首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kida Y  Mihara K  Sakaguchi M 《The EMBO journal》2005,24(18):3202-3213
Type I signal-anchor sequences mediate translocation of the N-terminal domain (N-domain) across the endoplasmic reticulum (ER) membrane. To examine the translocation in detail, dihydrofolate reductase (DHFR) was fused to the N-terminus of synaptotagmin II as a long N-domain. Translocation was arrested by the DHFR ligand methotrexate, which stabilizes the folding of the DHFR domain, and resumed after depletion of methotrexate. The targeting of the ribosome-nascent chain complex to the ER requires GTP, whereas N-domain translocation does not require any nucleotide triphosphates. Significant translocation was observed even in the absence of a lumenal hsp70 (BiP). When the nascent polypeptide was released from the ribosomes after the membrane targeting, the N-domain translocation was suppressed and the nascent chain was released from the translocon. Ribosomes have a crucial role in maintaining the translocation-intermediate state. The translocation of the DHFR domain was greatly impaired when it was separated from the signal-anchor sequence. Unfolding and translocation of the DHFR domain must be driven by the stroke of the signal-anchor sequence into translocon.  相似文献   

2.
A J Denzer  C E Nabholz    M Spiess 《The EMBO journal》1995,14(24):6311-6317
Upon insertion of a signal-anchor protein into the endoplasmic reticulum membrane, either the C-terminal or the N-terminal domain is translocated across the membrane. Charged residues flanking the transmembrane domain are important determinants for this decision, but are not necessarily sufficient to generate a unique topology. Using a model protein that is inserted into the membrane to an equal extent in either orientation, we have tested the influence of the size and the folding state of the N-terminal domain on the insertion process. A small zinc finger domain or the full coding sequence of dihydrofolate reductase were fused to the N-terminus. These stably folding domains hindered or even prevented their translocation. Disruption of their structure by destabilizing mutations largely restored transport across the membrane. Translocation efficiency, however, did not depend on the size of the N-terminal domain within a range of 40-237 amino acids. The folding behavior of the N-terminal domain is thus an important factor in the topogenesis of signal-anchor proteins.  相似文献   

3.
In biogenesis of membrane proteins on the endoplasmic reticulum, a protein-conducting channel called the translocon functions in both the membrane translocation of lumenal domains and the integration of transmembrane segments. Here we analyzed the environments of polypeptide chains during the processes by water-dependent alkylation of N-ethylmaleimide at site-directed Cys residues. Using the technique, the region embedded in the hydrophobic portion of the membrane within a signal-anchor sequence and its shortening by insertion of a Pro residue could be detected. When translocation of the N-terminal domain of the signal-anchor was arrested by trapping an N-terminally fused affinity tag sequence, the signal-anchor was susceptible to alkylation, indicating that its migration into the hydrophobic environment was also arrested. Furthermore, when the tag sequence was separated from the signal-anchor by insertion of a hydrophilic sequence, the signal-anchor became inaccessible to alkylation even in the N-terminally trapped state. This suggests that membrane integration of the signal-anchor synchronizes with partial translocation of its N-terminal domain. Additionally, in an integration intermediate of a membrane protein, both of the two translocation-arrested hydrophilic chains were in an aqueous environment flanking the translocon, suggesting that the translocon provides the hydrophilic pathway capable of at least two translocating chains.  相似文献   

4.
We have investigated the topogenic rules of multispanning membrane proteins using erythrocyte band 3. Here, the fine structural requirements for the correct disposition of its second transmembrane segment (TM2) were assessed. We made fusion proteins where TM1 and the loop sequence preceding TM2 were changed and fused to prolactin. They were expressed in a cell-free system supplemented with rough microsomal membrane, and their topologies on the membrane were assessed by protease sensitivity and N-glycosylation. TM1 was demonstrated to be a signal-anchor sequence that mediates translocation of the downstream portion, and thus TM2 should be responsible to halt the translocation to acquire TM topology. When the loop between TM1 and TM2 was elongated, however, TM2 was readily translocated through the membrane and not integrated. For the membrane integration of TM2, TM2 must be in close proximity to TM1. The TM1 can be replaced with another signal-anchor sequence with a long hydrophobic segment but not with a signal sequence with shorter hydrophobic stretch. The length of the hydrophobic segment affected final topology of TM2. We concluded that the two TM segments work synergistically within the translocon to acquire the correct topology and that the length of the preceding signal sequence is critical for stable transmembrane assembly of TM2. We propose that direct interaction among the TM segments is one of the critical factors for the transmembrane topogenesis of multispanning membrane proteins.  相似文献   

