首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition of suberin and lignin in endodermal cell walls (ECWs) and in rhizodermal/hypodermal cell walls (RHCWs) of developing primary maize (Zea mays L.) roots was analysed after depolymerisation of enzymatically isolated cell wall material. Absolute suberin amounts related to root length significantly increased from primary ECWs (Casparian strips) to secondary ECWs (suberin lamella). During further maturation of the endodermis, reaching the final tertiary developmental state characterised by the deposition of lignified secondary cell walls (u-shaped cell wall deposits), suberin amounts remained constant. Absolute amounts of lignin related to root length constantly increased throughout the change from primary to tertiary ECWs. The suberin of Casparian strips contained high amounts of carboxylic and 2-hydroxy acids, and differed substantially from the suberin of secondary and tertiary ECWs, which was dominated by high contents of ω-hydroxycarboxylic and 1,ω-dicarboxylic acids. Furthermore, the chain-length distribution of suberin monomers in primary ECWs ranged from C16 to C24, whereas in secondary and tertiary ECWs a shift towards higher chain lengths (C16 to C28) was observed. The lignin composition of Casparian strips (primary ECWs) showed a high syringyl content and was similar to lignin in secondary cell walls of the tertiary ECWs, whereas lignin in secondary ECWs contained higher amounts of p-hydroxyphenyl units. The suberin and lignin compositions of RHCWs rarely changed with increasing root age. However, compared to the suberin in ECWs, where C16 and C18 were the most prominent chain lengths, the suberin of RHCWs was dominated by the higher chain lengths (C24 and C26). The composition of RHCW lignin was similar to that of secondary-ECW lignin. Using lignin-specific antibodies, lignin epitopes were indeed found to be located in the Casparian strip. Surprisingly, the mature suberin layers of tertiary ECWs contained comparable amounts of lignin-like epitopes. Received: 19 August 1998 / Accepted: 3 February 1999  相似文献   

2.
Apoplastic transport barriers in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix) were isolated enzymatically. Following chemical degradation (monomerization, derivatization), the amounts of aliphatic and aromatic suberin monomers were analysed quantitatively by gas chromatography and mass spectrometry. In corn, suberin was determined for isolated endodermal (ECW) and rhizo-hypodermal (RHCW) cell walls. In rice, the strong lignification of the central cylinder (CC), did not allow the isolation of endodermal cell walls. Similarly, exodermal walls could not be separated from the rhizodermal and sclerenchyma cell layers. Suberin analyses of ECW and RHCW of rice, thus, refer to either the entire CC or to the entire outer part of the root (OPR), the latter lacking the inner cortical cell layer. In both species, aromatic suberin was mainly composed of coumaric and ferulic acids. Aliphatic suberin monomers released from rice and corn belonged to five substance classes: primary fatty acids, primary alcohols, diacids, omega-hydroxy fatty acids, and 2-hydroxy fatty acids, with omega-hydroxy fatty acids being the most prominent substance class. Qualitative composition of aliphatic suberin of rice was different from that of corn; (i) it was much less diverse, and (ii) besides monomers with chain lengths of C(16), a second maximum of C(28) was evident. In corn, C(24) monomers represented the most prominent class of chain lengths. When suberin quantities were related to surface areas of the respective tissues of interest (hypodermis and/or exodermis and endodermis), exodermal cell walls of rice contained, on average, six-times more aliphatic suberin than those of corn. In endodermal cell walls, amounts were 34 times greater in rice than in corn. Significantly higher amounts of suberin detected in the apoplastic barriers of rice corresponded with a substantially lower root hydraulic conductivity (Lp(r)) compared with corn, when water flow was driven by hydrostatic pressure gradients across the apoplast. As the OPR of rice is highly porous and permeable to water, it is argued that this holds true only for the endodermis. The results imply that some caution is required when discussing the role of suberin in terms of an efficient transport barrier for water. The simple view that only the quantity of suberin present is important, may not hold. A more detailed consideration of both the chemical nature of suberins and of the microstructure of deposits is required, i.e. how suberins impregnate wall pores.  相似文献   

