首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In biomedical studies, dyes are divided into "acid" and "basic" dyes. This classification cannot be reconciled with current chemical definitions of acids and bases. Br?nsted-Lowry acids are compounds that can donate protons; bases are proton acceptors. The definition of acids and bases is independent of the electric charge, i.e. acids and bases can be neutral, anionic or cationic. Reactions between acids and bases result in formation of new acid-base pairs. Lewis acids and bases do not depend on a particular element, but are characterized by their electronic configurations. Lewis bases are electron donors; Lewis acids are electron acceptors. This classification is also unrelated to the electric charge. Lewis acids and bases interact by formation of coordinate covalent bonds. In histochemistry and histology, dyes containing -SO3-, -COO- and/or -O- groups are classified as "acid" dyes. However, such compounds are electron pair donors and hence Br?nsted-Lowry and Lewis anionic bases. Dyes carrying a positive charge are termed "basic" dyes. Chemically, many cationic dyes are Lewis acids because they can add a base, e.g. OH-, acetate, halides. The hypothesis that transformation of -NH2 into ammonium groups imparts "basic" properties to dyes is untenable; ammonium groups are proton donors and hence acids. Furthermore, conversion of an amino into an ammonium group blocks a lone electron pair and the color of the dye changes drastically, e.g. from violet to green and yellow. It appears therefore highly unlikely that ammonium groups are responsible for binding of cationic ("basic") dyes. In histochemistry, it is usually not of critical importance whether anionic or cationic dyes are chemically acids or bases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
l-Leucine can be assimilated by bacteria when sugars or other preferential carbon sources in the habitat are depleted. The l-leucine catabolism is widely spread among bacteria and has been thoroughly studied. Its pathway is comprised by multiple reactions and converges with other catabolic routes, generating acetoacetate and acetyl-CoA as its final products. The initial three steps are conserved in most bacteria, constituting the first steps of the branched-chain amino acids catabolic pathway. The main product of these sequential reactions is the 3-methylcrotonyl-CoA metabolite, which undergoes further enzymatic steps towards the production of acetoacetate and acetyl-CoA. These, however, are not always the final products of l-leucine catabolism, as intermediates of the pathway can further synthesize fatty acids or feed other secondary metabolism pathways in order to produce diverse compounds which can exhibit biological activities. This alternative metabolism typically leads to the accumulation of products bearing industrial relevance, including volatile compounds used in the food industry, compounds with antimicrobial activity, production of biofuels and biopolymers. In anaerobic bacteria, the l-leucine catabolism may induce the accumulation of a variety of organic compounds acids, such as isovaleric, isocaproic, and 2-methylbutyric acids. In conclusion, the usage by bacterial species of l-leucine as an alternative carbon and nitrogen source may contribute to their environment adaptability and, more importantly, the diverse products that can be obtained from l-leucine metabolism may be represent a valuable source of compounds of biotechnological interest.  相似文献   

3.
1. Environmental toxicology emphasizes the difference from traditional toxicology in which pure compounds of interest are added to purified diets, or injected into the test animals. When the objective is to study the fate and effects of trace elements in the environment, knowledge of the speciation of the elements and their physico-chemical forms is important.2. Cadmium salts such as the sulfides, carbonates or oxides, are practically insoluble in water. However, these can be converted to water-soluble salts in nature under the influence of oxygen and acids. Chronic exposure to Cd is associated with renal toxicity in humans once a critical body burden is reached.3. The solubility of As(III) oxide in water is fairly low, but high in either acid or alkali. In water, arsenic is usually in the form of the arsenate or arsenite. As(III) is systemically more poisonous than the As(V), and As(V) is reduced to the As(III) form before exerting any toxic effects. Organic arsenicals also exert their toxic effects in vivo in animals by first metabolizing to the trivalent arsenoxide form. Some methyl arsenic compounds, such as di- and trimethylarsines, occur naturally as a consequence of biological activity. The toxic effect of arsenite can be potentiated by dithiols, while As has a protective effect against the toxicity of a variety of forms of Se in several species.4. Selenium occurs in several oxidation states and many selenium analogues of organic sulfur compounds exist in nature. Selenium in selenate form occurs in alkaline soils, where it is soluble and easily available to plants. Selenite binds tightly to iron and aluminum oxides and thus is quite insoluble in soils. Hydrogen selenide is a very toxic gas at room temperature. The methylated forms of Se are much less toxic for the organism than selenite. However, the methylated Se derivatives have strong synergistic toxicity with other minerals such as arsenic.5. Aquatic organisms absorb and retain Hg in the tissues, as methylmercury, although most of the environmental Hg to which they are exposed is inorganic. The methylmercury in fish arises from the bacterial methylation of inorganic Hg. Methylmercury in the human diet is almost completely absorbed into the bloodstream. The nervous system is the principal target tissue affected by methylmercury in adult human beings, while kidney is the critical organ following the ingestion of Hg(II) salts.  相似文献   

