首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
In cholera diarrhoea, the pituitary gland produces a 60-kDa protein known as antisecretory factor (ASF) which reverses intestinal secretion induced by the cholera toxin. We show here that ASF-like proteins are produced in the rat during intestinal secretion triggered by intake of a 500 mg dose of mannose, sorbitol, glycine or alanine. All the ASF-like proteins reversed cholera secretion, and all were of a similar size. However, they differed in charge: mannose and sorbitol induced a protein with an isoelectric point of 4.5; glycine induced two proteins, one with a pI of 6.3, the other of 7.7; and alanine induced two proteins, one with a pI of 6.3, the other of 9.4. Antibodies against naturally occurring ASF from porcine pituitary gland neutralized ASF induced by cholera toxin and two of the amino acid-induced proteins, while the sugar-induced protein(s) did not cross-react. All the proteins showed affinity to agarose and were dissociated again with methyl alpha-D-glucoside. A single peroral dose of cholera toxin or sorbitol induced antisecretory proteins which persisted in the pituitary gland for only 1-3 days. Seven treatments gave a sustained response, the protein induced by cholera toxin persisting for over 2 months, and that induced by sorbitol about 1 month.  相似文献   

3.
J R Blackwell  R Horgan 《FEBS letters》1991,295(1-3):10-12
Under standard growth conditions, E. coli transformed with the high-level expression vector pMON5525 produces recombinant DMAPP/AMP transferase in inactive, insoluble complexes. We have produced large amounts of active, soluble protein by growing and inducing the cells under osmotic stress in the presence of sorbitol and glycyl betaine. This caused an increase of up to 427-fold in the active yield, and the disappearance of the protein from the pelletable fraction of cell extracts. This treatment may have wide applicability.  相似文献   

4.
5.
绿僵菌产海藻糖水解酶培养条件研究   总被引:2,自引:0,他引:2  
丝状真菌绿僵菌能产生一系列二糖水解酶,其中包括海藻糖水解酶。这些酶在绿僵菌对昆虫的致病过程中起着重要的作用。本文研究了不同碳源、氮源对金龟子绿僵菌Metarhizium anisopliae var. acridum菌株CQMa102产生与分解昆虫血淋巴中海藻糖等二糖相关的海藻糖水解酶活性的影响。结果表明:分别以葡萄糖、麦芽糖、蔗糖、山梨醇和可溶性淀粉为碳源,金龟子绿僵菌均可产生海藻糖水解酶,但最佳碳源是可溶性淀粉,因为由其诱导产生的海藻糖水解酶具有最高的总活性和比活性以及更多的同工酶,山梨醇次之。硝态氮(NaNO3)作为唯一氮源时,几乎检测不出海藻糖水解酶活性,而铵态氮((NH4)2SO4)或NaNO3和有机氮(蛋白胨和酵母浸膏)混合氮源作氮源时,海藻糖水解酶活性都很高。在绿僵菌菌丝提取液和滤液的海藻糖水解酶活性比较中发现:CQMa102在多数碳源的培养基中产生的海藻糖水解酶主要分泌到培养基中,仅有少数结合在细胞壁上。  相似文献   

6.
Summary Evidence is presented for the simultaneous induction of sorbitol dehydrogenase along with fructokinase and repression of glucokinase by sorbitol in Aspergillus niger. Fructose is the first product of sorbitol catabolism.  相似文献   

7.
Ketose reductase activity in developing maize endosperm   总被引:5,自引:5,他引:0  
Ketose reductase (NAD-dependent polyol dehydrogenase EC 1.1.1.14) activity, which catalyzes the NADH-dependent reduction of fructose to sorbitol (d-glucitol), was detected in developing maize (Zea mays L.) endosperm, purified 104-fold from this tissue, and partially characterized. Product analysis by high performance liquid chromatography confirmed that the enzyme-catalyzed reaction was freely reversible. In maize endosperm, 15 days after pollination, ketose reductase activity was of the same order of magnitude as sucrose synthase activity, which produces fructose during sucrose degradation. Other enzymes of hexose metabolism detected in maize endosperm were present in activities of only 1 to 3% of the sucrose synthase activity. CaCl2, MgCl2, and MnCl2 stimulated ketose reductase activity 7-, 6-, and 2-fold, respectively, but had little effect on NAD-dependent polyol dehydrogenation (the reverse reaction). The pH optimums for ketose reductase and polyol dehydrogenase reactions were 6.0 and 9.0, respectively. Km values were 136 millimolar fructose and 8.4 millimolar sorbitol. The molecular mass of ketose reductase was estimated to be 78 kilodaltons by gel filtration. It is postulated that ketose reductase may function to metabolize some of the fructose produced during sucrose degradation in maize endosperm, but the metabolic fate of sorbitol produced by this reaction is not known.  相似文献   

