors   总被引:4,自引:1,他引:3       下载免费PDF全文
We developed a simple and rapid method for constructing knockout vectors using inverse-PCR (IPCR). The method consists of three steps: (i) digestion of a target bacterial artificial chromosome with several restriction enzymes (six-base cutters) followed by self-ligation; (ii) IPCR using circular DNAs as templates and two primers which are oriented in opposite directions; and (iii) cloning into a vector containing a positive selection marker, which results in a typical replacement knockout vector. We successfully targeted three mouse genes including the HPRT gene using this method. Compared with the conventional method, this method requires much less time (no more than 3 weeks). Notably, this method requires only small amounts of sequence information (several hundred base pairs such as is available from expressed sequence tags) and can be extended to a systematic mass production of targeting vectors applicable to many organisms, including yeast.  相似文献   

9.
Recombinase-mediated cassette exchange (RMCE), when applied to mouse embryonic stem (ES) cells, promises to increase the ease with which genetic alterations can be introduced into targeted genomic loci in the mouse. However, existing selection strategies for identifying ES cells in which replacement DNA cassettes from a carrier plasmid have been exchanged correctly into a defined locus are suboptimal. Here, we report the generation in mouse ES cells of a loxed cassette acceptor (LCA) allele within the glucokinase (gk) gene locus. Using the gkLCA as a test allele, we developed a staggered positive-negative selection strategy that facilitates efficient identification of ES cell clones in which a DNA replacement cassette from a carrier plasmid has been exchanged correctly into the gkLCA allele. This selection strategy, by facilitating more efficient production of ES cell clones with various replacement DNA cassettes, should accelerate targeted repetitive introduction of gene modifications into the mouse.  相似文献   

10.
11.
Generating a high yield of recombinant protein is a major goal when expressing a foreign gene in any expression system. In the methylotrophic yeast Pichia pastoris , a common means of achieving this end is to select for transformants containing multiple integrated copies of an expression vector by plating them on high levels of a selectable marker drug followed by screening for rare colonies with multiple copies. We describe a more convenient method to select for such clones. Using Zeocin-resistance-based vectors, we demonstrate that strains transformed with only one or a few vector copies can, long after transformation, be subjected to further selection at high levels of drug. This resulted in the frequent selection of clones containing increased copy numbers of the vector. This posttransformational vector amplification (PTVA) process resulted in strains containing multiple head-to-tail copies of the entire vector integrated at a single locus in the genome. Of our PTVA selected clones, 40% showed a three- to fivefold increase in vector copy number. So-called 'jackpot' clones with >10 copies of the expression vector represented 5–6% of selected clones and had a proportional increase in recombinant protein.  相似文献   

12.
Generation of a floxed Presenilin-1 (PS1) allele involved two recombination events in the embryonic stem (ES) cells. First, a targeting vector containing a loxP site in intron 1 and a floxed CMV-HYG/TK double selection cassette in intron 3 was integrated into the PS1 locus by homologous recombination. The use of a negative selection cassette, PGK-DTA, dramatically increased the recombination efficiency within the targeted locus (75-fold). Second, an expression vector encoding Cre recombinase was introduced to excise the floxed CMV-HYG/TK cassette via site-specific recombination. However, all five ES cell clones testing positive for the proper removal of the CMV-HYG/TK cassette also contained a proportion of ES cells in which recombination had occurred between the distal loxP sites in introns 1 and 3, resulting in excision of the entire floxed region. It is therefore critical to screen for possible recombination events involving all 3 loxP sites, in order to identify ES cells clones bearing high proportions of the desired ES cells. genesis 26:5-8, 2000.  相似文献   

13.
Transformation-associated recombination (TAR) is a cloning technique that allows specific chromosomal regions or genes to be isolated directly from genomic DNA without prior construction of a genomic library. This technique involves homologous recombination during spheroplast transformation between genomic DNA and a TAR vector that has 5′ and 3′ gene targeting sequences (hooks). Typically, TAR cloning produces positive YAC recombinants at a frequency of ~0.5%; the positive clones are identified by PCR or colony hybridization. This paper describes a novel TAR cloning procedure that selects positive clones by positive and negative genetic selection. This system utilizes a TAR vector with two targeting hooks, HIS3 as a positive selectable marker, URA3 as a negative selectable marker and a gene-specific sequence called a loop sequence. The loop sequence lies distal to a targeting hook sequence in the chromosomal target, but proximal to the targeting hook and URA3 in the TAR vector. When this vector recombines with chromosomal DNA at the gene-specific targeting hook, the recombinant YAC product carries two copies of the loop sequence, therefore, the URA3 negative selectable marker becomes mitotically unstable and is lost at high frequency by direct repeat recombination involving the loop sequence. Positive clones are identified by selecting against URA3. This method produces positive YAC recombinants at a frequency of ~40%. This novel TAR cloning method provides a powerful tool for structural and functional analysis of complex genomes.  相似文献   

