首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluation of root traits in rainfed lowland rice is very difficult. Molecular genetic markers could be used as an alternative strategy to phenotypic selection for the improvement of rice root traits. This research was undertaken to map QTLs associated with five root traits using RFLP and AFLP markers. Recombinant inbred lines (RILs) were developed from two indica parents, IR58821–23-B-1–2-1 and IR52561-UBN-1–1-2, that were adapted to rainfed lowland production systems. Using wax-petrolatum layers to simulate a hardpan in the soil, 166 RILs were evaluated for total root number (TRN), penetrated root number (PRN), root penetration index (RPI, the ratio of PRN to TRN), penetrated root thickness (PRT) and penetrated root length (PRL) under greenhouse conditions during the summer and the fall of 1997. A genetic linkage map of 2022 cM length was constructed comprising 303 AFLP and 96 RFLP markers with an average marker space of 5.0 cM. QTL analysis via interval mapping detected 28 QTLs for these five root traits, which were located on chromosomes 1, 2, 3, 4, 6, 7, 10 and 11. Individual QTLs accounted for between 6 and 27% of the phenotypic variation. Most of the favorable alleles were derived from the parent IR58821–23-B-1–2-1, which was phenotypically superior in root traits related to drought resistance. Three out of six QTLs for RPI were detected in both summer and fall experiments and they also were associated with PRN in both experiments. Out of eight QTLs for RPT, five were common in both seasons. Two genomic regions on chromosome 2 were associated with three root traits (PRN, PRT and RPI), whereas three genomic regions on chromosomes 2 and 3 were associated with two root traits (PRT and RPI). Two QTLs affecting RPI and two QTLs affecting PRT were also found in similar genomic regions in other rice populations. The consistent QTLs across genetic backgrounds and the common QTLs detected in both experiments should be good candidates for marker-assisted selection toward the incorporation of root traits in a drought resistance breeding program, especially for rainfed lowland rice. Received: 17 November 1999 / Accepted: 19 March 2000  相似文献   

2.
Localizing genes that contribute to drought avoidance in a quantitative way should enable the exploitation of these genes in breeding through marker-assisted selection, and may lead to the discovery of gene identity and function. Between 110 and 176 F6 recombinant inbred lines from a mapping population derived from a cross of upland rice varieties Bala and Azucena have been evaluated for indicators of drought avoidance in sites in the Philippines and West Africa over two dry seasons. A molecular map with 102 RFLP, 34 AFLP and six microsatellite markers has been used to map (by composite interval mapping) quantitative trait loci (QTLs) for the visual scores of leaf rolling and leaf drying and leaf relative water content. QTLs were mapped for each site and across sites. A total of 17 regions were identified which contained QTLs with a LOD score greater than 3.2. For leaf rolling, Bala was the parent contributing the majority of positive alleles whilst for the other traits, Bala and Azucena contributed more evenly. Six of the 17 regions influenced more than one trait, explaining the phenotypic correlations between traits that were observed. Three QTLs appeared to be specific to the Philippines experiments. One QTL had opposing effects in the Philippines and West Africa. QTLs for relative water content were detected on chromosome 8, congruent with an osmotic adjustment QTL identified in another population. Only three of the QTLs identified here have not been reliably identified in the two other populations that have been screened for drought avoidance. By using several populations assessed for drought avoidance in different sites, the distribution and utility of QTLs for drought avoidance in rice is being elucidated.  相似文献   

3.
We exploited the AFLP®1(AFLP® is a registered trademark of Keygene, N.V.) technique to map and characterise quantitative trait loci (QTLs) for grain yield and two grain-related traits of a maize segregating population. Two maize elite inbred lines were crossed to produce 229 F2 individuals which were genotyped with 66 RFLP and 246 AFLP marker loci. By selfing the F2 plants 229 F3 lines were produced and subsequently crossed to two inbred testers (T1 and T2). Each series of testcrosses was evaluated in field trials for grain yield, dry matter concentration, and test weight. The efficiency of generating AFLP markers was substantially higher relative to RFLP markers in the same population, and the speed at which they were generated showed a great potential for application in marker-assisted selection. AFLP markers covered linkage group regions left uncovered by RFLPs; in particular at telomeric regions, previously almost devoided of markers. This increase of genome coverage afforded by the inclusion of the AFLPs revealed new QTL locations for all the traits investigated and allowed us to map telomeric QTLs with higher precision. The present study has also provided an opportunity to compare simple (SIM) and composite interval mapping (CIM) for QTL analysis. Our results indicated that the method of CIM employed in this study has greater power in the detection of QTLs, and provided more precise and accurate estimates of QTL positions and effects than SIM. For all traits and both testers we detected a total of 36 QTLs, of which only two were in common between testers. This suggested that the choice of a tester for identifying QTL alleles for use in improving an inbred is critical and that the expression of QTL alleles identified may be tester-specific.  相似文献   