8.
The nature of protein–sorbitol–water interaction in solution at the molecular level, has been investigated using molecular dynamics simulations. In order to do this task, two molecular dynamics simulations of the protein ADH in solution at room temperature have been carried out, one in the presence (about 0.9 M) and another in the absence of sorbitol. The results show that the sorbitol molecules cluster and move toward the protein, and form hydrogen bonds with protein. Also, coating by sorbitol reduces the conformational fluctuations of the protein compared to the sorbitol-free system. Thus, it is concluded that at moderate concentration of sorbitol solution, sorbitol molecules interact with ADH via many H-bonds that prevent the protein folding. In fact, at more concentrated sorbitol solution, water and sorbitol molecules accumulate around the protein surface and form a continuous space-filling network to reduce the protein flexibility. Namely, in such solution, sorbitol molecules can stabilize a misfolded state of ADH, and prevent the protein from folding to its native structure.  相似文献   

9.
Sorbitol metabolism in Aerobacter aerogenes   总被引:3,自引:2,他引:1       下载免费PDF全文
Sorbitol (d-glucitol) metabolism in Aerobacter aerogenes PRL-R3 is shown to proceed via the pathway: sorbitol --> sorbitol 6-phosphate --> d-fructose 6-phosphate. Sorbitol phosphorylation is mediated by a phosphoenolpyruvate (PEP):sorbitol 6-phosphotransferase system, and sorbitol 6-phosphate oxidation by a pyridine-nucleotide-linked dehydrogenase. Mutants deficient in sorbitol 6-phosphate dehydrogenase or a component (enzyme I) of the phosphotransferase system did not grow on sorbitol, whereas revertants which had regained these enzymatic activities grew normally. Extracts of the enzyme I-deficient mutant failed to catalyze the phosphorylation of sorbitol in the presence of PEP, and adenosine 5'-triphosphate could not replace the PEP requirement for sorbitol phosphorylation in extracts of the wild-type strain.  相似文献   

10.
The effect of interactions of sorbitol with ribonuclease A (RNase A) and the resulting stabilization of structure was examined in parallel thermal unfolding and preferential binding studies with the application of multicomponent thermodynamic theory. The protein was stabilized by sorbitol both at pH 2.0 and pH 5.5 as the transition temperature, Tm, was increased. The enthalpy of the thermal denaturation had a small dependence on sorbitol concentration, which was reflected in the values of the standard free energy change of denaturation, delta delta G(o) = delta G(o) (sorbitol) - delta G(o)(water). Measurements of preferential interactions at 48 degrees C at pH 5.5, where protein is native, and pH 2.0 where it is denatured, showed that sorbitol is preferentially excluded from the denatured protein up to 40%, but becomes preferentially bound to native protein above 20% sorbitol. The chemical potential change on transferring the denatured RNase A from water to sorbitol solution is larger than that for the native protein, delta mu(2D) > delta mu(2N), which is consistent with the effect of sorbitol on the free energy change of denaturation. The conformity of these results to the thermodynamic expression of the effect of a co-solvent on denaturation, delta G(o)(W) + delta mu(D)(2)delta G(o)(S) + delta mu(2D), indicates that the stabilization of the protein by sorbitol can be fully accounted for by weak thermodynamic interactions at the protein surface that involve water reversible co-solvent exchange at thermodynamically non-neutral sites. The protein structure stabilizing action of sorbitol is driven by stronger exclusion from the unfolded protein than from the native structure.  相似文献   

