首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prepubertal ewe lambs were treated with empty or filled melatonin implants. The implants were placed s.c. at birth and pituitary responsiveness to various doses of LHRH, LH/FSH pulsatility and prolactin and melatonin secretion were examined at 10, 19, 28, 36 and 45 weeks of age. Control animals (N = 10) showed no consistent alteration in pituitary responsiveness to LHRH during development. Ewes treated with melatonin (N = 10) had puberty onset delayed by 4 weeks (P less than 0.03) but no effect of melatonin on LH or FSH response to LHRH injection was observed at any stage of development. In the control and melatonin-treated ewe lambs the responses to LHRH injection were lower during darkness than during the day at all stages of development. No consistent differences in LH or FSH pulsatility were observed between treatment groups or during development. Prolactin concentrations, however, failed to decrease at the time of puberty (autumn) in the melatonin-treated group. Melatonin-treated ewe lambs maintained normal rhythmic melatonin production which was superimposed on a higher basal concentration and showed the same increase in melatonin output with age as the control ewes. These results indicate that the delayed puberty caused by melatonin implants is not due to decreased pituitary responsiveness to LHRH or to dramatic changes in basal LH or FSH secretion.  相似文献   

2.
The effect of 5 alpha-dihydroprogesterone (5 alpha-DHP) on gonadotropin release was examined in the immature acutely ovariectomized (OVX) rat primed with a low dose of estradiol (E2). Treatment with various doses of 5 alpha-DHP given in combination with E2 increased levels of follicle-stimulating hormone (FSH) but had no effect on serum luteinizing hormone (LH). A single injection of a maximally stimulating dose of 5 alpha-DHP (0.4 mg/kg) stimulated increases in serum FSH at 1200 h and, 6 h later, at 1800 h. Pituitary LH and FSH content was dramatically enhanced by 1600 h and levels remained elevated at 1800 h. The administration of pentobarbital at 1200 h, versus 1400 h or 1600 h, prevented the increase in basal serum FSH levels at 1800 h, implying that the release of hypothalamic LH releasing hormone (LHRH) is modulated by 5 alpha-DHP. In addition, changes in pituitary sensitivity to LHRH as a result of 5 alpha-DHP were measured and a significant increase in the magnitude of FSH release was observed at 1200 h and 1800 h. Although the LH response to LHRH in 5 alpha-DHP-treated rats was not different from controls, the duration of LH release was lengthened. These results suggest that 5 alpha-DHP may stimulate FSH release by a direct action at the pituitary level. Together, these observations support the theory that 5 alpha-DHP mediates the facilitative effect of progesterone on FSH secretion and further suggests an action of 5 alpha-DHP in this phenomenon at both pituitary and hypothalamic sites.  相似文献   

3.
Stress induced changes in testis function   总被引:2,自引:0,他引:2  
The mechanism through which chronic stress inhibits the hypothalamic-pituitary-testicular axis has been investigated. Chronic restraint stress decreases testosterone secretion, an effect that is associated with a decrease in plasma gonadotropin levels. In chronically stressed rats there was a decrease in hypothalamic luteinizing hormone-releasing hormone (LHRH) content and the response on plasma gonadotropins to LHRH administration was enhanced. Thus the inhibitory effect of chronic stress on plasma LH and FSH levels seems not to be due to a reduction in pituitary responsiveness to LHRH, but rather to a modification in LHRH secretion. It has been suggested that beta-endorphin might interfere with hypothalamic LHRH secretion during stress. Chronic immobilization did not modify hypothalamic beta-endorphin, while an increase in pituitary beta-endorphin secretion was observed. Since we cannot exclude that changes in beta-endorphin secreted by the pituitary or other opioids may play some role in the stress-induced decrease in LHRH secretion, the effect of naltrexone administration on plasma gonadotropin was studied in chronically stressed rats. Naltrexone treatment did not modify the decrease in plasma concentrations of LH or FSH. These findings suggest that the inhibitory effect of restraint on the testicular axis is exerted at hypothalamic level by some mechanism other than opioids.  相似文献   

