首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At concentrations of 1-1.6 mug/ml, 5,8-dioxo-6-amino-7-chloroquinoline causes auxotrophy for leucine in Escherichia coli MRE 600. With increasing concentrations of this quinone additional amino acids are required for growth. The amount of leucine in the pool of free amino acids is not decreased after treatment of E. coli with the quinone. Transfer RNALeu, however, is charged with leucine less than 10% in quinone-treated cells of E. coli, whereas in control cells the degree of aminoacylation is about 85%. From these data we conclude that the quinone causes auxotrophy for leucine by interacting with the charging process of tRNALeu. Quinone was found to inhibit leucyl-tRNA synthetase activity in purified extracts of E. coli with E. coli tRNA as substrate.  相似文献   

2.
The solution conformation of eight leucine tRNAs from Phaseolus vulgaris, baker's yeast and Escherichia coli, characterized by long variable regions, and the interaction of four of them with bean cytoplasmic leucyl-tRNA synthetase were studied by phosphate mapping with ethylnitrosourea. Phosphate reactivities in the variable regions agree with the existence of RNA helices closed by miniloops. At the junction of these regions with the T-stem, phosphate 48 is strongly protected, in contrast to small variable region tRNAs where P49 is protected. The constant protection of P22 is another characteristics of leucine tRNAs. Conformational differences between leucine isoacceptors concern the anticodon region, the D-arm and the variable region. In several parts of free tRNALeu species, e.g. in the T-loop, phosphate reactivities are similar to those found in tRNAs of other specificities, indicating conformational similarities among tRNAs. Phosphate alkylation of four leucine tRNAs complexed to leucyl-tRNA synthetase indicates that the 3'-side of the anticodon stem, the D-stem and the hinge region between the anticodon and D-stems are in contact with the plant enzyme.  相似文献   

3.
This study has investigated the characteristics of a leucine aminoacyl transfer RNA synthetase enzyme from Tritrichomonas augusta. Differential centrifugation and DEAE-cellulose column chromatography were used for partial enzyme purification. The column purification increased the synthetase activity 125-fold over the unfractionated cell extract. The conditions for maximum [3H] leucine charging were 37 degrees C for 20 min, with protein at 180 micrograms ml-1 using yeast leucine tRNA as an acceptor. The optimal reaction conditions were 14 mM-Mg acetate, 3 mM-ATP, 3 mM-spermidine and 5.5 mM-putrescine. Acceptor activity with T. augusta transfer RNA was 8-fold higher than with yeast transfer RNA and 25-fold higher than with Escherichia coli transfer RNA. The partially purified enzyme fraction had comparable changing activities for both leucine and valine.  相似文献   

4.
Repression by glucose of acetohydroxy acid synthetase in Escherichia coli B   总被引:2,自引:1,他引:1  
Acetolactate formation in Escherichia coli B results from the activity of a single system, acetohydroxy acid synthetase, which has a pH optimum of 8.0 and is sensitive to end-product inhibition by l-valine. Acetohydroxy acid synthetase was found to be subject to catabolite repression, and the nature and concentration of the carbon source had a greater effect on the formation of the enzyme than had the known end products (valine, isoleucine, leucine and pantothenate) of the biosynthetic pathways of which this enzyme is a member. The results suggest that acetohydroxy acid synthetase may play an amphibolic role in E. coli B.  相似文献   

5.
The processing of human mitochondrial leucyl-tRNA synthetase had been previously investigated in insect cell. In the present work, the gene encoding human mitochondrial leucyl-tRNA synthetase with the same N-terminus as that processed in the mitochondria of insect cell was cloned and expressed in Escherichia coli. The enzyme was purified by affinity chromatography on Ni-NTA column. About 6 mg of human mitochondrial leucyl-tRNA synthetase was obtained from 1 liter of culture. The specific activity of the purified enzyme is 127.7 units/mg, the highest activity of the reported results; this enzyme has the potential for characterizing the mitochondrial tRNA mutants associated with some human mitochondrion-related neuromuscular disorders. The kinetic constants for three substrates: leucine, ATP, and E. coli tRNA1Leu (CAG) in the leucylation reaction are also reported herein.  相似文献   