5.
Uncleaved signal-anchor sequences of membrane proteins inserted into the endoplasmic reticulum initiate the translocation of either the amino-terminal or the carboxyl-terminal polypeptide segment across the bilayer. Which topology is acquired is not determined by the apolar segment of the signal but rather by the hydrophilic sequences flanking it. To study the role of charged residues in determining the membrane topology, the insertion of mutants of the asialoglycoprotein receptor H1, a single-spanning protein with a cytoplasmic amino terminus, was analyzed in transfected COS-7 cells. When the charged amino acids flanking the hydrophobic signal were mutated to residues of opposite charge, half the polypeptides inserted with the inverted orientation. When, in addition, the amino-terminal domain of the mutant protein was truncated, approximately 90% of the polypeptides acquired the inverted topology. The transmembrane orientation appears to be primarily determined by the charges flanking the signal sequence but is modulated by the domains to be translocated.  相似文献   

6.
H P Wessels  M Spiess 《Cell》1988,55(1):61-70
To study the insertion of multispanning membrane proteins into the endoplasmic reticulum, we constructed novel proteins on the cDNA level by repeating, up to four times, the internal signal-anchor domain of the asialoglycoprotein receptor H1. Upon in vitro translation in the presence of microsomes, these polypeptides are indeed inserted as polytopic membrane proteins. The first hydrophobic domain functions as a signal and the second as a stop-transfer sequence, while the third initiates a second translocation process, halted again by the fourth. We were able to demonstrate that insertion occurs sequentially, starting with the first apolar segment from the amino terminus. By replacing the original signal-anchor domains by a mutant sequence not recognized by signal recognition particle (SRP), it was shown that only the first hydrophobic domain needs to be a signal sequence and that the second translocation event does not require SRP.  相似文献   

7.
Multilineage colony stimulating factor is a secretory protein with a cleavable signal sequence that is unusually long and hydrophobic. Using molecular cloning techniques we exchanged sequences NH2- or COOH-terminally flanking the hydrophobic signal sequence. Such modified fusion proteins still inserted into the membrane but their signal sequence was not cleaved. Instead the proteins were now anchored in the membrane by the formerly cleaved signal sequence (signal-anchor sequence). They exposed the NH2 terminus on the exoplasmic and the COOH terminus on the cytoplasmic side of the membrane. We conclude from our results that hydrophilic sequences flanking the hydrophobic core of a signal sequence can determine cleavage by signal peptidase and insertion into the membrane. It appears that negatively charged amino acid residues close to the NH2 terminal side of the hydrophobic segment are compatible with translocation of this segment across the membrane. A tripartite structure is proposed for signal-anchor sequences: a hydrophobic core region that mediates targeting to and insertion into the ER membrane and flanking hydrophilic segments that determine the orientation of the protein in the membrane.  相似文献   

