首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Forces in the spindle that align and segregate chromosomes produce a steady poleward flux of kinetochore microtubules (MTs [kMTs]) in higher eukaryotes. In several nonmammalian systems, flux is driven by the tetrameric kinesin Eg5 (kinesin 5), which slides antiparallel MTs toward their minus ends. However, we find that the inhibition of kinesin 5 in mammalian cultured cells (PtK1) results in only minor reduction in the rate of kMT flux from approximately 0.7 to approximately 0.5 microm/min, the same rate measured in monopolar spindles that lack antiparallel MTs. These data reveal that the majority of poleward flux of kMTs in these cells is not driven by Eg5. Instead, we favor a polar "pulling-in" mechanism in which a depolymerase localized at kinetochore fiber minus ends makes a major contribution to poleward flux. One candidate, Kif2a (kinesin 13), was detected at minus ends of fluxing kinetochore fibers. Kif2a remains associated with the ends of K fibers upon disruption of the spindle by dynein/dynactin inhibition, and these K fibers flux.  相似文献   

2.
Although mitotic and meiotic spindles maintain a steady-state length during metaphase, their antiparallel microtubules slide toward spindle poles at a constant rate. This "poleward flux" of microtubules occurs in many organisms and may provide part of the force for chromosome segregation. We use quantitative image analysis to examine the role of the kinesin Eg5 in poleward flux in metaphase Xenopus laevis egg extract spindles. Pharmacological inhibition of Eg5 results in a dose-responsive slowing of flux, and biochemical depletion of Eg5 significantly decreases the flux rate. Our results suggest that ensembles of nonprocessive Eg5 motors drive flux in metaphase Xenopus extract spindles.  相似文献   

3.
Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward through each half-spindle and then were lost from microtubule minus ends at the spindle poles. The average poleward velocity of approximately 0.7 microm/min for speckles within kinetochore microtubules at metaphase increased during anaphase to approximately 0.9 microm/min. Segregating half-bivalents had an average poleward velocity of approximately 0.5 microm/min, about half that of speckles within shortening kinetochore fibers. When injected during anaphase, rhtubulin was incorporated at kinetochores, and kinetochore fiber fluorescence spread poleward as anaphase progressed. The results show that tubulin subunits are added to the plus end of kinetochore microtubules and are removed from their minus ends at the poles, all while attached chromosomes move poleward during anaphase A. The results cannot be explained by a Pac-man model, in which 1) kinetochore-based, minus end-directed motors generate poleward forces for anaphase A and 2) kinetochore microtubules shorten at their plus ends. Rather, in these cells, kinetochore fiber shortening during anaphase A occurs exclusively at the minus ends of kinetochore microtubules.  相似文献   

4.
We use both in vitro and in vivo approaches to examine the roles of Eg5 (kinesin-related protein), cytoplasmic dynein, and dynactin in the organization of the microtubules and the localization of NuMA (Nu-clear protein that associates with the Mitotic Apparatus) at the polar ends of the mammalian mitotic spindle. Perturbation of the function of Eg5 through either immunodepletion from a cell free system for assembly of mitotic asters or antibody microinjection into cultured cells leads to organized astral microtubule arrays with expanded polar regions in which the minus ends of the microtubules emanate from a ring-like structure that contains NuMA. Conversely, perturbation of the function of cytoplasmic dynein or dynactin through either specific immunodepletition from the cell free system or expression of a dominant negative subunit of dynactin in cultured cells results in the complete lack of organization of microtubules and the failure to efficiently concentrate the NuMA protein despite its association with the microtubules. Simultaneous immunodepletion of these proteins from the cell free system for mitotic aster assembly indicates that the plus end- directed activity of Eg5 antagonizes the minus end-directed activity of cytoplasmic dynein and a minus end-directed activity associated with NuMA during the organization of the microtubules into a morphologic pole. Taken together, these results demonstrate that the unique organization of the minus ends of microtubules and the localization of NuMA at the polar ends of the mammalian mitotic spindle can be accomplished in a centrosome-independent manner by the opposing activities of plus end- and minus end-directed motors.  相似文献   