4.
Drought is a major abiotic stress of upland rice, and good root growth has been associated with drought avoidance. We report on the genetic mapping of root growth traits in an F2 population derived from two drought-resistant rice varieties, ‘Bala’ and ‘Azucena’. Restriction fragment length polymorphism (RFLP) between the parents was 32%, and a molecular map with 71 marker loci and 17 linkage groups covering 1280 cM was produced. Quantitative trait loci (QTLs) for eight root growth characteristics were mapped using phenotype data obtained in a hydroponic screen previously described in a companion paper. Using a significance threshold of LOD 2.4, we observed one QTL for maximum root length after 28 days growth on chromosome 11. It had a LOD score of 6.9, explained nearly 30% of the variation and appeared to be largely additive in effect. QTLs for maximum root length after 3, 7, 14 and 21 days of growth were also revealed. Some root-length QTLs, including that on chromosome 11, varied greatly with developmental stage. One QTL for root volume and two QTLs for adventitious root thickness were detected. No QTLs were detected for the length of cells in the mature (fully expanded) zone of adventitious root tips. The results obtained are discussed in the context of previous reports on mapping root growth parameters in rice.  相似文献   

5.
We have constructed a molecular linkage map of pepper (Capsicum spp.) in an interspecific F2 population of 107 plants with 150 RFLP and 430 AFLP markers. The resulting linkage map consists of 11 large (206–60.3 cM) and 5 small (32.6–10.3 cM) linkage groups covering 1,320 cM with an average map distance between framework markers of 7.5 cM. Most (80%) of the RFLP markers were pepper-derived clones, and these markers were evenly distributed across the genome. By using 30 primer combinations, we were able to generate 444 AFLP markers in the F2 population. The majority of the AFLP markers clustered in each linkage group, although PstI/MseI markers were more evenly distributed than EcoRI/MseI markers within the linkage groups. Genes for the biosynthesis of carotenoids and capsaicinoids were mapped on our linkage map. This map will provide the basis of studying secondary metabolites in pepper. Received: 20 October 1999 / Accepted: 3 July 2000  相似文献   

6.
Root penetration ability is an important factor for rice drought resistance in areas with soils subject to both compaction and periodic water deficits. However, breeding for root penetration ability is inhibited by the difficulties associated with measuring root traits. Our objective was to identify restriction fragment length polymorphisms (RFLPs) associated with root penetration ability. Using wax-petrolatum layers as a proxy for compacted soil, we counted the number of vertical root axes penetrating through the layer, the total number of vertical root axes and the number of tillers per plant of 202 recombinant inbred (RI) lines over three replications. As a measure of root penetration ability, we used a root penetration index defined as the percent of the total number of vertical root axes that penetrated through a wax-petrolatum layer. The RI population exhibited a wide range in the number of penetrating roots axes (10–115 roots), the total number of roots axes (74–226 roots), tillers per plant (6–18), and in the root penetration index (0.11–0.71). Single-marker and interval quantitative trait analyses were conducted to identify RFLP loci associated with the number of penetrating roots, total root number, root penetration index, and tiller number. Four quantitative trait loci (QTLs) were associated with the number of penetrated roots, 19 with the total root number, six QTLs with the root penetration index and ten with tiller number. Individually, these QTLs accounted for a maximum of 8% of the variation in the number of penetrating roots, 19% of the variation in total root number, 13% of the variation in root penetration index and 14% of the variation in tiller number as estimated from regressions. The multimarker regression model accounting for the greatest proportion of the variation in the root penetration index was a three-marker model that accounted for 34% of the variation. Two-marker models accounted for 13% of the variation in the number of penetrated roots, 25% of the variation in total root number, and 21% of the variation in tiller number. This is the first research paper to apply RFLP quantitative trait analysis to dissect genetic loci associated with the total number of roots, root penetration ability and tiller number.Contribution from the Department of Plant and Soil Science, College of Agricultural Sciences and Natural Resources, Texas Tech University Lubbock, TX 79409, USA. Journal Number T-4-385  相似文献   