3.
Root surfaces are protected against the soil environment by the deposition of lignin and suberin. In order to obtain more insight into the regulation of root suberin biosynthesis, elongases from primary roots of corn (Zea mays L.) seedlings were characterized. Elongase activities (acyl-CoA and ATP-dependent) were located in the microsomal fraction of the root cells. C(20), C(22) and C(24) fatty acids were detected as primary products of elongases. Preferred substrates of the acyl-CoA elongases were C(18:0)-CoA and C(20:0)-CoA. Applying a molecular approach, using PCR and degenerate primers derived from the sequences of known leaf and seed 3-ketoacyl-CoA synthases (KCSs), catalysing the first step of very-long-chain fatty acid synthesis, the cDNA of a putative root KCS was obtained showing high homology to known leaf and seed KCSs at the DNA and amino acid levels. Thus, our approach provides the first direct evidence for the presence and the activity of root elongases in Z. mays. Ongoing research is focusing on the molecular analysis and the regulation of KCS expression in roots in reaction to different environmental stimuli.  相似文献   

4.
The fibers of the green lint mutant of cotton (Gossypium hirsutum L.) contain large amounts of wax and are suberized. More than 96% of the bifunctional aliphatic suberin monomers ([alpha],[omega]-alkanedioic acids and [omega]-hydroxyalkanoic acids) have chain lengths of C22 and C24 in green cotton fiber suberin. In fibers grown in the presence of S-ethyl-N,N-dipropylthiocarbamate (EPTC), a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases, the aliphatic suberin monomers were shortened to chain lengths of C16 and C18. Whereas the amounts of most suberin monomers were not negatively affected by the inhibitor treatment, the amounts of [alpha],[omega]-alkanedioic acids and of glycerol were reduced by more than 80%. Analysis in the transmission electron microscope showed a reduction in suberin content after EPTC treatment. The suberin layers were discontinuous and consisted of fewer lamellae than in the controls. A small proportion (up to 22%) of the electron-translucent suberin lamellae were thinner after EPTC treatment, probably because of the shortening of the aliphatic suberin monomers. A larger proportion of the electron-translucent lamellae were thicker than the lamellae in the controls. Possible explanations for this observation are discussed.  相似文献   

5.
While de novo fatty acid synthesis uses acetyl-CoA, fatty acid elongation uses longer-chain acyl-CoAs as primers. Several mutations that interfere with fatty acid elongation in yeast have already been described, suggesting that there may be different elongases for medium- and long-chain acyl-CoA primers. In the present study, an experimental approach is described that allows differential characterization of the various yeast elongases in vitro. Based on their characteristic primer specificities and product patterns, at least three different yeast elongases are defined. Elongase I extends C12-C16 fatty acyl-CoAs to C16-C18 fatty acids. Elongase II elongates palmitoyl-CoA and stearoyl-CoA up to C22 fatty acids, and elongase III synthesizes 20-26-carbon fatty acids from C18-CoA primers. Elongases I, II and III are specifically inactivated in, respectively, elo1, elo2 and elo3 mutants. Elongases II and III share the same 3-ketoacyl reductase, which is encoded by the YBR159w gene. Inactivation of YBR159w inhibits in vitro fatty acid elongation after the first condensation reaction. Although in vitro elongase activity is absent, the mutant nevertheless contains 10-30% of normal VLCFA levels. On the basis of this finding, an additional elongating activity is inferred to be present in vivo. ybr159Delta cells show synthetic lethality in the presence of cerulenin, which inactivates fatty acid synthase. An involvement of FAS in VLCFA synthesis may account for these findings, but remains to be demonstrated directly. Alternatively, a vital role for C18 and C20 hydroxyacids, which are dramatically overproduced in ybr159Delta cells, may be postulated.  相似文献   