8.
Membrane-anchored forms of the v-sis oncoprotein have been previously described which are oriented as type I transmembrane proteins and which efficiently induce autocrine transformation. Several examples of naturally occurring membrane-anchored growth factors have been identified, but all exhibit a type I orientation. In this work, we wished to construct and characterize membrane-anchored growth factors with a type II orientation. These experiments were designed to determine whether type II membrane-anchored growth factors would in fact exhibit biological activity. Additionally, we wished to determine whether the hydrophobic domain of the E5 oncoprotein of bovine papilloma virus (BPV) can function as a signal-anchor domain to direct type II membrane insertion. Type II derivatives of the v-sis oncoprotein were constructed, with the NH2 terminus intracellular and the COOH terminus extracellular, by substituting the NH2 terminal signal sequence with the signal-anchor domain of a known type II membrane protein. The signal-anchor domains of neuraminidase (NA), asialoglycoprotein receptor (ASGPR) and transferrin receptor (TR) all yielded biologically active type II derivatives of the v-sis oncoprotein. Although transforming all of the type II signal/anchor-sis proteins exhibited a very short half-life. The short half-life exhibited by the signal/anchor-sis constructs suggests that, in some cases, cellular transformation may result from the synthesis of growth factors so labile that they activate undetectable autocrine loops. The E5 oncoprotein encoded by BPV exhibits amino acid sequence similarity with PDGF, activates the PDGF beta-receptor, and thus resembles a miniature membrane-anchored growth factor with a putative type II orientation. The hydrophobic domain of the E5 oncoprotein, when substituted in place of the signal sequence of v-sis, was indistinguishable compared with the signal-anchor domains of NA, TR, and ASGPR, demonstrating its ability to function as a signal-anchor domain. NIH 3T3 cells transformed by the signal/anchor-sis constructs exhibited morphological reversion upon treatment with suramin, indicating a requirement for ligand/receptor interactions in a suramin- sensitive compartment, most likely the cell surface. In contrast, NIH 3T3 cells transformed by the E5 oncoprotein did not exhibit morphological reversion in response to suramin.  相似文献   

9.
Goder V  Crottet P  Spiess M 《The EMBO journal》2000,19(24):6704-6712
We have developed a novel assay to detect the cytosolic localization of protein domains by inserting a short consensus sequence for phosphorylation by protein kinase A. In transfected COS-1 cells, this sequence was labeled efficiently with [(32)P]phosphate only when exposed to the cytosol and not when translocated into the lumen of the endoplasmic reticulum. The phosphorylation state of this sequence can therefore be used to determine the topology of membrane proteins. This assay is sufficiently sensitive to detect even the transient cytosolic exposure of the N-terminal domain of a membrane protein with a reverse signal-anchor sequence. The extent of phosphorylation per newly synthesized polypeptide was shown to reflect the time of exposure to the cytosol, which depends on translation, targeting and translocation of the N-terminus. By altering the length of the N-terminal domain or manipulating the translation rate, it was determined that protein targeting is rapid and requires only a few seconds. The rate of N-terminal translocation was estimated to be approximately 1.6 times the rate of translation.  相似文献   

10.
Hybrid genes were constructed to express bifunctional hybrid proteins in which staphyloccal nuclease A with or without an amino-terminai OmpA signal sequence was fused with TEM β-lactamase (at the carboxyl terminal side) using the signal peptide of the major outer membrane lipoprotein of Escherichia coli as an internal linker. The hybrid proteins were found to be inserted in the membrane. Orientation of the hybrid protein with the OmpA signal peptide showed that the nuclease was translocated into the periplasm and the β-lactamase remained in the cytoplasm. This indicates that the cleavable OmpA signal peptide served as a secretory signal for nuclease and the internal lipoprotein signal served as the transmembrane anchor, in the absence of the OmpA signal sequence the topology of the hybrid protein was reversed indicating that the internal lipoprotein signal peptide initially served as the signal peptide for the secretion of the carboxy terminal β-lactamase domain across the membrane and subsequently as a membrane anchoring signal. The role of charged amino acids in the translocation and transmembrane orientation of membrane proteins was also analysed by introducing charged amino acids to either or both sides of the internal lipoprotein signal sequence in the bifunctional hybrid proteins in the absence of the amino-terminal signal sequence. Introduction of two lysine residues at the carboxy-terminal side of the internal signal sequence reversed the topology of the transmembrane protein by translocating the aminoterminal nuclease domain across the membrane, leaving the carboxyl terminal β-actamase domain in the cytoplasm. When three more lysine residues were added to the amino-terminal side of the internal signal sequence of the same construct the membrane topology flipped back to the original orientation. A similar reversion of the topology could be obtained by introducing negatively charged residues at the amino-terminal side of the internal signal sequence. Present results demonstrate for the first time that a bifunctional transmembrane protein can be engineered to assume either of the two opposite orientations and that charge balance around the transmembrane domain is a major factor in controlling the topology of a transmembrane protein.  相似文献   