6.
The temperature sensitive leucyl-tRNA synthetase mutant tsHl and two revertants have been compared to the parental Chinese hamster ovary cells with respect to the effects of amino acid concentrations in the medium on growth. Elevating the leucine concentration 30- or 100-fold allowed tsHl to grow exponentially at 38.5 degrees C, normally the nonpermissive temperature. Partial revertants that had recovered some enzyme activity required smaller supplements for growth. Measurements of the leucine pools indicated that they respond directly to the extracellular leucine concentration and may mediate the effect. Use of combinations of amino acids confirmed that isoleucine has a similar though weaker effect on tsHl and identified an even weaker protection by valine. The triple combination of leucine, isoleucine and valine was a much more efficient medium supplement and three times normal concentrations of these amino acids supported growth of tsHl at 38.5 degrees C. It is postulated that they are acting at their respective aminoacyl-tRNA synthetases to help stabilize a complex which also contains the mutant leucyl-tRNA synthetase. The pool size measurements also showed that the leucine pools of tsHl and a revertant increased 2-fold more in a response to increased temperature than those of WT. It is suggested that this is a regulatory response to low leucyl-tRNA synthetase activity and is important in determining growth phenotypes.  相似文献   

7.
Adenylosuccinate synthetases from different sources contain an N-terminal glycine-rich sequence GDEGKGK, which is homologous to the conserved sequence GXXXXGK found in many other guanine nucleotide-binding proteins or enzymes. To determine the role of this sequence in the structure and function of Escherichia coli adenylosuccinate synthetase, site-directed mutagenesis was performed to generate five mutant enzymes: G12V (Gly12----Val), G15V (Gly15----Val), G17V (Gly17----Val), K18R (Lys18----Arg), and I19T (Ile19----Thr). Comparison of the kinetic properties of the wild-type enzyme and those of the mutant enzymes revealed that the sequence is critical for enzyme activity. Replacement of Gly12, Gly15, or Gly17 with Val, or replacement of Lys18 with Arg, resulted in significant decreases in the kcat/Km values of the enzyme. Because the consensus sequence GXXXXGK(T/S) has been found in many GTP-binding proteins, isoleucine at position 19 in the E. coli adenylosuccinate synthetase was changed to threonine to produce the sequence GDEGKGKT. This mutation, which more closely resembles the consensus sequence, resulted in a 160-fold increase in the Km value for substrate GTP; however, there were no great changes for the other two substrates, IMP and aspartate. Based on these data, we suggest that the N-terminal glycinerich sequence in E. coli adenylosuccinate synthetase plays a more important role in enzyme catalysis than in substrate binding. In addition, a hydrophobic amino acid residue such as isoleucine, leucine, or valine, rather than threonine, may play a critical role in GTP binding in adenosuccinate synthetase. These findings suggest that the glycine-rich sequence in adenylosuccinate synthetase functions differently relative to those in other GTP binding proteins or enzymes.  相似文献   

8.
Chemical modification of adenylosuccinate synthetase from Escherichia coli with phenylglyoxal resulted in an inhibition of enzyme activity with a second-order rate constant of 13.6 M-1 min-1. The substrates, GTP or IMP, partially protected the enzyme against inactivation by the chemical modification. The other substrate, aspartate, had no such effect even at a high concentration. In the presence of both IMP and GTP during the modification, nearly complete protection of the enzyme against inactivation was observed. Stoichiometry studies with [7-14C]phenylglyoxal showed that only 1 reactive arginine residue was modified by the chemical reagent and that this arginine residue could be shielded by GTP and IMP. Sequence analysis of tryptic peptides indicated that Arg147 is the site of phenylglyoxal chemical modification. This arginine has been changed to leucine by site-directed mutagenesis. The mutant enzyme (R147L) showed increased Michaelis constants for IMP and GTP relative to the wild-type system, whereas the Km for aspartate exhibited a modest decrease as compared with the native enzyme. In addition, kcat of the R147L mutant decreased by a factor of 1.3 x 10(4). On the bases of these observations, it is suggested that Arg147 is critical for enzyme catalysis.  相似文献   