11.
We present a calorimetric investigation of stabilisation of hen egg-white lysozyme with sorbitol in the pH range 3.8-10.5. Differential scanning calorimetry and steady-state fluorescence were used to determine the denaturation temperatures of lysozyme as a function of sorbitol concentration. The fluorescence data were collected in the presence of 2M urea to lower the melting point of the protein to an observable range of the instrument. The effect of sorbitol on the activation energy of unfolding was investigated by scanrate studies. The effect of sorbitol lysozyme interaction was investigated using isothermal titration calorimetry. The titration experiments were performed with folded as well as unfolded lysozyme to investigate in more detail the nature of the interaction. The data obtained in those experiments show a remarkable stabilisation effect of sorbitol. We observed a 4.0 degrees C increase in the Tm for 1 M sorbitol in the pH range 3.8-8.5 by scanning calorimetry. The effect increases dramatically at pH 9.5 where we observe a 9.5 degrees C stabilisation. An increase in the sorbitol concentration to 2 M stabilises lysozyme by 11.3-13.4 degrees C in the pH range 9.5-10.5. In the absence of urea, no significant effects of sorbitol were observed on the activation energy for unfolding for lysozyme at pH 4.5. This indicates together with the results from the titration experiments that sorbitol may stabilise the folded form of lysozyme by destabilising the unfolded form of lysozyme. At pH values at and above lysozyme's pI (approximately 9.3), the unfolding of the protein is accompanied with a substantial amount of self-aggregation seen in the calorimetry experiments in the ratio of DeltaH(cal)/DeltaH(vH). In the presence of sorbitol, the self-aggregation was counterbalanced by higher sorbitol concentrations. These results strongly suggest a negative influence of sorbitol on the unfolded form of lysozyme and thereby stabilising the native form.  相似文献   

12.
This study reports a molecular modelling investigation of human sorbitol dehydrogenase complexed with the substrate sorbitol and the inhibitor WAY135 706 based on the structures of human beta3 alcohol dehydrogenase, human sigma alcohol dehydrogenase and horse liver alcohol dehydrogenase. The tertiary structure of human beta3 alcohol dehydrogenase was used as a template for the construction of the model. The rms positional deviation between the main-chain atoms of the initial and final models of sorbitol dehydrogenase is 1.37 A. Similar residue interactions exist between sorbitol dehydrogenase and both sorbitol and inhibitor. Binding of sorbitol in the substrate-binding site results in interactions with Lys-294, Tyr-50, His-69, Glu-150, and NAD+ while WAY135 706 interacts with Ser-46, Lys-294 and Phe-59. The enzyme-inhibitor interactions revealed by this study will be useful in the design of more specific inhibitors.  相似文献   

13.
Sorbitol is an excellent protein-stabilization agent, but it is typically used at high concentrations where the 1H signals can interfere with NMR data collection and analysis. Deuteration of sorbitol can ameliorate this problem; however, perdeuterated sorbitol is not commercially available. We describe a simple and inexpensive method for preparation of perdeuterated sorbitol from perdeuterated glucose. The method is described explicitly and examples are given where the use of perdeuterated sorbitol has allowed the extraction of information, from NMR spectra, that is otherwise unobtainable.  相似文献   

14.
《Plant science》1986,46(1):43-51
The extent to which solutes present in the digest medium enter cells and are retained during preparation of protoplasts was investigated. When barley (Hordeum vulgare, L. cv. Clipper) leaf slices were incubated in sorbitol there was considerable uptake of sorbitol into the tissue, which continued for up to 6 h and was dependent on the sorbitol concentration in the external medium. Protoplasts prepared by digesting leaf slices in a medium containing [14C]sorbitol but isolated and purified in media with unlabelled sorbitol contained significant amounts of [14C]sorbitol. From measurements of the protoplast volume, the internal sorbitol concentration was calculated to be 100 mM, assuming uniform distribution of the sorbitol throughout the protoplasm. The uptake of sorbitol during digestion and its retention by protoplasts was confirmed by measuring sugars in protoplast extracts by gas sucrose or inositol. Vacuoles prepared from the protoplasts contained 83% of the sorbitol present in protoplasts. It is concluded that considerable uptake of solutes from the external medium occurs during digestion of leaf tissue and that these solutes are retained within the protoplasts during isolation and purification. The solutes appear to be uniformly distributed throughout the subcellular compartments of the protoplast.  相似文献   