4.
Desert varnish is a coating of ferromanganese oxides and clays that develops on rock surfaces in arid to semi-arid regions. Active respiration but not photosynthesis was detected on varnished rock surfaces from the Sonoran Desert. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, and cultivation experiments indicate that both fungi, primarily dematiaceous hyphomycetes, and bacteria are found on and within desert varnish coatings from the arid regions studied. Some fungi grow as microcolonial fungi (MCF) on rocks, and microscopic observations suggest MCF become incorporated in the varnish coating. SEM-EDAX (energy dispersive X-ray systems) analyses indicate the MCF contain 3 of the characteristic elements of varnish: iron, aluminum, and silicon. In some locations, MCF are also enriched in manganese relative to the rock substratum. Furthermore, some of the dematiaceous hyphomycetes that have been cultivated are able to oxidize manganese under laboratory conditions. It is possible that manganese-oxidizing bacteria, which are found in varnish, also play an important role in varnish formation.  相似文献   

5.
Washed suspensions of the rumen ciliate protozoon Eudiplodinium maggii grown in vitro and incubated anaerobically engulfed all the bacteria tested except for Bacteroides ruminicola and Klebsiella aerogenes. There was considerable variation (160–9100 bacteria/h/protozoon at an external concentration of 1010 bacteria/ml) in the rate at which the bacteria were engulfed, but Eu. maggii showed some preference for bacteria of rumen origin. Some of the bacteria were digested with the release of soluble materials into the medium. Free amino acids were incorporated from an 0.1 mM solution at rates of 0.13 to 0.84 pmol/h/protozoon. Evidence is presented that Eu. maggii could obtain half the amino acids required for growth by the engulfment and digestion of bacteria and half by the uptake of free amino acids. Eudiplodinium maggii incorporated uridine 5' monophosphate and also hydrolysed this to uridine and then to uracil which was reduced to dihydrouracil. These products all appeared in the medium. Ribose was incorporated by the protozoon and appeared as glucose in protozoal and bacterial polysaccharide; none was incorporated as such into protozoal nucleic acid.  相似文献   

6.
Selenium was incorporated into an oligodeoxynucleotide in the form of 2'-methylseleno-uridine (U(Se)). The X-ray crystal structure of the duplex left open bracket d(GCGTA)U(Se)d(ACGC) right open bracket (2) was determined by the multiwavelength anomalous dispersion (MAD) technique and refined to a resolution of 1.3 A, demonstrating that selenium can selectively substitute oxygen in DNA and that the resulting compounds are chemically stable. Since derivatization at the 2'-alpha-position with selenium does not affect the preference of the sugar for the C3'-endo conformation, this strategy is suitable for incorporating selenium into RNA. The availability of selenium-containing nucleic acids for crystallographic phasing offers an attractive alternative to the commonly used halogenated pyrimidines.  相似文献   

7.
The Evolution of Oxygen As a Biosynthetic Reagent   总被引:1,自引:0,他引:1  
The biosynthesis of certain cell constituents: monounsaturated fatty acids, tyrosine, and nicotinic acid, is oxygen-dependent in many higher organisms. The same compounds can be synthesized by different, oxygen-independent pathways in lower organisms. The general outlines of these pathways are described and the importance of the compounds synthesized is discussed. An examination of the distribution of these pathways among living organisms reveals that oxygen-dependent pathways replaced the "anaerobic" pathways at different branch points on the evolutionary tree. Other groups of compounds are discussed, which are not distributed as widely among living organisms, but are found in all higher organisms. These compounds have specialized functions and their biosynthesis requires molecular oxygen. The oxygen-dependent portions of the biosynthetic pathways leading to porphyrins, quinone coenzymes, carotenoids, sterols, and polyunsaturated fatty acids are summarized. The distribution and functions of these compounds are also considered and an attempt is made to place them in the framework of evolution. While sterols and polyunsaturated fatty acids are found exclusively in the higher Protista and multicellular organisms, carotenoids, porphyrins, and quinones are also found in bacteria. The possibility of oxygen-independent mechanisms for their biosynthesis is discussed.  相似文献   