7.
Combined mapping of AFLP and RFLP markers in barley   总被引:56,自引:0,他引:56  
AFLP marker technology allows efficient DNA fingerprinting and the analysis of large numbers of polymorphic restriction fragments on polyacrylamide gels. Using the doubled haploids from the F1 of the cross Proctor × Nudinka, 118 AFLP markers were mapped onto a barley (Hordeum vulgare L.) RFLP map, also including five microsatellite and four protein marker loci. The AFLP markers mapped to all parts of the barley chromosomes and filled in the gaps on barley chromosomes 2L, 4L and 6 in which no RFLP loci had been mapped. Interestingly, the AFLP markers seldom interrupted RFLP clusters, but grouped next to them. The combined map covers 1873 cM, with a total of 282 markers. The merging of AFLP and RFLP markers increased the total map length; 402 cM were added to the map at the tips of chromosomes or in regions corresponding to earlier gaps. Another 375 cM resulted from mapping AFLP markers near to RFLP clusters or in between non-clustered RFLP markers.  相似文献   

8.
A phenotypically polymorphic barley (Hordeum vulgare L.) mapping population was developed using morphological marker stocks as parents. Ninety-four doubled-haploid lines were derived for genetic mapping from an F1 using the Hordeum bulbosum system. A linkage map was constructed using 12 morphological markers, 87 restriction fragment length polymorphism (RFLP), five random amplified polymorphic DNA (RAPD), one sequence-tagged site (STS), one intron fragment length polymorphism (IFLP), 33 simple sequence repeat (SSR), and 586 amplified fragment length polymorphism (AFLP) markers. The genetic map spanned 1,387 cM with an average density of one marker every 1.9 cM. AFLP markers tended to cluster on centromeric regions and were more abundant on chromosome 1 (7H). RAPD markers showed a high level of segregation distortion, 54% compared with the 26% observed for AFLP markers, 27% for SSR markers, and 18% for RFLP markers. Three major regions of segregation distortion, based on RFLP and morphological markers, were located on chromosomes 2 (2H), 3 (3H), and 7 (5H). Segregation distortion may indicate that preferential gametic selection occurred during the development of the doubled-haploid lines. This may be due to the extreme phenotypes determined by alleles at morphological trait loci of the dominant and recessive parental stocks. Several molecular markers were found to be closely linked to morphological loci. The linkage map reported herein will be useful in integrating data on quantitative traits with morphological variants and should aid in map-based cloning of genes controlling morphological traits. Received: 23 August 2000 / Accepted: 15 December 2000  相似文献   

9.
Cultivated alfalfa (Medicago sativa) is an autotetraploid. However, all three existing alfalfa genetic maps resulted from crosses of diploid alfalfa. The current study was undertaken to evaluate the use of Simple Sequence Repeat (SSR) DNA markers for mapping in diploid and tetraploid alfalfa. Ten SSR markers were incorporated into an existing F2 diploid alfalfa RFLP map and also mapped in an F2 tetraploid population. The tetraploid population had two to four alleles in each of the loci examined. The segregation of these alleles in the tetraploid mapping population generally was clear and easy to interpret. Because of the complexity of tetrasomic linkage analysis and a lack of computer software to accommodate it, linkage relationships at the tetraploid level were determined using a single-dose allele (SDA) analysis, where the presence or absence of each allele was scored independently of the other alleles at the same locus. The SDA diploid map was also constructed to compare mapping using SDA to the standard co-dominant method. Linkage groups were generally conserved among the tetraploid and the two diploid linkage maps, except for segments where severe segregation distortion was present. Segregation distortion, which was present in both tetraploid and diploid populations, probably resulted from inbreeding depression. The ease of analysis together with the abundance of SSR loci in the alfalfa genome indicated that SSR markers should be a useful tool for mapping tetraploid alfalfa. Received: 10 September 1999 / Accepted: 11 November 1999  相似文献   

10.
 An AFLP genetic linkage map of flax (Linum usitatissimum) was used to identify two quantitative trait loci (QTLs) on independent linkage groups with a major effect on resistance to Fusarium wilt, a serious disease caused by the soil pathogen Fusarium oxysporum (lini). The linkage map was constructed using a mapping population from doubled-haploid (DH) lines. The DH lines were derived from the haploid component of F2 haploid-diploid twin seed originating from a cross between a polyembryonic, low-linolenic-acid genotype (CRZY8/RA91) and the Australian cultivar ‘Glenelg’. The AFLP technique was employed to generate 213 marker loci covering approximately 1400 cM of the flax genome (n=15) with an average spacing of 10 cM and comprising 18 linkage groups. Sixty AFLP markers (28%) deviated significantly (P<0.05) from the expected segregation ratio. The map incorporated RFLP markers tightly linked to flax rust (Melamspora lini) resistance genes and markers detected by disease resistance gene-like sequences. The study illustrates the potential of the AFLP technique as a robust and rapid method to generate moderately saturated linkage maps, thereby allowing the molecular analysis of traits, such as resistance to Fusarium wilt, that show oligogenic patterns of inheritance. Received: 8 December 1997 / Accepted: 7 April 1998  相似文献   