9.
Altered leucyl-tRNA synthetase from a mammalian cell culture temperature-sensitive mutant, tsHl, was compared with enzyme from normal wild type Chinese hamster ovary cells. The mutant enzyme had a Km for leucine four times larger than that of wild type and enzyme levels 3-10% that of wild type. The presence of tRNA was necessary during in vitro heating of the mutant enzyme to allow expression of thermolability while the presence of tRNA protected wild type enzyme against thermal inactivation. The tsHl enzyme was stable when heated alone or in the presence of tRNA, leucine, and ATP simultaneously. The mutant's enzymes aminoacylated tRNALeu, tRNAVal, and tRNAIle with fidelity in vitro as determined by cochromatography of the amino-acyl-tRNA isoacceptors on RPC-5 reversed phase chromatography. The mutant failed to show any defect other than the direct formation of leucyl tRNALeu by leucyl-tRNA synthetase.  相似文献   

10.
D Kern  J Lapointe 《Biochemistry》1979,18(26):5809-5818
The binding of the various substrates to Escherichia coli glutamyl-tRNA synthetase has been investigated by using as experimental approaches the binding study under equilibrium conditions and the substrate-induced protection of the enzyme against its thermal inactivation. The results show that ATP and tRNAGlu bind to the free enzyme, whereas glutamate binds only to an enzyme form to which glutamate-accepting tRNAGlu is associated. By use of modified E. coli tRNAsGlu and heterologous tRNAsGlu, a correlation could be established between the ability of tRNAGlu to be aminoacylated by glutamyl-tRNA synthetase and its abilities to promote the [32P]PPi-ATP isotope exchange and the binding of glutamate to the synthetase. These results give a possible explanation for the inability of blutamyl-tRNA synthetase to catalyze the isotope exchange in the absence of amino acid accepting tRNAGlu and for the failure to detect an enzyme-adenylate complex for this synthetase by using the usual approaches. One binding site was detected for each substrate. The specificity of the interaction of the various substrates has been further investigated. Concerning ATP, inhibition studies of the aminoacylation reaction by various analogues showed the existence of a synergistic effect between the adenine and the ribose residues for the interaction of adenosine. The primary recognition of ATP involves the N-1 and the 6-amino group of adenine as well as the 2'-OH group of ribose. This first interaction is then strengthened by the phosphate groups- Inhibition studies by various analogues of glutamate showed a strong decrease in the affinity of this substrate for the synthetase after substitution of the alpha- or gamma-carboxyl groups. The enzyme exhibits a marked tendency to complex tRNAs of other specificities even in the presence of tRNAGlu. MgCl2 and spermidine favor the specific interactions. The influence of monovalent ions and of pH on the interaction between glutamyl-tRNA synthetase and tRNAGlu is similar to those reported for other synthetases not requiring their cognate tRNA to bind the amino acid. Finally, contrary to that reported for other monomeric synthetases, no dimerization of glutamyl-tRNA synthetase occurs during the catalytic process.  相似文献   

11.
A cDNA clone encoding rat liver aspartyl-tRNA synthetase was isolated by probing a lambda gt11 recombinant cDNA expression library with antibodies directed against the corresponding polypeptide from sheep liver. The 1930-base pairs-long cDNA insert allowed the expression in Escherichia coli of an active enzyme of mammalian origin. The nucleotide sequence of that cDNA, corresponding to the DRS1 gene, was determined. The open reading frame of DRS1 corresponds to a protein of Mr = 57,061, in good agreement with the previously determined molecular weight of the purified enzyme. The deduced amino acid sequence shows extensive homologies with that of yeast cytoplasmic aspartyl-tRNA synthetase, more than 50% of the residues being identical. In rat liver, aspartyl-tRNA synthetase occurs in two distinct forms: a dimeric enzyme and a component of a multienzyme complex comprising the nine aminoacyl-tRNA synthetases specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine, and proline. The primary structure of the DRS1 gene product is discussed in relation to the occurrence of two distinct forms of that enzyme.  相似文献   