6.
Abstract The development of suberin lamellae in the hypodermis of Zea mays cv. LG 11 was observed by electron microscopy and the presence of suberin inferred from autoliuorescence and by Sudan black B staining in nodal (adventitious) and primary (seminal) root axes. Suberin lamellae were evident at a distance of 30–50 mm from the tip of roots growing at 20°C and became more prominent with distance from the tip. Both oxygen deficiency and growth at 13°C produced shorter roots in which the hypodermis was suberized closer to the root tip. There were no suberin lamellae in epidermal cells or cortical collenchyma adjacent to the hypodermis. Plasmodesmata were not occluded by the suberin lamellae: there were twice as many of them in the inner tangential hypodermal wall (1,14 μn?2) as in the junction between the epidermis and hypodermis (0.54 μm?2). Water uptake by seminal axes (measured by micropotometry) was greater at distances more than 100 mm from the root lip than in the apical zone where the hypodermis was unsuberized. In the more mature zones of roots grown at 13°C rates of water uptake were greater than in roots grown at 20°C even though hypodermal suberization was more marked. Sleeves of epidermal/hypodermal cells (plus some accessory collenchyma) were isolated from the basal 60 mm of nodal axes by enzymatic digestion (drisclase). The roots were either kept totally immersed in culture solution or had the basal 50 mm exposed to moist air above the solution surface. In both treatments the permeabilities to tritiated water and 86Rb were low (circa 10?5mms?1) in sleeves isolated from the extreme base. In roots grown totally immersed, however, the permeability of sleeves increased 10 to 50-fold over a distance of 40 mm. In roots exposed to moist air the permeability remained at a low level until the point where the root entered the culture solution and then increased rapidly (> 50-fold in a distance of 8 mm). Growth of roots in oxygen depleted (5% O2) solutions promoted the development of extensive cortical aerenchymas. These developments were not associated with any reduction in permeability of sleeves isolated from the basal 40 mm of the axis. It was concluded that the presence of suberin lamellae in hypodermal walls does not necessarily indicate low permeability of cells or tissues to water or solutes. The properties of the walls (lamellae?) can be greatly changed by exposure to moist air, perhaps due to increased oxygen availability.  相似文献   

7.
The lipophilic biopolyester suberin forms important boundaries to protect the plant from its surrounding environment or to separate different tissues within the plant. In roots, suberin can be found in the cell walls of the endodermis and the hypodermis or periderm. Apoplastic barriers composed of suberin accomplish the challenge to restrict water and nutrient loss and prevent the invasion of pathogens. Despite the physiological importance of suberin and the knowledge of the suberin composition of many plants, very little is known about its biosynthesis and the genes involved. Here, a detailed analysis of the Arabidopsis aliphatic suberin in roots at different developmental stages is presented. This study demonstrates some variability in suberin amount and composition along the root axis and indicates the importance of omega-hydroxylation for suberin biosynthesis. Using reverse genetics, the cytochrome P450 fatty acid omega-hydroxylase CYP86A1 (At5g58860) has been identified as a key enzyme for aliphatic root suberin biosynthesis in Arabidopsis. The corresponding horst mutants show a substantial reduction in omega-hydroxyacids with a chain length 相似文献   

8.
The composition of the aliphatic components of suberin in the stele and cortex of young corn (Zea mays L.) roots was determined by combined gas-liquid chromatography/mass spectrometry of the LiAlD4 depolymerization products. ω-Hydroxy acids were shown to be the major class of the aliphatic components of both the hypodermal (35%) and endodermal (28%) polymeric materials with the dominant chain length being C24 in the former and C16 in the latter. Nitrobenzene oxidation of the roots generated p-hydroxybenzaldehyde and vanillin with much less syringaldehyde. Electron microscopic examination of the hypodermal and endodermal cell walls from roots of corn plants grown in a Mg2+ -deficient (0.03 millimolar) nutrient solution showed that these walls were more heavily suberized than the analogous walls of roots from plants grown in normal (2 millimolar) Mg2+ levels. Analysis of the LiAlD4 depolymerization products of the suberin polymers from these roots showed that the roots grown in low Mg2+ had 3.5 times as much aliphatic suberin monomers on a weight basis as the roots from plants grown in nutrient with normal Mg2+ levels. Roots from plants grown in Mg2+ -deficient nutrient solution released 3.8 times the amount of aromatic aldehydes upon nitrobenzene oxidation as that released from normal roots. As the degree of Mg2+ deficiency of the nutrient solution was increased, there was an increase in the aliphatic and aromatic components characteristic of suberin. Thus, both ultrastructural and chemical evidence strongly suggested that Mg2+ deficiency resulted in increased suberization of the cell walls of both hypodermis and endodermis of Zea mays roots. The roots from Mg2+ -deficient plants also had a higher amount of peroxidase activity when compared to control roots.  相似文献   