11.
Amplified fragment length polymorphisms (AFLPs) can be used to quickly develop linkage maps in plant species and are especially useful for crops with large genomes like oat (Avena sativa L., 2n=6x=42). High reproducibility and consistency are crucial if AFLP linkage maps are employed for comparative mapping. We mapped AFLP markers in combination with restriction fragment length polymorphism (RFLP) markers in two recombinant inbred populations of hexaploid oat in two laboratories to test the consistency of AFLP markers in a polyploid crop. Eight primer combinations produced 102 and 121 scoreable AFLP markers in the respective populations. In a population from the cross Kanota×Ogle, AFLP markers were placed onto a RFLP reference map consisting of 32 linkage groups. Nineteen linkage groups from another population from the cross Kanota×Marion were assigned to the reference map using AFLP and RFLP markers homologous to those used in the Kanota× Ogle cross. Reproducibility of AFLP assays was high in both laboratories and between laboratories. The AFLP markers were well-distributed across the genome in both populations. Many AFLP markers tended to extend the distance between adjacent RFLP markers in linkage analysis. Of the 27 polymorphic AFLPs common in both populations, 20 mapped to homologous linkage groups, 4 were unlinked in at least one population, and 3 mapped to different linkage groups in the two crosses. We believe that 1 of the 3 markers that mapped to a different linkage group in the two populations mapped to homoeologous linkage groups. The linkage map of hexaploid oat is not yet complete, and genomic rearrangements such as translocations exist among cultivars and are likely to account for the remaining two non-syntenous mapping results. AFLPs provide not only a fast and powerful tool for mapping but could be useful in characterizing genomic structural variations among germplasms in hexaploid oat. Received: 17 December 1999 / Accepted: 28 July 2000  相似文献   

12.
Drought is a major limitation for rice production in rainfed ecosystems. Identifying quantitative trait loci (QTLs) linked to drought resistance provides opportunity to breed high yielding rice varieties suitable for drought-prone areas. Although considerable efforts were made in mapping QTLs associated with drought-resistance traits in rice, most of the studies involved indica × japonica crosses and hence, the drought-resistance alleles were contributed mostly by japonica ecotypes. It is desirable to look for genetic variation within indica ecotypes adapted to target environment (TE) as the alleles from japonica ecotype may not be expressed under lowland conditions. A subset of 250 recombinant inbred lines (RILs) of F8 generation derived from two indica rice lines (IR20 and Nootripathu) with contrasting drought-resistance traits were used to map the QTLs for morpho-physiological and plant production traits under drought stress in the field in TE. A genetic linkage map was constructed using 101 polymorphic PCR-based markers distributed over the 12 chromosomes covering a total length of 1,529 cM in 17 linkage groups with an average distance of 15.1 cM. Composite interval mapping analysis identified 22 QTLs, which individually explained 4.8–32.2% of the phenotypic variation. Consistent QTLs for drought-resistance traits were detected using locally adapted indica ecotypes, which may be useful for rainfed rice improvement.  相似文献   

13.
AFLPTM is a new technique to generate large numbers of molecular markers for genetic mapping. The method involves the selective amplification of a limited number of DNA restriction fragments out of complex plant genomic DNA digests using PCR. With six primer combinations 264 segregating AFLP amplification products were identified in a diploid backcross population from non-inbred potato parents. The identity of an AFLP marker was specified by the primer combination of the amplification product and its size estimated in bases. The segregating AFLP amplification products were mapped by using a mapping population with 217 already known RFLP, isozyme and morphological trait loci. In general, the AFLP markers were randomly distributed over the genome, although a few clusters were observed. No indications were found that AFLP markers are present in other parts of the genome than those already covered by RFLP markers. Locus specificity of AFLP markers was demonstrated because equally sized amplification products segregating from both parental clones generally mapped to indistinguishable maternal and paternal map positions. Locus specificity of AFLP amplification products will allow to establish the chromosomal identity of linkage groups in future mapping studies.Since AFLP technology is a multi-locus detection system, it was not possible to identify the AFLP alleles which belong to a single AFLP locus. The consequences of a genetic analysis based on single alleles, rather than on loci with two or more alleles on mapping studies using progenies of non-inbred parents are discussed.  相似文献   