4.
To study the role of androgens in the control of gonadotropin and prolactin secretion in ther ewe, we have characterized androgen receptors in pituitary cytosol, and investigated the effect of androgens on pituitary hormone release in vivo and in vitro. High affinity, low capacity receptors, with an affinity for methyltrienolone (R1881) greater than 5 alpha-dihydrotestosterone (5 alpha-DHT) greater than testosterone (T) much greater than androstenedione (A4), estradiol-17 beta (E2) and progesterone (P), were identified in pituitary cytosol. Addition of 1 nM 5 alpha-DHT, but not A4, inhibited luteinizing hormone (LH) release from pituitary cells in vitro, induced by 10(10) to 10(-7) M luteinizing hormone releasing hormone (LHRH). The release of follicle-stimulating hormone (FSH) with 10(-9) M LHRH was inhibited when cells were incubated with 1 nM 5 alpha-DHT. 5 alpha-DHT had no effect when higher or lower doses of LHRH were used. In ovariectomized ewes, neither an i.v. injection of 1 mg, nor intracarotid injections of up to 1 mg, 5 alpha-DHT affected plasma LH, FSH or prolactin levels, despite dose-related increases in plasma 5 alpha-DHT levels. Daily or twice daily i.m. injections of 5 mg 5 alpha-DHT in oil did not affect LH or FSH levels, but daily injections of 20 mg significantly reduced plasma LH levels within 4 days and plasma FSH levels within 6 days. Thus, despite the presence of androgen receptors in the ewe pituitary, we conclude that androgens per se are of minimal importance in the regulation of pituitary LH, FSH and prolactin secretion in the ewe. The low binding affinity of A4 and the lack of its effect on hormone secretion in vitro suggests that A4 may act as an estrogen precursor rather than an androgenic hormone. The function of the pituitary androgen receptor remains to be established.  相似文献   

5.
Recent reports indicate that luteinizing hormone-releasing hormone (LHRH) releases prolactin (PRL) under some circumstances. We examined the chronic effects of LHRH, growth hormone-releasing hormone (GHRH), and corticotrophin-releasing hormone (CRH) on the release of PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) by pituitary allografts in hypophysectomized, orchidectomized hamsters. Entire pituitary glands removed from 7-week-old-male Golden Syrian hamsters were placed under the renal capsule of hypophysectomized, orchidectomized 12-week-old hamsters. Beginning 6 days postgrafting, hamsters were injected subcutaneously twice daily with 1 microgram LHRH, 4 micrograms GHRH, or 4 micrograms CRH in 100 microliter of vehicle for 16 days. Six hosts from each of the four groups were decapitated on Day 17, 16 hr after the last injection. Prolactin, LH, and FSH were measured in serum collected from the trunk blood. Treatment with LHRH significantly elevated serum PRL levels above those measured in the other three groups, which were all similar to one another. Serum LH levels in hosts treated with vehicle were elevated above those measured in the other three groups. Serum FSH levels in hosts treated with LHRH were greater than FSH levels in any of the other three groups. These results indicate that chronic treatment with LHRH can stimulate PRL and FSH release by ectopic pituitary cells in the hamster.  相似文献   

6.
The effect of androgens on pituitary response to luteinizing-hormore-releasing hormone (LHRH) and their ability to modify effects of 17beta-estradiol (E2) on pituitary responsiveness to LHRH were tested in ovariectomized rats maintained on a daily dose of 0.25 microgram estradiol benzoate per rat for 6 d before androgen administration. Testosterone propionate (TP) (4, 40, 400, or 4000 microgram per rat), administered 24 h before LHRH (500 ng per rat), had no significant effect on luteinizing hormone (LH) or follicle-stimulating hormone (FSH) response. Similar doses of dihydrotestosterone (DHT) did not significantly alter the LH response but significantly suppressed the FSH response. Even the lowest dose completely blocked the FSH response to LHRH. TP in combination with 4 or 400 microgram of E2 suppressed the stimulatory effect of E2 on both LH and FSH response to LHRH in a dose-related manner. DHT and E2 in combination affected LH response inconsistently, whereas their ratio determined FSH response; there was pronounced inhibition of FSH response in rats given high doses of DHT combined with low doses of E2; DHT inhibition of FSH response in animals receiving 4 microgram of DHT with 400 microgram E2 was partially overcome by the stimulatory effect of E2. Our results indicate that TP and DHT affect LH and FSH response to LHRH differently. The ratio of androgen to estrogen is important in determining the response to LHRH.  相似文献   