12.
We have isolated the Bradyrhizobium japonicum gene encoding glutamine synthetase I (glnA) from a phage lambda library by using a fragment of the Escherichia coli glnA gene as a hybridization probe. The rhizobial glnA gene has homology to the E. coli glnA gene throughout the entire length of the gene and can complement an E. coli glnA mutant when borne on an expression plasmid in the proper orientation to be transcribed from the E. coli lac promoter. High levels of glutamine synthetase activity can be detected in cell-free extracts of the complemented E. coli. The enzyme encoded by the rhizobial gene was identified as glutamine synthetase I on the basis of its sedimentation properties and resistance to heat inactivation. DNA sequence analysis predicts a high level of amino acid sequence homology among the amino termini of B. japonicum, E. coli, and Anabaena sp. strain 7120 glutamine synthetases. S1 nuclease protection mapping indicates that the rhizobial gene is transcribed from a single promoter 131 +/- 2 base pairs upstream from the initiation codon. This glnA promoter is active when B. japonicum is grown both symbiotically and in culture with a variety of nitrogen and carbon sources. There is no detectable sequence homology between the constitutively expressed glnA promoter and the differentially regulated nif promoters of the same B. japonicum strain.  相似文献   

13.
14.
The new form of valyl-tRNA synthetase (EC 6.1.1.9) that appears immediately after infection of Escherichia coli with bacteriophage T4 was purified and subjected to mild proteolysis using five different proteases. The inactivation of aminoacylation activity was both more extensive and rapid than that obtained with valyl-tRNA synthetase purified from uninfected E. coli. The addition of bulk tRNA from E. coli B protected the phage-specific form of valyl-tRNA synthetase from proteolysis, but ATP and valine did not exhibit a similar protective effect. The characteristic property of phage-modified valyl-tRNA synthetase, resistance to denaturation by 4 M urea, remained unaffected during treatment with trypsin. This suggested that the phage-specific factor tau, known to be associated with the synthetase in phage-infected cells, was protected from proteolysis in the synthetase-tau complex. Comparison by isoelectric focusing of normal valyl-tRNA synthetase, the phage-specific form of this enzyme, and phage enzyme from which tau had been removed, revealed no differences in the isoelectric points of these three molecules. Based on these results a model was drawn for the structural changes occurring in valyl-tRNA synthetase after association with the phage factor tau.  相似文献   

15.
The first enzyme in the biosynthesis of leucine in yeast, alpha-isopropylmalate synthetase, is inhibited by l-leucine. In a mutant resistant to the analogue 5',5',5'-trifluoroleucine, the enzyme is markedly resistant to inhibition by l-leucine. Growth ing the presence of exogenous l-leucine results in repression of the second and third enzymes of the pathway. The first enzyme is not repressed unless both l-leucine and l-threonine are supplied in the medium. Comparison of levels of the remaining two enzymes in leucine auxotrophs grown under conditions of leucine excess and leucine limitation reveals deviations from the wild-type derepression pattern in some mutants. In some, repression of the synthetase by leucine alone was observed. In others, the repressibility of the dehydrogenase was lost. It is unlikely that these deviations were due to the same primary mutational event that caused leucine auxotrophy. No mutants were found in which an altered gene was recognized to be clearly responsible for the level of the leucine-forming enzymes.  相似文献   