11.
Microsomal forms of eukaryotic cytochrome P450 proteins are integral membrane proteins of the endoplasmic reticulum (ER) membrane which are targeted to the ER via the signal recognition particle pathway. A hydrophobic amino terminus serves as a combined signal sequence and major membrane anchor (signal-anchor sequence) for the microsomal P450s. We have examined the insertion of bovine 17 alpha-hydroxylase (P45017 alpha) into the ER of COS 1 cells in order to evaluate the role of membrane insertion of the amino-terminal signal-anchor of microsomal P450s as a functional determinant for these enzymes. Previously, we have shown that deletion of the hydrophobic amino terminus from P45017 alpha reduced membrane targeting and insertion by 5-fold compared with the wild-type protein, abolished enzymatic activity, and resulted in an aberrant CO difference spectrum. In the present study we have replaced the amino terminus of P45017 alpha with two heterologous signal-anchor sequences, one that is similar and one that is very different from the P45017 alpha sequence. The chimeric proteins were expressed in COS 1 cells. Immunoblot analysis of isolated microsomal membranes show that the heterologous signal-anchor sequences functioned to target the P45017 alpha protein to the ER. Enzymatic assays in intact COS 1 cells indicate that both the chimeric proteins are efficient 17 alpha-hydroxylase enzymes. The amino terminus of P45017 alpha was also replaced with a sequence that is not a signal-anchor, and the expressed protein was neither targeted to the ER nor was functional in COS 1 cells. In conclusion, both the structure and catalytic activity of P45017 alpha in COS 1 cells is dependent upon an amino-terminal sequence that functions as a signal-anchor sequence and not upon the precise sequence of the amino terminus.  相似文献   

12.
This report describes the primary structure of a rat liver beta-galactoside alpha 2,6-sialyltransferase (EC 2.4.99.1), a Golgi apparatus enzyme involved in the terminal sialylation of N-linked carbohydrate groups of glycoproteins. The complete amino acid sequence was deduced from the nucleotide sequence of cDNA clones of the enzyme. The primary structure suggests that the topology of the enzyme in the Golgi apparatus consists of a short NH2-terminal cytoplasmic domain, a 17-residue hydrophobic sequence which serves as the membrane anchor and signal sequence, and a large lumenal, catalytic domain. NH2-terminal sequence analysis of a truncated form of the enzyme, obtained by purification from tissue homogenates, reveals that it is missing a 63-residue NH2-terminal peptide which includes the membrane binding domain. These and supporting results show that soluble forms of the sialyltransferase can be generated by proteolytic cleavage between the NH2-terminal signal-anchor and the catalytic domain.  相似文献   

13.
I gamma CAT is a hybrid protein that inserts into the membrane of the endoplasmic reticulum as a type II membrane protein. These proteins span the membrane once and expose the NH2-terminal end on the cytoplasmic side and the COOH terminus on the exoplasmic side. I gamma CAT has a single hydrophobic segment of 30 amino acid residues that functions as a signal for membrane insertion and anchoring. The signal-anchor region in I gamma CAT was analyzed by deletion mutagenesis from its COOH-terminal end (delta C mutants). The results show that the 13 amino acid residues on the amino-terminal side of the hydrophobic segment are not sufficient for membrane insertion and translocation. Mutant proteins with at least 16 of the hydrophobic residues are inserted into the membrane, glycosylated, and partially proteolytically processed by a microsomal protease (signal peptidase). The degree of processing varies between different delta C mutants. Mutant proteins retaining 20 or more of the hydrophobic amino acid residues can span the membrane like the parent I gamma CAT protein and are not proteolytically processed. Our data suggest that in the type II membrane protein I gamma CAT, the signals for membrane insertion and anchoring are overlapping and that hydrophilic amino acid residues at the COOH-terminal end of the hydrophobic segment can influence cleavage by signal peptidase. From this and previous work, we conclude that the function of the signal-anchor sequence in I gamma CAT is determined by three segments: a positively charged NH2 terminus, a hydrophobic core of at least 16 amino acid residues, and the COOH-terminal flanking hydrophilic segment.  相似文献   