7.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

8.
This study examined the impact of the gonadotrophin-releasing hormone (GnRH) antagonist Antarelix on LH, FSH, ovarian steroid hormone secretion, follicular development and pituitary response to LHRH in cycling gilts. Oestrous cycle of 24 Landrace gilts was synchronised with Regumate (for 15 days) followed by 800 IU PMSG 24h later. In experiment 1, Antarelix (n=6 gilts) was injected i.v. (0.5mg per injection) twice daily on four consecutive days from day 3 to 6 (day 0=last day of Regumate feeding). Control gilts (n=6) received saline. Blood was sampled daily, and every 20 min for 6h on days 2, 4, 6, 8 and 10. In experiment 2, gilts (n=12) were assigned to the following treatments: Antarelix; Antarelix + 50 microg LHRH on day 4; Antarelix + 150 microg LHRH on day 4 or control, 50 microg LHRH only on day 4. Blood samples were collected daily and every 20 min for 6h on days 2, 4 and 6 to assess LH pulsatility. Ovarian follicular development was evaluated at slaughter.Antarelix suppressed (P<0.05) serum LH concentrations. The amount of LH released on days 4-9 (experiment 1) was 8.80 versus 36.54 ngml(-1) (S.E.M.=6.54). The pattern of FSH, and the preovulatory oestradiol rise was not affected by GnRH antagonist. Suppression of LH resulted in a failure (P<0.05) of postovulatory progesterone secretion. Exogenous LHRH (experiment 2) induced a preovulatory-like LH peak, however in Antarelix treated gilts the LH surge started earlier and its duration was less compared to controls (P<0.01). Furthermore, the amount of LH released from day 4 to 5 was lower (P<0.01) in Antarelix, Antarelix + 50 and Antarelix + 150 treated animals compared to controls. No differences were estimated in the number of LH pulses between days and treatment. Pulsatile FSH was not affected by treatment. Mean basal LH levels were lower (P<0.05) after antagonist treatment compared to controls. Antarelix blocked the preovulatory LH surge and ovulation, but the effects of Antarelix were reduced by exogenous LHRH treatment. The development of follicles larger than 4mm was suppressed (P<0.05) by antagonist treatment.In conclusion, Antarelix treatment during the follicular phase blocked preovulatory LH surge, while FSH and oestradiol secretion were not affected. Antarelix failed to alter pulsatile LH and FSH secretor or pituitary responsiveness to LHRH during the preovulatory period.  相似文献   

9.
A dose of 100 microliter of a potent ovine LHRH gamma globulin inhibited ovulation in the cyclic rat when administered at 12:00 h on the day of pro-oestrus. A dose of 10 ml of the preparation was administered i.v. to female stumptailed macaques to achieve circulating antibody titres 3-4-fold higher than in the rat. In an ovariectomized macaque, this caused a marked fall in serum concentrations of LH to less than 10% of pretreatment values and also a significant, though less pronounced, fall in FSH. Six monkeys were treated with the LHRH gamma globulin during the mid-late follicular phase of the cycle. In 2 monkeys in which serum oestradiol concentrations were less than 100 pg/ml at the time of antibody administration, the rising oestradiol levels were abruptly suppressed and the normal mid-cycle LH surge failed to occur. Serum concentrations of LH and FSH declined to low levels for 8-10 days after which time normal follicular development occurred. In the remaining 4 monkeys in which follicular development was more advanced as indicated by serum oestradiol concentrations of greater than 100 pg/ml, the antibodies induced either a transient decline or had no effect on the rising serum concentration of oestradiol. An LH/FSH surge followed by a rise in serum progesterone occurred in these macaques. When the antibodies were administered to a further 6 macaques, which had also been treated with oestradiol benzoate during the early follicular phase to induce an LH surge, the neutralization of LHRH again failed to block the surge even when the dose of antibody was increased to 20 ml. The results show that LHRH antibodies were unable to block the LH surge in the macaque. They contrast with results obtained with LHRH immunoneutralization in the sheep, rat, hamster, mouse and bird and suggest that the ability of oestrogen to induce an LH surge by acting directly on the LHRH-primed anterior pituitary gland is more dominant in the primate.  相似文献   

10.
The change in serum gonadotrophin concentration in response to synthetic Luteinizing Hormone Releasing Hormone (LHRH - 400 ng i.v.) was investigated under barbiturate anaesthesia in adult male rats either chronically castrated, rendered aspermatogenic by the administration of α-chlorohydrin 12–16 weeks previously (to remove inhibin), or treated with vehicle. A single injection of LHRH increased serum LH and FSH concentrations similarly in both intact and aspermatogenic rats. In castrated rats the amount of LH released was much greater and the FSH secretion sustained. A second injection produced a similar increase although a second peak of FSH could not be detected in castrated rats as the FSH level was still elevated. The increase in LH levels was two to three times larger in response to the second injection of LHRH than to the first in all groups. The results do not support the hypothesis that the enhanced gonadotropin response to castration in the aspermatogenic rat is due to increased pituitary sensitivity to LHRH.  相似文献   