8.
Selenium is an essential trace element for mammals. Through selenoproteins, this mineral participates in various biological processes such as antioxidant defence, thyroid hormone production, and immune responses. Some reports indicate that a human organism deficient in selenium may be prone to certain diseases. Adverse health effects following selenium overexposure, although very rare, have been found in animals and people. Contrary to selenium, arsenic and cadmium are regarded as toxic elements. Both are environmental and industrial pollutants, and exposure to excessive amounts of arsenic or cadmium can pose a threat to many people’s health, especially those living in polluted regions. Two other elements, vanadium and chromium(III) in trace amounts are believed to play essential physiological functions in mammals. This review summarizes recent studies on selenium interactions with arsenic and cadmium and selenium interactions with vanadium and chromium in mammals. Human studies have demonstrated that selenium may reduce arsenic accumulation in the organism and protect against arsenic-related skin lesions. Selenium was found to antagonise the prooxidant and genotoxic effects of arsenic in rodents and cell cultures. Also, studies on selenium effects against oxidative stress induced by cadmium in various animal tissues produced promising results. Reports suggest that selenium protection against toxicity of arsenic and cadmium is mediated via sequestration of these elements into biologically inert conjugates. Selenium-dependent antioxidant enzymes probably play a secondary role in arsenic and cadmium detoxification. So far, few studies have evaluated selenium effects on chromium(III) and vanadium actions in mammals. Still, they show that selenium may interact with these minerals. Taken together, the recent findings regarding selenium interaction with other elements extend our understanding of selenium biological functions and highlight selenium as a potential countermeasure against toxicity induced by arsenic and cadmium.  相似文献   

9.
High arsenic levels have been found in some water samples from the Iron Quadrangle, a main gold, manganese and iron mining region in Brazil. In this work, we used transmission electron microscopy coupled to energy-dispersive X-ray analysis to show arsenic in bacteriogenic iron minerals (BIOS) collected in this region. Two types of iron bacteria stalks and several morphologically different filamentous sheaths of bacteria were found, most containing arsenic. Bacterial stalks were partially coated by spherical precipitates probably deposited after stalk secretion. Arsenic/iron ratios were the same independently of the amount of spherical precipitates, suggesting that arsenic incorporation is independent of bacterial metabolism. Additionally, arsenic seems to be saturated in these minerals, since the arsenic/iron ratio was the same under different arsenic concentrations.  相似文献   

10.
腐殖质在环境污染物生物降解中的作用研究进展   总被引:3,自引:0,他引:3  
腐殖质物质在地球的生态环境中大量存在,它不仅可以在有毒化合物的生物降解和生物转化过程中起到氧化还原中间体的作用,加速有毒物质的降解和转化。也可以作为唯一末端电子受体,接受来自一些有机酸或者甲苯等环境中有毒物质提供的电子,偶联能量的产生,支持菌体的生长,形成一种新的细菌厌氧呼吸形式——腐殖质呼吸。因此,对腐殖质在环境有毒物质的生物降解和生物转化过程中的作用进行研究,不仪对于深入理解细菌呼吸的本质具有重要的理论意义,而且对于环境有毒物质的降解和转化以及元素的生物地球化学循环具有重要的生态学意义,同时对地球表面的有毒物质进行更有效的生物降解具有重要的现实意义。  相似文献   