14.
Despite studies of the mechanism underlying the intracellular localization of membrane proteins, the specific mechanisms by which each membrane protein localizes to the endoplasmic reticulum, Golgi apparatus, and plasma membrane in the secretory pathway are unclear. In this study, a discriminant analysis of endoplasmic reticulum, Golgi apparatus and plasma membrane-localized type II membrane proteins was performed using a position-specific scoring matrix derived from the amino acid propensity of the sequences around signal-anchors. The possibility that the sequence around the signal-anchor is a factor for identifying each localization group was evaluated. The discrimination accuracy between the Golgi apparatus and plasma membrane-localized type II membrane proteins was as high as 90%, indicating that, in addition to other factors, the sequence around signal-anchor is an essential component of the selection mechanism for the Golgi and plasma membrane localization. These results may improve the use of membrane proteins for drug delivery and therapeutic applications.  相似文献   

15.
Reptilian reovirus is one of a limited number of nonenveloped viruses that are capable of inducing cell-cell fusion. A small, hydrophobic, basic, 125-amino-acid fusion protein encoded by the first open reading frame of a bicistronic viral mRNA is responsible for this fusion activity. Sequence comparisons to previously characterized reovirus fusion proteins indicated that p14 represents a new member of the fusion-associated small transmembrane (FAST) protein family. Topological analysis revealed that p14 is a representative of a minor subset of integral membrane proteins, the type III proteins N(exoplasmic)/C(cytoplasmic) (N(exo)/C(cyt)), that lack a cleavable signal sequence and use an internal reverse signal-anchor sequence to direct membrane insertion and protein topology. This topology results in the unexpected, cotranslational translocation of the essential myristylated N-terminal domain of p14 across the cell membrane. The topology and structural motifs present in this novel reovirus membrane fusion protein further accentuate the diversity and unusual properties of the FAST protein family and clearly indicate that the FAST proteins represent a third distinct class of viral membrane fusion proteins.  相似文献   

16.
Microsomal cytochrome P450s (CYPs) are anchored to the endoplasmic reticulum membrane by the N-terminal signal-anchor sequence which is predicted to insert into the membrane as a type 1 transmembrane helix with a luminally located N-terminus. We have mapped amino acids of the CYP2C1 signal-anchor, fused to Cys-free glutathione S-transferase, within the membrane by Cys-specific labeling with membrane-impermeant maleimide polyethylene glycol. At the C-terminal end of the signal-anchor, Trp-20 was mapped to the membrane–cytosol interface and Leu-19 was within the membrane. Unexpectedly, at the N-terminal end, Glu-2 and Pro-3 were mapped to the cytoplasmic side of the membrane rather than the luminal side as expected of a type 1 transmembrane helix. Similar results were observed for the N-terminal amino acids of the signal-anchor sequences of CYP3A4 and CYP2E1. These observations indicate that contrary to the current model of the signal-anchor of CYPs as a type 1 transmembrane helix, CYP2C1, CYP2E1, and CYP3A4 are monotopic membrane proteins with N-terminal signal-anchors that have a hairpin or wedge orientation in the membrane.  相似文献   

17.
Synaptotagmin II is a type I signal-anchor protein, in which the NH(2)-terminal domain of 60 residues (N-domain) is located within the lumenal space of the membrane and the following hydrophobic region (H-region) shows transmembrane topology. We explored the early steps of cotranslational integration of this molecule on the endoplasmic reticulum membrane and demonstrated the following: (a) The translocation of the N-domain occurs immediately after the H-region and the successive positively charged residues emerge from the ribosome. (b) Positively charged residues that follow the H-region are essential for maintaining the correct topology. (c) It is possible to dissect the lengths of the nascent polypeptide chains which are required for ER targeting of the ribosome and for translocation of the N-domain, thereby demonstrating that different nascent polypeptide chain lengths are required for membrane targeting and N-domain translocation. (d) The H-region is sufficiently long for membrane integration. (e) Proline residues preceding H-region are critical for N-domain translocation, but not for ER targeting. The proline can be replaced with amino acid with low helical propensity.  相似文献   