9.
Soybean (Glycine max L. Merr.) is a versatile and important agronomic crop grown worldwide. Each year millions of dollars of potential yield revenues are lost due to a root rot disease caused by the oomycete Phytophthora sojae (Kaufmann & Gerdemann). Since the root is the primary site of infection by this organism, we undertook an examination of the physicochemical barriers in soybean root, namely, the suberized walls of the epidermis and endodermis, to establish whether or not preformed suberin (i.e. naturally present in noninfected plants) could have a role in partial resistance to P. sojae. Herein we describe the anatomical distribution and chemical composition of soybean root suberin as well as its relationship to partial resistance to P. sojae. Soybean roots contain a state I endodermis (Casparian bands only) within the first 80 mm of the root tip, and a state II endodermis (Casparian bands and some cells with suberin lamellae) in more proximal regions. A state III endodermis (with thick, cellulosic, tertiary walls) was not present within the 200-mm-long roots examined. An exodermis was also absent, but some walls of the epidermal and neighboring cortical cells were suberized. Chemically, soybean root suberin resembles a typical suberin, and consists of waxes, fatty acids, omega-hydroxy acids, alpha,omega-diacids, primary alcohols, and guaiacyl- and syringyl-substituted phenolics. Total suberin analysis of isolated soybean epidermis/outer cortex and endodermis tissues demonstrated (1) significantly higher amounts in the endodermis compared to the epidermis/outer cortex, (2) increased amounts in the endodermis as the root matured from state I to state II, (3) increased amounts in the epidermis/outer cortex along the axis of the root, and (4) significantly higher amounts in tissues isolated from a cultivar ('Conrad') with a high degree of partial resistance to P. sojae compared with a susceptible line (OX760-6). This latter correlation was extended by an analysis of nine independent and 32 recombinant inbred lines (derived from a 'Conrad' x OX760-6 cross) ranging in partial resistance to P. sojae: Strong negative correlations (-0.89 and -0.72, respectively) were observed between the amount of the aliphatic component of root suberin and plant mortality in P. sojae-infested fields.  相似文献   

10.
Cutinized and suberized cell walls form physiological important plant-environment interfaces as they act as barriers limiting water and nutrient loss and protect from radiation and invasion by pathogens. Due to the lack of protocols for the isolation and analysis of cutin and suberin in Arabidopsis, the model plant for molecular biology, mutants and transgenic plants with a defined altered cutin or suberin composition are unavailable, causing that structure and function of these apoplastic barriers are still poorly understood. Transmission electron microscopy (TEM) revealed that Arabidopsis leaf cuticle thickness ranges from only 22 nm in leaf blades to 45 nm on petioles, causing the difficulty in cuticular membrane isolation. We report the use of polysaccharide hydrolases to isolate Arabidopsis cuticular membranes, suitable for depolymerization and subsequent compositional analysis. Although cutin characteristic omega-hydroxy acids (7%) and mid-chain hydroxylated fatty acids (8%) were detected, the discovery of alpha,omega-diacids (40%) and 2-hydroxy acids (14%) as major depolymerization products reveals a so far novel monomer composition in Arabidopsis cutin, but with chemical analogy to root suberin. Histochemical and TEM analysis revealed that suberin depositions were localized to the cell walls in the endodermis of primary roots and the periderm of mature roots of Arabidopsis. Enzyme digested and solvent extracted root cell walls when subjected to suberin depolymerization conditions released omega-hydroxy acids (43%) and alpha,omega-diacids (24%) as major components together with carboxylic acids (9%), alcohols (6%) and 2-hydroxyacids (0.1%). This similarity to suberin of other species indicates that Arabidopsis roots can serve as a model for suberized tissue in general.  相似文献   