11.
Two experiments were conducted to examine the effects of mouse epidermal growth factor (EGF) on the concentrations of testosterone, LH and FSH in jugular blood plasma and on the pituitary responsiveness to LHRH. In 20 rams treated with subcutaneous doses of EGF at rates of 85, 98 or 113 micrograms/kg fleece-free body weight, mean plasma LH and testosterone concentrations were significantly reduced (P less than 0.05) at 6 h after treatment but not at 24 h. EGF treatment at 130 micrograms/kg fleece-free body weight suppressed the plasma content of these hormones for up to 48 h. Mean plasma FSH concentrations decreased significantly (P less than 0.05) for up to 48 h after EGF treatment, the effect being most pronounced in rams with mean pretreatment FSH values greater than or equal to 0.5 ng/ml. Intravenous injections of 1.0 micrograms LHRH given to each of 5 rams before and at 6 h, 24 h and 72 h after EGF treatment produced LH and testosterone release patterns which paralleled those obtained in 5 control rams similarly treated with LHRH. These results suggest that, in rams, depilatory doses of mouse EGF temporarily impair gonadotrophin and androgen secretion by inhibiting LHRH release from the hypothalamus. Such treatment appears to have no effect on the responsiveness of the pituitary to LHRH.  相似文献   

12.
Monolayer cultures of anterior pituitary cells from male or female pigs of 60, 80, 105 days of fetal life or of 60, 160 and 250 days of post-natal life were prepared and treated with LHRH (1 pM to 10 nM). Dose-related increases of LH were first seen at 80 days of gestation in both sexes, while only female fetuses responded to maximal LHRH at 60 days. Basal and stimulated LH release doubled in cultures from 105-day-old fetuses when compared with those at 80 days. Compared to late fetal stages LH release was 20- to 30-fold higher in cell cultures from 60-day-old (post-natal) donors without further change during the post-natal period. In all pre- and post-natal age groups basal and maximal LH release of pituitary cells from males was lower than that of females. FSH stimulation started in male and female cells at 80 days of gestation only at LHRH concentrations exceeding or equal to 0.1 nM. By 105 days FSH secretion was dose-related and pituitary cells of females responded with higher FSH values than did those of males. In general, post-natal cells released much higher amounts of FSH than did prenatal cells. Basal and maximal release of FSH decreased during post-natal development in both sexes. Basal as well as maximal FSH release of cultures from female donors was higher than that found in cultures from male donors. Determination of total LH and FSH content in fetal pituitary cell cultures indicated that the developmental increase in gonadotrophin release potential is a function of the total gonadotrophin content in vitro. We conclude that (1) the in-vitro release of gonadotrophins to LHRH is dose-, age- and sex-dependent; (2) in the female fetal pig LH responsiveness develops earlier than FSH responsiveness; (3) apparently, these maturational changes mainly reflect alterations in pituitary gonadotrophin content; and (4) there is no simple relationship between in-vitro release and circulating gonadotrophins.  相似文献   

13.
To determine what role pituitary responsiveness plays in the suppression of gonadotropin level during incubation in the turkey, the ability of the pituitary to release luteinizing hormone (LH) in response to luteinizing hormone-releasing hormone (LHRH) was compared in incubating, laying, and photorefractory birds. In all three groups, the i.m. injection of LHRH (4 micrograms/kg) increased serum LH levels; however, the LH response was markedly enhanced in the incubating turkeys as compared with the laying (6.6-fold increase over preinjection levels vs. 1.9-fold; p less than 0.05) or the photorefractory birds (9.7-fold vs. 3.1-fold; p less than 0.05). The LHRH-induced LH release was also determined in turkeys as they shifted from the laying to the incubating phase of the reproductive cycle. This response increased (p less than 0.05) in magnitude as the birds started to incubate. The high prolactin level of incubating turkeys does not have a depressing effect on LHRH-stimulated LH release; thus, impaired LH response to LHRH is not a mechanism involved in the diminished gonadotropin secretion of incubating turkeys.  相似文献   