18.
To determine the role of sequences other than the hydrophobic core in mediating signal sequence function, we examined the behavior of fusion proteins and deletion mutants in cell-free systems. We demonstrate that neither the N nor the C region of the preprolactin signal sequence is necessary for translocation. However, insertion of sequences with either a net charge of +2.5 or -6.0 between the N region and the hydrophobic core of the signal converted it into a signal-anchor. The topologies adopted (types I and II, respectively) were opposite those predicted from the distribution of charges surrounding the hydrophobic core of the signals. When these mutant signals were located in the interior of an otherwise secreted protein, both sequences functioned as stop-transfer sequences. Related mutations were assayed in fusion proteins in which the IgM transmembrane domain functioned as an amino-terminal signal-anchor. For these molecules, the distribution of charged residues surrounding the hydrophobic core had no influence on the topology adopted. Our results suggest that features other than simple charge distribution play an important role in determining membrane topology in vitro.  相似文献   

19.
A non-hydrophobic sequence that contributes to the biogenesis of a transmembrane protein is termed a stop-transfer effector (STE). To examine the mechanism of STE-mediated stop-transfer, a series of fusion proteins were constructed containing variants of a putative STE from murine IgM fused to an otherwise translocated hydrophobic sequence. Unexpectedly, the fraction of molecules adopting transmembrane topology was insensitive to many amino acid substitutions within the STE sequence but varied directly with the number of negative charges. Furthermore, when present at the amino terminus of a reporter, mutants were observed that adopted type I (amino terminus lumenal) and type II (amino terminus cytoplasmic) transmembrane topologies, demonstrating that the STE sequence can be located at either side of the endoplasmic reticulum membrane. Our results suggest that recognition of a broad structural feature formed primarily by negatively charged residues within the STE halts translocation and triggers membrane integration, even when the negative charges end up on the cytoplasmic side of the membrane. Since functional STE sequences photocross-link to two membrane proteins not previously identified at the translocon, these unique proteins are presumably involved in recognizing STE sequences and/or facilitating STE function.  相似文献   

20.
The E3 region of adenovirus codes for several membrane proteins, most of which are involved in immune evasion and prevention of host cell apoptosis. We explored the topology and targeting mechanisms of E3-6.7K, the most recently described member of this group, by using an in vitro translation system supplemented with microsomes. Here, we present evidence that E3-6.7K, one of the smallest signal-anchor proteins known, translocates across the membrane of the endoplasmic reticulum in a posttranslational, ribosome-independent, yet ATP-dependent manner, reminiscent of the translocation of tail-anchored proteins. Our analysis also demonstrated that E3-6.7K could achieve several distinct topological fates. In addition to the previously postulated type III orientation (N-luminal/C-cytoplasmic, termed NtmE3-6.7K), we detected a tail-anchored form adopting the opposite orientation (N-cytoplasmic/C-luminal, termed CtmE3-6.7K) as well as the possibility of a fully translocated form (N and C termini are both translocated, termed NCE3-6.7K). Due to the translocation of a positively charged domain, both the CtmE3-6.7K and NCE3-6.7K topologies of E3-6.7K constitute exceptions to the "positive inside" rule. The NtmE3-6.7K and NCE3-6.7K are the first examples of posttranslationally translocated proteins in higher eukaryotes that are not tail anchored. Distinct topological forms were also found in transfected cells, as both N and C termini of E3-6.7K were detected on the extracellular surface of transfected cells. The demonstration of unexpected topological forms and translocation mechanisms for E3-6.7K defies conventional thinking about membrane protein topogenesis and advises that both the mode of targeting and topology of signal-anchor proteins should be determined experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号