11.
Ferredoxins are Fe–S proteins with low molecular weight (6–12000) which act as electron carriers at very low redox potentials eg. –300 to –500 mV, in diverse biochemical processes such as bacterial and plant photosynthesis, N2 fixation, carbon metabolism, oxidative phosphorylation and steroid hydroxylation. They are found in a wide range of organisms from the primitive obligate anaerobic bacteria, through photosynthetic bacteria, blue-green and green algae, to all higher plants and animals. Three types of ferredoxins are known –8 Fe+8 S, 4 Fe+4 S and 2 Fe+2 S. All three have been found in bacteria while the 2 Fe and some 8 Fe ferredoxins have been found in plants and animals possibly representing an evolutionary sequence. The 8 Fe ferredoxin may all be composed of two 4 Fe units. We have proposed that because of the simplicity of the 8 Fe ferredoxins (only 9 common simple amino acids in clostridia, 6 of which have been detected in the Murchison meteorite) they may have been amongst the earliest proteins formed during the origin of life. A simple peptide of about 27 amino acids could incorporate inorganic Fe+S (or possibly an existing Fe–S complex) into it nonenzymatically under anaerobic conditions to form a protein carrying one or two electrons at the potential of the H2 electrode. More than ten Fe–S model compounds have been proposed as analogues of the 4 Fe or 2 Fe containing active centres; inorganic, organometallic and peptide complexes have been synthesized. A few have many of the properties of ferredoxins but none as yet fulfills a sufficient number of criteria to substitute for ferredoxins chemically and biologically — a goal which will provide many clues to primitive peptide systems undergoing biological electron transfer reactions.  相似文献   

12.
Summary Soil bacteria which have been used in earlier experiments to demonstrate an active uptake of silicon, loose phosphate during silicon uptake when cultured in P-free medium. This could be shown by comparable determinations of the phosphate and silicon concentration of the cells. Under the conditions given in our experiments the exchange of Si for P lies in the range of 1:2. By addition of rising P-concentrations to media with constant concentration of Si, it was shown that about 100 P/ml will completely inhibit the uptake of silicon within 24 hours. Increasing concentrations of phosphate going along with decreasing concentrations of silicate showed to cause a linear decrease of Si-uptake intensity within the first 24 hours in the range of 20–100 P/ml. Above these concentrations (and the proportion of Si/P=1:4) silicon uptake is completely inhibited independent of phosphate concentrations. About 10% of the silicon incorporated can be extracted from the cells with ethanol in the form of instable, easily hydrolysable complexes. The entire silicon of the cells is completely exchanged against phosphate when silicon containing cells are cultured in Si-free phosphate medium, whereas cells adapted to silicon will not extrude the silicon taken up before, when incubated in a medium containing both elements. References to the possible synthesis of organic silicon compounds resulting from these experiments are discussed.  相似文献   

13.
Cycling of phosphorus (P) at the sediment/water interface is generally considered to be an abiotic process. Sediment bacteria are assumed to play only an indirect role by accelerating the transfer of electron from electron donors to electron acceptors, thus providing the necessary conditions for redox-and pH-dependent, abiotic sorption/desorption or precipitation/dissolution reactions. Results summarized in this review suggest that
  1. in eutrophic lakes, sediment bacteria contain as much P as settles with organic detritus during one year
  2. in oligotrophic lakes, P incorporated in benthic bacterial biomass may exceed the yearly deposition of bioavailable P several times
  3. storage and release of P by sediment bacteria are redox-dependent processes
  4. an appreciable amount of P buried in the sediment is associated with the organic fraction
  5. sediment bacteria not only regenerate PO4, they also contribute to the production of refractory, organic P compounds, and
  6. in oligotrophic lakes, a larger fraction of the P settled with organic detritus is converted to refractory organic compounds by benthic microorganisms than in eutrophic lakes.
From this we conclude that benthic bacteria do more than just mineralize organic P compounds. Especially in oligotrophic lakes, they also may regulate the flux of P across the sediment/water interface and contribute to its terminal burial by the production of refractory organic P compounds.  相似文献   

14.
Biological degradation of 2,4,6-trinitrotoluene.   总被引:2,自引:0,他引:2  
Nitroaromatic compounds are xenobiotics that have found multiple applications in the synthesis of foams, pharmaceuticals, pesticides, and explosives. These compounds are toxic and recalcitrant and are degraded relatively slowly in the environment by microorganisms. 2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound. Certain strains of Pseudomonas and fungi can use TNT as a nitrogen source through the removal of nitrogen as nitrite from TNT under aerobic conditions and the further reduction of the released nitrite to ammonium, which is incorporated into carbon skeletons. Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes. Most if not all aerobic microorganisms reduce TNT to the corresponding amino derivatives via the formation of nitroso and hydroxylamine intermediates. Condensation of the latter compounds yields highly recalcitrant azoxytetranitrotoluenes. Anaerobic microorganisms can also degrade TNT through different pathways. One pathway, found in Desulfovibrio and Clostridium, involves reduction of TNT to triaminotoluene; subsequent steps are still not known. Some Clostridium species may reduce TNT to hydroxylaminodinitrotoluenes, which are then further metabolized. Another pathway has been described in Pseudomonas sp. strain JLR11 and involves nitrite release and further reduction to ammonium, with almost 85% of the N-TNT incorporated as organic N in the cells. It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis. In this review we also discuss a number of biotechnological applications of bacteria and fungi, including slurry reactors, composting, and land farming, to remove TNT from polluted soils. These treatments have been designed to achieve mineralization or reduction of TNT and immobilization of its amino derivatives on humic material. These approaches are highly efficient in removing TNT, and increasing amounts of research into the potential usefulness of phytoremediation, rhizophytoremediation, and transgenic plants with bacterial genes for TNT removal are being done.  相似文献   