11.
12.
Enzymes that lengthen the carbon chain of polyunsaturated fatty acids are key to the biosynthesis of the highly unsaturated fatty acids, arachidonic, eicosapentaenoic and docosahexaenoic acids from linoleic and alpha-linolenic acids. A Mortierella alpina cDNA polyunsaturated fatty acid elongase sequence identified mammalian, amphibian, zebrafish and insect expressed sequence tags (ESTs) in GenBank. Consensus primers were designed in conserved motifs and used to isolate full length cDNA from livers of several fish species by Rapid Amplification of cDNA Ends (RACE). The amplified cDNAs encoded putative open reading frames (ORFs) of 288-294 amino acids that were highly conserved among the fish species. Heterologous expression in yeast, Saccharomyces cerevisiae, demonstrated that all of the ORFs encoded elongases with the ability to lengthen polyunsaturated fatty acid substrates with chain lengths from C18 to C22 and also monounsaturated fatty acids, but not saturated fatty acids. There were differences in the functional competence of the elongases from different fish species. Most of the fish elongases showed a pattern of activity towards different fatty acid substrates in the rank order C18>C20>C22, although the tilapia and turbot elongases had similar activity towards 18:4n-3 and 20:5n-3. The fish elongases generally showed greater activity or similar activities with n-3 than with n-6 homologues, with the exception of the cod enzyme which was more active towards n-6 fatty acids.  相似文献   

13.
14.
Surface extracts from primary leaves of Castor bean were found to contain 1.8 microg cm(-2) of cuticular waxes. The mixture comprised alkanes (C(26)-C(29)), primary alcohols (C(22)-C(38)), aldehydes (C(26) and C(28)), fatty acids (C(20)-C(34)) and triterpenoids (lupeol, beta- and alpha-amyrin). Besides, a series of n-alkane-1,3-diols was detected, with chain lengths ranging from C(22) to C(28), a strong predominance of even-numbered homologs, and a maximum for hexacosane-1,3-diol. Seven other compounds were assigned to a novel class of wax constituents and identified as homologous unbranched 3-hydroxyaldehydes ranging from C(22) to C(28). As the chain length distribution of this series closely paralleled the homolog pattern of 1,3-diols, it seems likely that both compound classes are biosynthetically related.  相似文献   

15.
Castor bean (Ricinus communis L.) plants were hydroponically cultivated to achieve NO3 deficiency (N starvation), salt stress (addition of 100 mM NaCl), or normal conditions. Endodermal (ECW) and rhizodermal and hypodermal cell walls (RHCW) were isolated enzymatically from roots, and suberin monomers were released by transesterification after solvent extraction. Aromatic and aliphatic suberin monomers were identified and quantified by gas chromatography and mass spectrometry. Between 90 and 95% of the released suberin monomers were linear, long-chain, aliphatic compounds (alcohols, acids, diacids, ω-hydroxy acids and 2-hydroxy acids) with an average chain length of 19 C-atoms. The remainder was an aromatic suberin fraction mainly composed of coumaric and ferulic acid. Suberin amounts were significantly increased in ECW and RHCW in the presence of NaCl. In contrast, N starvation led to significantly reduced levels of suberization in ECW and RHCW. It is concluded that R. communis plants reinforce their apoplastic transport barriers in roots in adaptation to NaCl stress in order to minimize NaCl uptake. Under conditions of N starvation the opposite occurs and plants reduce the suberization of their apoplastic transport barriers to facilitate nutrient uptake form the soil.  相似文献   

16.
Acylation of fatty acids to hydroxy groups in cells generally require activation to a thioester (ACP or CoA) or transacylation from another oxygen ester. We now show that microsomal membranes from Arabidopsis leaves efficiently acylate free fatty acids to long chain alcohols with no activation of the fatty acids to thioesters prior to acylation. Studies of the fatty alcohol and fatty acids specificities of the reaction in membranes from Arabidopsis leaves revealed that long chain (C18-C24) unsaturated fatty alcohols and C18-C22 unsaturated fatty acids were preferred. Microsomal preparations from Arabidopsis roots and leaves and from yeast efficiently synthesized ethyl esters from ethanol and free fatty acids. This reaction also occurred without prior activation of the fatty acid to a thioester. The results presented strongly suggest that wax ester and ethyl ester formation are carried out by separate enzymes. The physiological significance of the reactions in plants is discussed in connection to suberin and cutin synthesis. The results also have implication regarding the interpretation of lipid metabolic experiments done with microsomal fraction.  相似文献   