5.
Kinesin-5 is an essential mitotic motor. However, how its spatial-temporal distribution is regulated in mitosis remains poorly understood. We expressed localization and affinity purification-tagged Eg5 from a mouse bacterial artificial chromosome (this construct was called mEg5) and found its distribution to be tightly regulated throughout mitosis. Fluorescence recovery after photobleaching analysis showed rapid Eg5 turnover throughout mitosis, which cannot be accounted for by microtubule turnover. Total internal reflection fluorescence microscopy and high-resolution, single-particle tracking revealed that mEg5 punctae on both astral and midzone microtubules rapidly bind and unbind. mEg5 punctae on midzone microtubules moved transiently both toward and away from spindle poles. In contrast, mEg5 punctae on astral microtubules moved transiently toward microtubule minus ends during early mitosis but switched to plus end-directed motion during anaphase. These observations explain the poleward accumulation of Eg5 in early mitosis and its redistribution in anaphase. Inhibition of dynein blocked mEg5 movement on astral microtubules, whereas depletion of the Eg5-binding protein TPX2 resulted in plus end-directed mEg5 movement. However, motion of Eg5 on midzone microtubules was not altered. Our results reveal differential and precise spatial and temporal regulation of Eg5 in the spindle mediated by dynein and TPX2.  相似文献   

6.
Chromosome segregation relies on the dynamic properties of spindle microtubules (MTs). Poleward MT flux contributes to spindle dynamics through the disassembly of MT minus ends at spindle poles coupled to the continuous poleward transport of spindle MTs. Despite being conserved in metazoan cells, the function of flux remains controversial because flux rates differ widely in different cell types. In meiotic systems, the rate of flux nearly matches that of chromosome movement, but in mitotic systems, flux is significantly slower than chromosome movement. Here, we show that spindles in human mitotic cells depleted of the kinesin-13 proteins Kif2a and MCAK lack detectable flux and that such cells frequently fail to segregate all chromosomes appropriately at anaphase. Elimination of flux reduces poleward chromosome velocity approximately 20%, but does not hinder bipolar spindle assembly, chromosome alignment, or mitotic progression. Thus, mitosis proceeds efficiently in human cells lacking detectable poleward MT flux. These data demonstrate that in human cultured cells, kinetochores are sufficient to effectively power chromosome movement, leading us to speculate that flux is maintained in these cells to fulfill other functional roles such as error correction or kinetochore regulation.  相似文献   

7.
Cell division and the microtubular cytoskeleton]   总被引:1,自引:0,他引:1  
K Izutsu 《Human cell》1991,4(2):100-108
Kinetochore microtubules result from an interaction between astral microtubules and the kinetochore of the chromosomes after breakdown of the nuclear envelope at the end of prophase. In this process, the end of a microtubule projecting from one of the polar regions contacts the primary constriction of a chromosome. The latter then undergoes rapid poleward movement. Concerning the mechanism of anaphase chromosome movement, the motive force for the chromosome-to-pole movement appears to be generated at the kinetochore or in the region very close to it. It has not been determined whether chromosomes propel themselves along stationary kinetochore microtubules by a motor at the kinetochore, or they are pulled poleward by a traction fiber consisting of kinetochore microtubules and associated motors. As chromosomes move poleward coordinate disassembly of kinetochore microtubules might occur from their kinetochore ends. In diatom and yeast spindles, elongation of the spindle in anaphase (anaphase B) may be explained by microtubule assembly at polar microtubule ends in the spindle mid-zone and sliding of the antiparallel microtubules from the opposite poles. The sliding force appears to be generated through an ATP-dependent microtubule motor. In isolated sea urchin spindles, the microtubule assembly at the equator alone might provide the force for spindle elongation, although, in addition, involvement of microtubule sliding by a GTP-requiring mechanochemical enzyme cannot be excluded. Discussions were made on possible participation in anaphase chromosome movement of such microtubule motors as dynein, kinesin, dynamin and the claret segregation protein.  相似文献   

8.
Lamin B is a component of the membranous spindle matrix isolated from Xenopus egg extracts, and it is required for proper spindle morphogenesis. Besides lamin B, the spindle matrix contains spindle assembly factors (SAFs) such as Eg5 and dynein which are known to regulate microtubule organization and SAFs known to promote microtubule assembly such as Maskin and XMAP215. Because lamin B does not bind directly to microtubules, it must affect spindle morphogenesis indirectly by influencing the function of spindle matrix-associated SAFs. Using different assays in Xenopus egg extracts, we found that depleting lamin B caused formation of elongated and multipolar spindles, which could be reversed by partially inhibiting the kinesin Eg5, revealing an antagonistic relationship between Eg5 and lamin B. However, lamin B only very weakly antagonizes Eg5 in mediating poleward microtubule-flux based on fluorescence speckle microscopy. Depleting lamin B led to a very small but statistically significant increase in flux. Furthermore, flux reduction caused by partial Eg5 inhibition is only slightly reversed by removing lamin B. Because lamin B does not bind to Eg5, our studies suggest two nonexclusive mechanisms by which lamin B can indirectly antagonize Eg5. It could function in a network that restricts Eg5-driven microtubule sliding only when microtubules come into transient contact with the network. Lamin B could also function to sequester microtubule polymerization activities within the spindle. Without lamin B, increased microtubule assembly caused by the released SAFs would lead to excessive microtubule sliding that results in formation of elongated and multipolar spindles.  相似文献   