14.
In order to define both level and severity of defect in patients with idiopathic multiple pituitary hormone deficiencies (MPHD) and to find out which patient might benefit from pulsatile LHRH substitution therapy, the effect of short-term pulsatile LHRH infusion in 6 affected male adolescents was studied. Controls were 9 boys with constitutional delay of puberty (CD). During a spontaneous nocturnal plasma profile LH and FSH levels were prepubertal with little evidence of pulsatile secretory LH activity in all MPHD patients. During short-term pulsatile LHRH stimulation (36 h), however, all showed a significant rise in mean LH and FSH levels (p less than 0.0001). Linear regression analysis revealed significant continuous increases of FSH (p less than 0.001) in all patients and of LH (p less than 0.01) in all but one patient. These changes were not accompanied by an increase of testosterone, androstenedione and DHAS levels. Since all MPHD patients showed steadily increasing gonadotropin levels if stimulated in a pulsatile manner, we conclude that the defect might only in part be located at the pituitary level. Long-term pulsatile substitution therapy with LHRH is likely to be successful in these patients as has been demonstrated in patients with known hypothalamic defect.  相似文献   

15.
This study examines the effect of oral estrogen treatment on gonadotropin secretion in three young women with gonadal failure. Each subject was treated with 0.1 mg BID of ethinyl estradiol for four weeks, and the LH and FSH responses to 200 microgram of intravenously administered LHRH were measured basally and weekly during therapy. Significant reduction of basal levels of FSH occurred within one week of treatment, with obliteration of LHRH-mediated FSH responsiveness within two weeks. By contrast, basal levels of LH were significantly reduced by the end of the second week of treatment, and LHRH-mediated LH levels were sustained for three weeks. In one subject an LHRH test was performed every other day for two weeks after cessation of therapy. Return of FSH responsiveness was delayed one week beyond that of LH, which occurred within three days of discontinuation of estrogen. These results indicate that during the early phase of oral estrogen replacement therapy, FSH secretion may be selectively blunted; after discontinuation of treatment, recovery of FSH secretion lags behind recovery of LH.  相似文献   

16.
This study investigated the role of 3 alpha-hydroxy-5 alpha-pregnan-20-one (3 alpha,5 alpha-THP) in the modulation of gonadotropin secretion using the immature ovariectomized (OVX) rat primed with a low dose of estradiol. A treatment regimen of either 0.2 or 0.4 mg/kg of 3 alpha,5 alpha-THP given in conjunction with estradiol for 4 days significantly increased levels of serum luteinizing hormone (LH) but had no effect on serum follicle-stimulating hormone (FSH). Estrogen-primed rats receiving a single injection of 3 alpha,5 alpha-THP at 0930 h showed an increase in serum and pituitary LH levels at 1200 h and 1500 h. At 1800 h, only pituitary levels of LH remained significantly higher than controls. An injection of 3 alpha,5 alpha-THP at 1230 h in estrogen-primed rats resulted in enhanced levels of pituitary LH at 1500 h and elevated levels of both serum and pituitary LH at 1800 h. When 3 alpha,5 alpha-THP was given at 0930 h and 1230 h, elevated serum levels of LH were maintained for over 6 h. The administration of pentobarbital (Pb) 30 min after an injection of 3 alpha,5 alpha-THP at 0930 h or 1230 h prevented the increases in serum LH at 1200 h, 1500 h or 1800 h. This suggests that LH-releasing hormone (LHRH) is involved in mediating the LH response by 3 alpha,5 alpha-THP. There was no change in the sensitivity of the pituitary to LHRH following 3 alpha,5 alpha-THP treatment, indicating the absence of a pituitary effect of this steroid.  相似文献   