14.
ht-Pam基因在山羊β-酪蛋白基因座定位整合的研究   总被引:6,自引:0,他引:6  
利用体细胞基因打靶与核移植技术制备动物乳腺生物反应器是当今转基因定位整合表达的一种新技术。分别克隆山羊的β-酪蛋白基因5′调控区的6.3kb片段,外显子7、外显子8和9三个基因片段,并与克隆的人tPA突变体cDNA一起构建了含有neo和tk正负筛选标记基因的β-酪蛋白基因打靶载体PGBC4tPA,并验证了neo基因、tk基因以及Cre-LoxP系统的有效性。将线性化的PGBC4tPA通过电转染整合到山羊胎儿成纤维细胞基因组中,利用G418和GANC进行抗性细胞克隆的药物筛选,初步获得抗性细胞克隆244个,PCR检测后获得阳性细胞克隆31个,其中初步验证2个细胞克隆转植基因整合位点重组后的基因序列正确,并且该细胞克隆能够有效扩增。这为下一步基因打靶体细胞核移植制备山羊乳腺生物反应器奠定了基础。  相似文献   

15.
We have developed a novel vector pTCS, as a tool for efficient selection of open reading frame (ORF)-containing inserts. In pTCS clones containing an insert with an ORF a downstream marker gene (immE3, conferring resistance to colicin) is activated via translational coupling with the insert, and transformed cells can then be selected by exposure to colicin E3. Our method differs from previous methods in that the marker gene is activated without protein fusion, and that selection occurs irrespective of the reading frame of the insert.  相似文献   

16.
P E Saris  L Paulin 《BioTechniques》1990,9(6):694, 696-694, 697
We have developed a polymerase chain reaction (PCR)-based procedure to facilitate the selection of recombinant clones. The insert to be cloned is ligated to an antibiotic resistance marker. The ligation product is amplified by PCR, followed by standard cloning procedure into a bacterial vector. The selection for the antibiotic resistance coded by the PCR product ensures 100% insertion frequency, eliminating the screening of the transformants.  相似文献   

17.
Gene knockout in murine embryonic stem cells (ESCs) has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6). In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs). Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.  相似文献   

18.
The expression of sacB, the Bacillus subtilis gene encoding levansucrase, is lethal to mycobacteria in the presence of 10% sucrose. In this study, we describe the use of sacB as a marker for positive selection of gene-replacement events into Mycobacterium smegmatis. A sucrose counter-selectable suicide plasmid was used to deliver an inactivated copy of the pyrF gene (pyrFKm) into the M. smegmatis genome. Only uracil auxotroph clones, resulting from replacement of the endogenous pyrF allele, survived in a one-step selection on plates containing kanamycin and 10% sucrose. This demonstrated that selection on sucrose against the maintenance of the vector bearing the sacB gene is 100% efficient, enabling the positive selection of allelic-exchange mutants. Two-step selection is also feasible; it was used to construct unmarked pyrF mutants in which the gene was inactivated by a frameshift mutation. This method of generating unmarked, directed mutations is rapid and simple, making it a powerful tool for the genetic characterization of mycobacteria.  相似文献   

19.
We report here on strategies aimed at improving the frequency of detectable recombination in plants by increasing the efficiency of selecting double-recombinants in transgenic calli. Gene targeting was approached on the Gln1 and the Pzf loci of Lotus japonicus, using Agrobacterium tumefaciens T-DNA replacement vectors. Large flanking regions, up to 22.9 kb, surrounding a positive selection marker were presented as substrates for homologous recombination. For easier detection of putative recombinants the negative selectable marker cytosine deaminase was inserted at the outside borders of the flanking regions offered for cross-over. A combination of positive and negative selection allowing double-recombinants to grow, while counter-selecting random insertions, was used to select putative targeting events. The more than 1000-fold enrichment observed with replacement vectors designed to minimize gene silencing demonstrated the efficiency of the negative selection. Using five different replacement vectors an estimated total of 18974 transformation events were taken through the positive-negative selection procedure and 185 resistant calli obtained. Targeting events could not be verified in the survivors by PCR screening and Southern blot analysis. With this approach the frequency of detectable gene targeting in L. japonicus was below 5.3×10–5, despite the large flanking sequences offered for recombination.  相似文献   

20.
In this study, the efficiency of gene replacement in Aspergillus awamori between Agrobacterium-mediated transformation and CaCl(2)/PEG-mediated transformation was compared. For the genes, pyrG and gfaA, it was found that the homologous recombination frequencies obtained by Agrobacterium-mediated transformation were 3- to 6-fold higher than the frequencies obtained with CaCl(2)/PEG protoplast transformation. For the pyrG gene, it was found that Agrobacterium-mediated transformation allowed an efficient homologous recombination with shorter DNA flanks than CaCl(2)/PEG protoplast transformation. Finally, the addition of the dominant amdS marker as a second selection marker to the gene replacement cassette led to a further 2-fold enrichment in transformants with gene replacement events, resulting in a gene replacement frequency of 55%. Based on the data it can be concluded that Agrobacterium-mediated transformation is an efficient tool for gene replacement and that the amdS gene can be successfully used as a second selection marker to select transformants with putative gene replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号