16.
The gene encoding the cysteinyl-tRNA synthetase of E. coli was cloned from an E. coli genomic library made in lambda 2761, a lambda vector which can integrate and which carries a chloramphenicol resistance gene. A thermosensitive cysS mutant of E. coli was lysogenised and chloramphenicol-resistant colonies able to grow at 42 degrees C were selected to isolate phages containing the wild-type cysS gene. The sequence of the gene was determined. It codes for a 461 amino-acid protein and includes the sequences HIGH and KMSK known to be involved in the ATP and tRNA binding respectively of class I synthetases. The cysteinyl enzyme has segments in common with the cytoplasmic leucyl-tRNA synthetase of Neurospora crassa, the tryptophanyl-tRNA synthetase of Bacillus stearothermophilus, and the phenylalanyl-tRNA synthetase of Saccharomyces cerevisiae. Sequence comparisons show that the amino end of the cysteinyl-tRNA synthetase has similarities with prokaryotic elongation factors Tu; this region is close to the equivalent acceptor binding domain of the glutaminyl-tRNA synthetase of E. coli. There is a further similarity with the seryl enzyme (a class II enzyme) which has led us to propose that both classes had a common origin and that this was the ancestor of the cysteinyl-tRNA synthetase.  相似文献   

17.
Transfer RNAs from Escherichia coli, yeast (Sacharomyces cerevisiae), and calf liver were subjected to controlled hydrolysis with venom exonuclease to remove 3'-terminal nucleotides, and then reconstructed successively with cytosine triphosphate (CTP) and 2'- or 3'-deoxyadenosine 5'-triphosphate in the presence of yeast CTP(ATP):tRNA nucleotidyltransferase. The modified tRNAs were purified by chromatography on DBAE-cellulose or acetylated DBAE-cellulose and then utilized in tRNA aminoacylation experiments in the presence of the homologous aminoacyl-tRNA synthetase activities. The E. coli, yeast, and calf liver aminoacyl-tRNA synthetases specific for alanine, glycine, histidine, lysine, serine, and threonine, as well as the E. coli and yeast prolyl-tRNA synthetases and the yeast glutaminyl-tRNA synthetase utilized only those homologous modified tRNAs terminating in 2'-deoxyadenosine (i.e., having an available 3'-OH group). This is interpreted as evidence that these aminoacyl-tRNA synthetases normally aminoacylate their unmodified cognate tRNAs on the 3'-OH group. The aminoacyl-tRNA synthetases from all three sources specific argining, isoleucine, leucine, phenylalanine, and valine, as well as the E. coli and yeast enzymes specific for methionine and the E. coli glutamyl-tRNA synthetase, used as substrates exclusively those tRNAs terminating in 3'-deoxyadenosine. Certain aminoacyl-tRNA synthetases, including the E. coli, yeast, and calf liver asparagine and tyrosine activating enzymes, the E. coli and yeast cysteinyl-tRNA synthetases, and the aspartyl-tRNA synthetase from yeast, utilized both isomeric tRNAs as substrates, although generally not at the same rate. While the calf liver aspartyl- and cysteinyl-tRNA synthetases utilized only the corresponding modified tRNA species terminating in 2'-deoxyadenosine, the use of a more concentrated enzyme preparation might well result in aminoacylation of the isomeric species. The one tRNA for which positional specificity does seem to have changed during evolution is tryptophan, whose E. coli aminoacyl-tRNA synthetase utilized predominantly the cognate tRNA terminating in 3'-deoxyadenosine, while the corresponding yeast and calf liver enzymes were found to utilize predominantly the isomeric tRNAs terminating in 2'-deoxyadenosine. The data presented indicate that while there is considerable diversity in the initial position of aminoacylation of individual tRNA isoacceptors derived from a single source, positional specificity has generally been conserved during the evolution from a prokaryotic to mammalian organism.  相似文献   