17.
The objectives of this study were to investigate whether estradiol treatment during lactation modifies 1) the patterns of endogenous LH, FSH, and prolactin (PRL) release; 2) the sensitivity of the pituitary to exogenous injections of LHRH; and 3) the responsiveness of the ovarian follicles to gonadotropin. Plasma LH, FSH, and PRL were determined in samples taken repeatedly from 18 sows on Days 24-27 of lactation. Ovaries were then recovered, and follicular development was assessed by measuring the follicular diameter (FFD) and follicular fluid estradiol-17 beta concentration (FFE) of the ten largest follicles dissected from each ovary. Sows were randomly allocated to one of four treatments: 1) Group C (4 sows) received no treatment; 2) Group LHRH (5 sows) received 800 ng of LHRH every 2 h throughout the sampling period; 3) Group E2 (4 sows) received subcutaneous implants containing estradiol-17 beta 24 h after start of sampling; 4) Group LHRH + E2 (5 sows) were administered a combination of LHRH and estradiol-17 beta implants. Between-animal variability for plasma LH, FSH, and PRL was considerable. LH concentration and LH pulse frequency increased (p less than 0.05) after LHRH treatment in the LHRH and LHRH + E2 groups; however, an acute inhibition of LH secretion was observed in the latter group immediately after estradiol implant application. In the absence of LHRH treatment, estradiol caused chronic inhibition of LH secretion. Follicular development was greater in the LHRH and LHRH + E2 groups compared to the C and E2 groups (p less than 0.05 for both FFD and FFE).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In an attempt to elucidate the mechanism of suppressive action of glucocorticoids on the hypothalamo-pituitary-ovarian axis, we studied the effects of short-term high dose dexamethasone administration of the LH and FSH responses to LHRH and to clomiphene in healthy women with normal menstrual cycles. Seven women, 21--35 years of age, received 100 micrograms of LHRH i.v. on day 6 of two consecutive menstrual cycles, once with and once without pre-treatment with dexamethasone 2 mg orally every 6 hrs. on days 2 through 5 of the menstrual cycle. Seven other women (ages 21--35 years) received clomiphene citrate 100 mg on days 2 through 5 of their menstrual cycle, once with and once without simultaneous administration of dexamethasone 2 mg orally every 6 h. The administration of dexamethasone suppressed baseline serum levels of LH and FSH and blunted LH and FSH response to both LHRH and clomiphene. The results indicate that short-term administration of pharmacological doses of glucocorticoids suppress the secretion of LH and FSH by a direct effect on the anterior pituitary and possibly by an effect at the hypothalamic level with inhibition of the release of LHRH.  相似文献   

19.
A detailed study was undertaken in order to determine if a pituitary-half incubation system were a suitable model for the study of anterior pituitary response to estradiol and LHRH. Considerable variation in the gonadotropin content of randomized pituitary halves was observed. Much less variation was found in matched halves. During the initial thirty minutes incubation of pituitary halves, a large spontaneous release of gonadotropins was observed. Time course secretion studies indicated that by four hours incubation, in the presence of 50 ng/ml LHRH, cumulative secretion of LH and FSH had far exceeded that of controls. Elevations in both cumulative secretion and rate of secretion were evident within 15-30 minutes of incubation. Regardless of LHRH dose, only 2-4% of either gonadotropin was secreted. Estradiol in the range of 10, 100, 500, 1,000 and 50,000 pg/ml had no significant effect on pituitary response to LHRH or on basal release, tissue levels or total gonadotropin. Based on these results, it was concluded that while the pituitary-half incubation system may be suitable for studying LHRH induced gonadotropin secretion, it is apparently of insufficient sensitivity to allow the collection of meaningful data concerning the effects of estradiol alone on gonadotropin secretion or estradiol modulation of LHRH induced gonadotropin secretion.  相似文献   

20.
T A Kellom  J L O'Conner 《Steroids》1991,56(5):284-290
The effects of luteinizing hormone releasing hormone (LHRH) pulse amplitude, duration, and frequency on divergent gonadotropin secretion were examined using superfused anterior pituitary cells from selected stages of the rat estrous cycle. Cells were stimulated with one of five LHRH regimens. With low-amplitude LHRH pulses (regimen 1) in the presence of potentially estrogenic phenol red, LH response in pituitary cells from proestrus 1900, estrus 0800, and diestrus 1,0800 were all significantly larger (P less than 0.05) than the other stages tested. In the absence of phenol red, responsiveness at proestrus 1900 was significantly larger than proestrus 0800, proestrus 1500, and estrus 0800 (P less than 0.01, 0.05, and 0.05, respectively); other cycle stages tested were smaller. No significant differences were observed between cycle stages for follicle-stimulating hormone (FSH) secretion in the presence or absence of phenol red. Because pituitary cells at proestrus 1900 were the most responsive to low-amplitude 4 ng LHRH pulses, they were also used to study the effects of LHRH pulses of increased amplitude or duration and decreased frequency. Increasing the amplitude (regimen 2) or the duration (regimens 3 to 5) increased FSH secretion; this effect was greatest with regimens 3 and 5. When regimens 3 and 5 were studied in pituitary cells obtained at proestrus 1500, FSH was significantly increased by both regimes, but most by regimen 5; furthermore, LH release was significantly reduced. When regimens 3 and 5 were studied in pituitary cells obtained at estrus 0800, FSH release was elevated most significantly by regimen 5. Thus, variations in LHRH pulse regimen were found to be capable of inducing significant divergence in FSH release from superfused anterior pituitary cells derived from specific stages of the estrous cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号