9.
The spindle is a dynamic self-assembling machine that coordinates mitosis. The spindle’s function depends on its ability to organize microtubules into poles and maintain pole structure despite mechanical challenges and component turnover. Although we know that dynein and NuMA mediate pole formation, our understanding of the forces dynamically maintaining poles is limited: we do not know where and how quickly they act or their strength and structural impact. Using laser ablation to cut spindle microtubules, we identify a force that rapidly and robustly pulls severed microtubules and chromosomes poleward, overpowering opposing forces and repairing spindle architecture. Molecular imaging and biophysical analysis suggest that transport is powered by dynein pulling on minus ends of severed microtubules. NuMA and dynein/dynactin are specifically enriched at new minus ends within seconds, reanchoring minus ends to the spindle and delivering them to poles. This force on minus ends represents a newly uncovered chromosome transport mechanism that is independent of plus end forces at kinetochores and is well suited to robustly maintain spindle mechanical integrity.  相似文献   

10.
In higher eukaryotes, microtubules (MT) in both halves of the mitotic spindle translocate continuously away from the midzone in a phenomenon called poleward microtubule flux. Because the spindle maintains constant length and microtubule density, this microtubule translocation must somehow be coupled to net MT depolymerization at spindle poles. The molecular mechanisms underlying both flux-associated translocation and flux-associated depolymerization are not well understood, but it can be predicted that blocking pole-based destabilization will increase spindle length, an idea that has not been tested in meiotic spindles. Here, we show that simultaneous addition of two pole-disrupting reagents p50/dynamitin and a truncated version of Xklp2 results in continuous spindle elongation in Xenopus egg extracts, and we quantitatively correlate this elongation rate with the poleward translocation of stabilized microtubules. We further use this system to demonstrate that this poleward translocation requires the activity of the kinesin-related protein Eg5. These results suggest that Eg5 is responsible for flux-associated MT translocation and that dynein and Xklp2 regulate flux-associated microtubule depolymerization at spindle poles.  相似文献   

11.
In higher eukaryotic cells, microtubules within metaphase and anaphase spindles undergo poleward flux, the slow, poleward movement of tubulin subunits through the spindle microtubule lattice. Although a number of studies have documented this phenomenon across a wide range of model systems, the possibility of poleward flux before nuclear envelope breakdown (NEB) has not been examined. Using a mammalian cell line expressing photoactivatable green fluorescent protein (GFP)-tubulin, we observe microtubule motion, both toward and away from centrosomes, at a wide range of rates (0.5–4.5 μm/min) in prophase cells. Rapid microtubule motion in both directions is dynein dependent. In contrast, slow microtubule motion, which occurs at rates consistent with metaphase flux, is insensitive to inhibition of dynein but sensitive to perturbation of Eg5 and Kif2a, two proteins with previously documented roles in flux. Our results demonstrate that microtubules in prophase cells are unexpectedly dynamic and that a subpopulation of these microtubules shows motion that is consistent with flux. We propose that the marked reduction in rate and directionality of microtubule motion from prophase to metaphase results from changes in microtubule organization during spindle formation.  相似文献   

12.
TPX2 is a Ran-regulated spindle assembly factor that is required for kinetochore fiber formation and activation of the mitotic kinase Aurora A. TPX2 is enriched near spindle poles and is required near kinetochores, suggesting that it undergoes dynamic relocalization throughout mitosis. Using photoactivation, we measured the movement of PA-GFP-TPX2 in the mitotic spindle. TPX2 moves poleward in the half-spindle and is static in the interzone and near spindle poles. Poleward transport of TPX2 is sensitive to inhibition of dynein or Eg5 and to suppression of microtubule flux with nocodazole or antibodies to Kif2a. Poleward transport requires the C terminus of TPX2, a domain that interacts with Eg5. Overexpression of TPX2 lacking this domain induced excessive microtubule formation near kinetochores, defects in spindle assembly and blocked mitotic progression. Our data support a model in which poleward transport of TPX2 down-regulates its microtubule nucleating activity near kinetochores and links microtubules generated at kinetochores to dynein for incorporation into the spindle.  相似文献   

13.
14.
During mitosis, microtubules (MTs), aided by motors and associated proteins, assemble into a mitotic spindle. Recent evidence supports the notion that a membranous spindle matrix aids spindle formation; however, the mechanisms by which the matrix may contribute to spindle assembly are unknown. To search for a mechanism by which the presence of a mitotic membrane might help spindle morphology, we built a computational model that explores the interactions between these components. We show that an elastic membrane around the mitotic apparatus helps to focus MT minus ends and provides a resistive force that acts antagonistically to plus-end-directed MT motors such as Eg5.  相似文献   