18.
The cytoplasmic leucyl-tRNA synthetases were purified from a wild-type Neurospora crassa and from a temperature-sensitive leucine-auxotroph (leu-5) mutant. A detailed steady-state kinetic study of the aminoacylation of the tRNALeu from N. crassa by the purified synthetases was carried out. These enzymes need preincubation with dithioerythritol and spermine before the assay in order to become fully active. The Kappm value for leucine was lowered by high ATP concentrations and correspondingly the Kappm,ATP was lowered by high leucine concentrations. The Kappm,Leu was lowered by high pH, a pK value of 6.7 (at 30 degrees C) was calculated for the ionizable group affecting the Km. At the concentrations of 2 mM ATP, 20 microM leucine, 0.3 microM tRNALeu, and pH 7 the apparent Km values were Kappm,ATP = 1.3 mM, Kappm,Leu = 49 microM and Kappm,tRNA = 0.15 microM. No essentially altered cytoplasmic leucyl-tRNA synthetase was produced by the temperature-sensitive mutant strain when kept at 37 degrees C. In none of these experiments could we find any difference between the wild-type enzyme and the enzyme from the mutant strain (whether grown at permissive temperature, 28 degrees C, or grown at permissive temperature for 24 h followed by growth at 37 degrees C). We therefore think that the small difference in the Km value for leucine of the wild-type and mutant enzyme, established in some earlier investigations, is not due to a difference in the kinetic properties of the enzyme molecules but to an external influence. The almost total lack of the mitochondrial leucyl-tRNA synthetase in the mutant strain besides the leucine autotrophy remains the only difference between the wild-type and mutant strains.  相似文献   

19.
Polypeptide chains of 10 aminoacyl-transfer ribonucleic acid synthetases (those for arginine, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, phenylalanine, threonine, and valine) have been identified in lysates of Escherichia coli resolved by the O'Farrell two-dimensional gel system. By labeling cells uniformly with [14C]glucose and by measuring the total amounts of these polypeptides by their radioactivity, estimations of the steady-state, molecular amounts of these enzymes were made and compared to the number of ribosomes and elongation factors in these cells. Portions of a reference culture grown on glucose and labeled with [14C]leucine or [35S]sulfate were mixed with four cultures grown in widely different media containing [3H]leucine or [3H]leucine plus [3H]isoleucine. From the isotope ratios of the total protein and of the spots containing the synthetase chains, the chemical amount of each synthetase relative to that of the reference culture was determined. The results, where comparable, show reasonable agreement with enzyme activity measurements. In general, these synthetases each exhibit a positive correlation with growth rate in unrestricted media, indicating a strong tendency for the levels of transfer ribonucleic acid, synthetases, elongation factors, and ribosomes to remain approximately, though not exactly, in balance at different growth rates.  相似文献   

20.
F Cramer  U Englisch  W Freist  H Sternbach 《Biochimie》1991,73(7-8):1027-1035
Isoleucyl-tRNA synthetases isolated from commercial baker's yeast and E coli were investigated for their sequences of substrate additions and product releases. The results show that aminoacylation of tRNA is catalyzed by these enzymes in different pathways, eg isoleucyl-tRNA synthetase from yeast can act with four different catalytic cycles. Amino acid specificities are gained by a four-step recognition process consisting of two initial binding and two proofreading steps. Isoleucyl-tRNA synthetase from yeast rejects noncognate amino acids with discrimination factors of D = 300-38000, isoleucyl-tRNA synthetase from E coli with factors of D = 600-68000. Differences in Gibbs free energies of binding between cognate and noncognate amino acids are related to different hydrophobic interaction energies and assumed conformational changes of the enzyme. A simple hypothetical model of the isoleucine binding site is postulated. Comparison of gene sequences of isoleucyl-tRNA synthetase from yeast and E coli exhibits only 27% homology. Both genes show the 'HIGH'- and 'KMSKS'-regions assigned to binding of ATP and tRNA. Deletion of 250 carboxyterminal amino acids from the yeast enzyme results in a fragment which is still active in the pyrophosphate exchange reaction but does not catalyze the aminoacylation reaction. The enzyme is unable to catalyze the latter reaction if more than 10 carboxyterminal residues are deleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号