17.
Suberin composition of various plants including Arabidopsis (Arabidopsis thaliana) has shown the presence of very long chain fatty acid derivatives C20 in addition to the C16 and C18 series. Phylogenetic studies and plant genome mining have led to the identification of putative aliphatic hydroxylases belonging to the CYP86B subfamily of cytochrome P450 monooxygenases. In Arabidopsis, this subfamily is represented by CYP86B1 and CYP86B2, which share about 45% identity with CYP86A1, a fatty acid ω-hydroxylase implicated in root suberin monomer synthesis. Here, we show that CYP86B1 is located to the endoplasmic reticulum and is highly expressed in roots. Indeed, CYP86B1 promoter-driven β-glucuronidase expression indicated strong reporter activities at known sites of suberin production such as the endodermis. These observations, together with the fact that proteins of the CYP86B type are widespread among plant species, suggested a role of CYP86B1 in suberin biogenesis. To investigate the involvement of CYP86B1 in suberin biogenesis, we characterized an allelic series of cyp86B1 mutants of which two strong alleles were knockouts and two weak ones were RNA interference-silenced lines. These root aliphatic plant hydroxylase lines had a root and a seed coat aliphatic polyester composition in which C22- and C24-hydroxyacids and α,ω-dicarboxylic acids were strongly reduced. However, these changes did not affect seed coat permeability and ion content in leaves. The presumed precursors, C22 and C24 fatty acids, accumulated in the suberin polyester. These results demonstrate that CYP86B1 is a very long chain fatty acid hydroxylase specifically involved in polyester monomer biosynthesis during the course of plant development.  相似文献   

18.
Suberin is a lipid-phenolic biopolyester deposited in the cell walls of certain boundary tissue layers of plants, such as root endodermis, root and tuber peridermis, and seed coats. Suberin serves as a protective barrier in these tissue layers, controlling, for example, water and ion transport. It is also a stress-induced anti-microbial barrier. The suberin polymer contains a variety of C16–C24 chain-length aliphatics, such as ω-hydroxy fatty acids, α,ω-dicarboxylic fatty acids, and primary fatty alcohols. Suberin also contains high amounts of glycerol and phenolics, especially ferulic acid. In addition, non-covalently linked waxes are likely associated with the suberin polymer. This review focusses on the suberin biosynthetic enzymes identified to date, which include β-ketoacyl-CoA synthases, fatty acyl reductases, long-chain acyl-CoA synthetases, cytochrome P450 monooxygenases, glycerol 3-phosphate acyltransferases, and phenolic acyltransferases. We also discuss recent advances in our understanding of the transport of suberin components intracellularly and to the cell wall, polymer assembly, and the regulation of suberin deposition.  相似文献   

19.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

20.
A series of alkyldimethylbenzylammonium chlorides have been synthesized with n-alkyl chain lengths of C1 leads to C18. Octanol/water partition coefficients were determined and the antimicrobial activity assessed as the minimum growth inhibitory concentrations towards twelve strains of micro-organisms, representative of Gram-negative and Gram-positive bacteria, yeasts and fungi. The data were subjected to a numerical analysis. Antimicrobial activity of the compounds was found to be a parabolic function of their lipophilicity and maximized with n-alkyl chain lengths of between C12 and C16. The data fit to quadratic functions estimated for low (C1-C7) and high (C8-C16) alkyl chain length compounds was better than for a single quadratic describing the activity of the complete series (C1-C18). These maximized at log P values corresponding to alkyl-chain lengths of approximately C7 and C14 respectively, and were suggestive of low and high affinity binding sites upon the cell surface. The data analysis allowed the chain lengths of compounds with optimal activity towards the various groups of organisms to be determined. Generally yeasts and fungi were most sensitive towards C12, Gram-positive bacteria towards C14, and the Gram-negative bacteria towards C16. Gram-negative cells were the most resistant towards all the compounds and Gram-positive cells the least.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号