15.
Biological Degradation of 2,4,6-Trinitrotoluene   总被引:19,自引:0,他引:19       下载免费PDF全文
Nitroaromatic compounds are xenobiotics that have found multiple applications in the synthesis of foams, pharmaceuticals, pesticides, and explosives. These compounds are toxic and recalcitrant and are degraded relatively slowly in the environment by microorganisms. 2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound. Certain strains of Pseudomonas and fungi can use TNT as a nitrogen source through the removal of nitrogen as nitrite from TNT under aerobic conditions and the further reduction of the released nitrite to ammonium, which is incorporated into carbon skeletons. Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes. Most if not all aerobic microorganisms reduce TNT to the corresponding amino derivatives via the formation of nitroso and hydroxylamine intermediates. Condensation of the latter compounds yields highly recalcitrant azoxytetranitrotoluenes. Anaerobic microorganisms can also degrade TNT through different pathways. One pathway, found in Desulfovibrio and Clostridium, involves reduction of TNT to triaminotoluene; subsequent steps are still not known. Some Clostridium species may reduce TNT to hydroxylaminodinitrotoluenes, which are then further metabolized. Another pathway has been described in Pseudomonas sp. strain JLR11 and involves nitrite release and further reduction to ammonium, with almost 85% of the N-TNT incorporated as organic N in the cells. It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis. In this review we also discuss a number of biotechnological applications of bacteria and fungi, including slurry reactors, composting, and land farming, to remove TNT from polluted soils. These treatments have been designed to achieve mineralization or reduction of TNT and immobilization of its amino derivatives on humic material. These approaches are highly efficient in removing TNT, and increasing amounts of research into the potential usefulness of phytoremediation, rhizophytoremediation, and transgenic plants with bacterial genes for TNT removal are being done.  相似文献   

16.
Arsenic resistance and removal by marine and non-marine bacteria   总被引:2,自引:0,他引:2  
Arsenic resistance and removal was evaluated in nine bacterial strains of marine and non-marine origins. Of the strains tested, Marinomonas communis exhibited the second-highest arsenic resistance with median effective concentration (EC(50)) value of 510 mg As l(-1), and was capable of removing arsenic from culture medium amended with arsenate. Arsenic accumulation in cells amounted to 2290 microg As g(-1) (dry weight) when incubated on medium containing 5 mg As l(-1) of arsenate. More than half of the arsenic removed was related to metabolic activity: 45% of the arsenic was incorporated into the cytosol fraction and 10% was found in the lipid-bound fraction of the membrane, with the remaining arsenic considered to be adsorbed onto the cell surface. Potential arsenic resistance and removal were also examined in six marine and non-marine environmental water samples. Of the total bacterial colony counts, 28-100% of bacteria showed arsenic resistance. Some of the bacterial consortia, especially those from seawater enriched with arsenate, exhibited higher accumulated levels of arsenic than M. communis under the same condition. These results showed that arsenic resistant and/or accumulating bacteria are widespread in the aquatic environment, and that arsenic-accumulating bacteria such as M. communis are potential candidates for bioremediation of arsenic contaminated water.  相似文献   