15.
We investigated the mechanism of poleward microtubule flux in the mitotic spindle by generating spindle subassemblies in Xenopus egg extracts in vitro and assaying their ability to flux by photoactivation of fluorescence and low-light multichannel fluorescence video-microscopy. We find that monopolar intermediates of in vitro spindle assembly (half-spindles) exhibit normal poleward flux, as do astral microtubule arrays induced by the addition of dimethyl sulfoxide to egg extracts in the absence of both chromosomes and conventional centrosomes. Immunodepletion of the kinesin-related microtubule motor protein Eg5, a candidate flux motor, suggests that Eg5 is not required for flux. These results suggest that poleward flux is a basic element of microtubule behavior exhibited by even simple self-organized microtubule arrays and presumably underlies the most elementary levels of spindle morphogenesis.  相似文献   

16.
While the metaphase spindle maintains a constant shape and size during cell division, its major component microtubules are continuously being polymerized, depolymerized and transported towards the two spindle poles in a process called microtubule poleward flux. This process has been observed in all metazoan cells. Recent studies have indicated that Kinesin-5s, which can drive the relative sliding of microtubules, and kinesin-13s, which regulate microtubule polymerization, are directly involved in microtubule poleward flux. The availability of molecular and chemical tools to perturb protein functions together with improvements in imaging and analytical methods have allowed the examination of these two kinesins' roles in poleward flux at high temporal and spatial resolution. These advances have shed some light on the molecular mechanisms that drive microtubule poleward flux.  相似文献   

17.
A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles, along with other regulators of microtubule dynamics. How microtubule polymerization and depolymerization are coordinated remains unclear. Here we show that TPX2, a microtubule-bundling protein and activator of Aurora A, plays an important role. TPX2 was phosphorylated by Aurora A during mitosis. Its phospho-null mutant caused short metaphase spindles coupled with low microtubule flux rate. Interestingly, phosphorylation of TPX2 regulated its interaction with CLASP1 but not Kif2a. The effect of its mutant in shortening the spindle could be rescued by codepletion of CLASP1 and Kif2a that abolished microtubule flux. Together we propose that Aurora A–dependent TPX2 phosphorylation controls mitotic spindle length through regulating microtubule flux.  相似文献   

18.
Poleward microtubule flux mitotic spindles assembled in vitro   总被引:17,自引:10,他引:7       下载免费PDF全文
In the preceding paper we described pathways of mitotic spindle assembly in cell-free extracts prepared from eggs of Xenopus laevis. Here we demonstrate the poleward flux of microtubules in spindles assembled in vitro, using a photoactivatable fluorescein covalently coupled to tubulin and multi-channel fluorescence videomicroscopy. After local photoactivation of fluorescence by UV microbeam, we observed poleward movement of fluorescein-marked microtubules at a rate of 3 microns/min, similar to rates of chromosome movement and spindle elongation during prometaphase and anaphase. This movement could be blocked by the addition of millimolar AMP-PNP but was not affected by concentrations of vanadate up to 150 microM, suggesting that poleward flux may be driven by a microtubule motor similar to kinesin. In contrast to previous results obtained in vivo (Mitchison, T. J. 1989. J. Cell Biol. 109:637-652), poleward flux in vitro appears to occur independently of kinetochores or kinetochore microtubules, and therefore may be a general property of relatively stable microtubules within the spindle. We find that microtubules moving towards poles are dynamic structures, and we have estimated the average half-life of fluxing microtubules in vitro to be between approximately 75 and 100 s. We discuss these results with regard to the function of poleward flux in spindle movements in anaphase and prometaphase.  相似文献   

19.
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes.  相似文献   

20.
The movement of chromosomes during mitosis occurs on a bipolar, microtubule-based protein machine, the mitotic spindle. It has long been proposed that poleward chromosome movements that occur during prometaphase and anaphase A are driven by the microtubule motor cytoplasmic dynein, which binds to kinetochores and transports them toward the minus ends of spindle microtubules. Here we evaluate this hypothesis using time-lapse confocal microscopy to visualize, in real time, kinetochore and chromatid movements in living Drosophila embryos in the presence and absence of specific inhibitors of cytoplasmic dynein. Our results show that dynein inhibitors disrupt the alignment of kinetochores on the metaphase spindle equator and also interfere with kinetochore- and chromatid-to-pole movements during anaphase A. Thus, dynein is essential for poleward chromosome motility throughout mitosis in Drosophila embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号