15.
Conversion of glucose to fructose and sorbitol is documented in rat hepatoma-derived cultured cells (HTC cells). After addition of 5.5 mM [U-14C]glucose to incubation medium, labeled sorbitol and fructose accumulated intracellularly at a linear rate over a period of 60 min. The sugars were isolated, identified, and quantitated by paper chromatography, gas-liquid chromatography, and enzymatic phosphorylation of fructose. Primary culture of adult rat hepatocytes was analyzed similarly and demonstrated no significant accumulation of labeled fructose or sorbitol. The basis for this difference between HTC cells and primary hepatocyte culture was examined both in terms of enzyme activities that mediate the formation of sorbitol and fructose and in terms of the catabolism of these sugars. Both types of culture (as well as extracts of intact rat liver) exhibited enzymatic activities catalyzing the conversion of glucose to sorbitol (aldose reductase) and sorbitol to fructose (sorbitol dehydrogenase). However, the cultures differed strikingly with regard to the catabolism of sorbitol and fructose. The conversion of labeled sorbitol to metabolites in HTC cells was negligible; by contrast, hepatocytes in primary culture utilized the sugars at rates comparable to that of glucose, which may account for the lack of their accumulation in primary culture. The findings suggest that the conversion of glucose to sorbitol and fructose by HTC cells may represent a retained normal liver function, one which is amplified by the inability of HTC cells to dispose of these sugars.  相似文献   

16.
77 leaf samples representing 68 taxa of Rosaceae were investigated for the presence of sorbitol. A procedure for the quantitative estimation of sorbitol in dry plant tissues was elaborated; it made use of extraction by percolation and capillary GLC analysis of the silylated extracts. All Maloideae and Prunoideae and most Spiraeoideae were found to accumulate sorbitol. The subfamily Rosoideae was found to be heterogeneous in this respect; in most tribes sorbitol is totally lacking, but in Kerrieae, Adenostomeae and part of Dryadeae sorbitol is present in variable amounts. A clear-cut correlation between sorbitol accumulation and basic chromosome number seems to exist in Rosaceae.  相似文献   

17.
A series of in vivo and in vitro investigations was performed to examine the localisation of sorbitol pathway activity in the rat renal cortex and to investigate the possible relation that the acculumation of sorbitol pathway intermediates in renal cortical tissue may have to the pathogenesis of renal complications in diabetes mellitus. Neither of the sorbitol pathway intermediates, sorbitol or fructose, were detected either in intact glomeruli which had been isolated from rats rendered chronically diabetic with streptozotocin, or in metabolically active glomeruli which had been incubated in vitro in high glucose media. Such data agreed with previously published observations that the enzyme aldose reductase is not present in renal glomeruli, and suggested that changes in sorbitol pathway activity cannot be directly related to the pathogenesis of diabetic glomerulosclerosis. Sorbitol was detected in low concentrations (3.1 mu-mol/g protein) in cortical tubules which had been isolated from the renal cortex of rats rendered chronically diabetic with streptozotocin. This concentration of sorbitol was higher than that in the intact renal cortex of the diabetic animal (0.3 mu-mol/g protein) or in the cortical tubules of non-diabetic animals (0.5 mu-mol/g protein). It is apparent that the renal cortical tubule is a major site of sorbitol pathway activity in the renal cortex. However, there is presently no obvious causal relationship between the accumulation of such relatively low concentrations of sorbitol in the renal cortical tubule and the pathogenesis of glomerulosclerosis or cortical tubular lesions in diabetes.  相似文献   

18.
19.
The polyol pathway comprises the enzymes aldose reductase and sorbitol dehydrogenase, which convert glucose to sorbitol and sorbitol to fructose, respectively, particularly in hyperglycemic states. The accumulation and toxicity of sorbitol in specific tissues has been implicated in the development of microvascular problems in some diabetic patients. Inappropriate sorbitol accumulation in some patients may be the result of polymorphic variation in the human sorbitol dehydrogenase gene, causing reduced expression levels or enzymatic activity. We now describe the structure and expression profile of the human sorbitol dehydrogenase gene and identify a range of polymorphic variants that may be useful for co-segregation studies in diabetic patients with and without severe clinical complications from their disease.  相似文献   

20.
Abstract— Sorbitol dehydrogenase (EC 1.1.1.14) was isolated and purified 700-fold from rat brain. Most substrate specificities and properties are similar to those reported for sorbitol dehydrogenase from other mammalian tissues; however, the substrate specificity of this brain enzyme does not conform to the d -cis 2,4 dihydroxy configuration. The physiological substrate for sorbitol dehydrogenase is probably sorbitol. The isolation of sorbitol dehydrogenase from rat brain tissue is confirmation that (1) all the constituents of the sorbitol (polyol) pathway are present in the brain and that (2) fructose synthesis from glucose in this tissue proceeds via the intermediate formation of sorbitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号