17.
Mechanistic aspects of the interaction between selenium and arsenic   总被引:6,自引:0,他引:6  
Selenium is an essential trace element for humans and other animals, and there is mounting evidence for the efficacy of certain forms of selenium as cancer-chemopreventive compounds. However, over the years, numerous elements such as As, Cu, Zn, Cd, Hg, Sn, Pb, Ni, Co, Sb, Bi, Ag, Au, and Mo have been found to inhibit anti-carcinogenic effects of selenium, which may affect the anti-carcinogenic activity of selenium. The interaction between selenium and arsenic has been one of the most extensively studied. The proposed mechanisms of this interaction include the increase of biliary excretion and direct interaction/precipitation of selenium and arsenic, and their effects on zinc finger protein function, cellular signaling and methylation pathways. This article focuses on these proposed mechanisms and how anti-carcinogenic effects of selenium may be affected by arsenic.  相似文献   

18.
Selenium (Se) has chemical properties similar to sulfur, but slight differences can lead to altered tertiary structure and dysfunction of proteins and enzymes, if selenocysteine is incorporated into proteins in place of cysteine. In some areas of California with irrigation agriculture elevated Se concentration in drainage and shallow groundwaters caused bioaccumulation of Se in wetlands and Se toxicity to wildlife. Among higher plants Se accumulators are tolerant to high Se concentrations whereas non-accumulators are Se-sensitive. Algae show a requirement of Se for growth and development, but no Se essentiality has been demonstrated for higher plants, possibly with the exception of Se accumulators. Higher plants take up Se preferentially as selenate via the high affinity sulfate permease. Contents of Se in agricultural crops are usually below 1 mg kg?1 DW, and hence such crops are considered safe for human and animal consumption even when grown on moderately high Se soils. Sulfate salinity inhibits uptake of selenate by many plant species. Assimilation of selenate by non-accumulators leads to synthesis of selenocysteine and selenomethionine; Se-cysteine is readily incorporated into proteins. High Se can interfere with S and N metabolism in non-accumulators. In contrast, Se accumulators sequester Se mainly in non-protein selenoamino acids. Among several selenoenzymes identified in bacteria and mammals, Se-dependent glutathione peroxidase which catalyses the reduction of organic peroxides and H2O2 has been demonstrated convincingly in algae; in higher plants, however, the experimental evidence regarding its occurrence is controversial. All organisms including higher plants contain Se-cysteyl-tRNAs that decode UGA. Selenocysteine is proposed to function as 21st proteinaceous amino acid and thus is suggested to have a biological role in higher plants. Biogeochemical cycling of Se involves significant volatilization of methylated selenides such as dimethyl selenide to the atmosphere from higher plants as well as freshwater algae, but Se exchange between oceans and the atmosphere appears to proceed as net flux to the oceans.  相似文献   

19.
Isolated cytochrome complexes from different sources like beef heart mitochondria, spinach chloroplasts, cyanobacteria, and photosynthetic bacteria were incorporated into liposomes by sonication as revealed by sucrose density gradient centrifugation and electron microscopy. The reconstituted cytochrome complexes show suppressed rates of quinol-cytochrome c/plastocyanin oxidoreduction which can be stimulated by ionophores and uncouplers. In addition, extra proton translocation out of the vesicles and membrane potential generation during electron transport were observed, suggesting a universal mechanism of electron and proton transport through all the tested cytochrome complexes.  相似文献   

20.
Omega-Cyclohexyl undecanoic acid and omega-cyclohexyl tridecanoic acid were found in 10 strains of acido-thermophilic bacteria isolated from different Japanese hot springs. These unusual fatty acids were found in the esterified form in glyceride type complex lipids and constituted 74 to 93% of the total fatty acids in the bacteria. The fatty acids other than omega-cyclohexyl fatty acids found were 14-methyl hexadecanoic acid (3 to 15%) and 15-methyl hexadecanoic acid (1 to 6%), and trace amounts of straight chain and methyl-branched tetra- and penta-decanoic acids. Biosynthesis of omega-cyclohexyl fatty acids increased with increase in the concentration of glucose in the culture medium. The metabolism of omega-cyclohexyl fatty acids was studied using deuterium-labeled precursors by mass fragmentation analysis. The deuterium of [2-D]glucose was specifically incorporated into position 2 of the cyclohexyl ring of the fatty acids, indicating that the ring was synthesized from the glucose molecule. Radioactivity was efficiently incorporated into the omega-cyclohexyl fatty acids from labeled glucose, shikimate, and cyclohexyl carboxylate. These findings indicate that omega-cyclohexyl fatty acids are synthesized with glucose through shikimic acid and probably cyclohexyl carboxylyl-CoA derivative as the intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号