14.
Resistance to Fusarium head blight (FHB), deoxynivalenol (DON) accumulation, and kernel discoloration (KD) in barley are difficult traits to introgress into elite varieties because current screening methods are laborious and disease levels are strongly influenced by environment. To improve breeding strategies directed toward enhancing these traits, we identified genomic regions containing quantitative trait loci (QTLs) associated with resistance to FHB, DON accumulation, and KD in a breeding population of F4:7 lines using restriction fragment length polymorphic (RFLP) markers. We evaluated 101 F4:7 lines, derived from a cross between the cultivar Chevron and an elite breeding line, M69, for each of the traits in three or four environments. We used 94 previously mapped RFLP markers to create a linkage map. Using composite interval mapping, we identified 10, 11, and 4 QTLs associated with resistance to FHB, DON accumulation, and KD, respectively. Markers flanking these QTLs should be useful for introgressing resistance to FHB, DON accumulation, and KD into elite barley cultivars. Received: 8 November 1998 / Accepted: 8 January 1999  相似文献   

15.
Soybean [Glycine max (L.) Merrill] is the most important leguminouscrop in the world due to its high contents of high-quality proteinand oil for human and animal consumption as well as for industrialuses. An accurate and saturated genetic linkage map of soybeanis an essential tool for studies on modern soybean genomics.In order to update the linkage map of a F2 population derivedfrom a cross between Misuzudaizu and Moshidou Gong 503 and tomake it more informative and useful to the soybean genome researchcommunity, a total of 318 AFLP, 121 SSR, 108 RFLP, and 126 STSmarkers were newly developed and integrated into the frameworkof the previously described linkage map. The updated geneticmap is composed of 509 RFLP, 318 SSR, 318 AFLP, 97 AFLP-derivedSTS, 29 BAC-end or EST-derived STS, 1 RAPD, and five morphologicalmarkers, covering a map distance of 3080 cM (Kosambi function)in 20 linkage groups (LGs). To our knowledge, this is presentlythe densest linkage map developed from a single F2 populationin soybean. The average intermarker distance was reduced to2.41 from 5.78 cM in the earlier version of the linkage map.Most SSR and RFLP markers were relatively evenly distributedamong different LGs in contrast to the moderately clusteredAFLP markers. The number of gaps of more than 25 cM was reducedto 6 from 19 in the earlier version of the linkage map. Thecoverage of the linkage map was extended since 17 markers weremapped beyond the distal ends of the previous linkage map. Inparticular, 17 markers were tagged in a 5.7 cM interval betweenCE47M5a and Satt100 on LG C2, where several important QTLs wereclustered. This newly updated soybean linkage map will enableto streamline positional cloning of agronomically importanttrait locus genes, and promote the development of physical maps,genome sequencing, and other genomic research activities.  相似文献   

16.
A genetic linkage map of tef was constructed with amplified fragment length polymorphism (AFLP) markers using F5 recombinant inbred lines (RILs) derived by single seed descent from the intraspecific cross of ’Kaye Murri’×’Fesho’. A total of 192 EcoRI/MseI primer combinations were screened for parental polymorphism. Around three polymorphic fragments per primer combination were detected, indicating a low polymorphism level in tef. Fifty primer combinations were selected to assay the mapping population, and 226 loci segregated among 85 F5 RILs. Most AFLP loci behaved as dominant markers (presence or absence of a band), but about 15% of the loci were codominant. Significant deviations from the expected Mendelian segregation ratio were observed for 26 loci. The genetic linkage map comprised 211 markers assembled into 25 linkage groups and covered 2,149 cM of genome. AFLP is an efficient marker system for mapping plant species with low polymorphism such as tef. This is the first genetic linkage map constructed for tef. It will facilitate the mapping of genes controlling agronomically important traits and cultivar improvement in tef. Received: 27 April 1998 / Accepted: 4 January 1999  相似文献   

17.
A high-density genetic map with a number of anchor markers has been created to be used as a tool to dissect genetic variation in rose. Linkage maps for the diploid 94/1 population consisting of 88 individuals were constructed using a total of 520 molecular markers including AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Seven linkage groups, putatively corresponding to the seven haploid rose chromosomes, were identified for each parent, spanning 487 cM and 490 cM, respectively. The average length of 70 cM may cover more than 90% of the rose genome. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in seven linkage groups with a total length of 545 cM. The present linkage map is currently the most advanced map in rose with regard to marker density, genome coverage and with robust markers, giving good perspectives for QTL mapping and marker-assisted breeding in rose. The SSR markers, together with RFLP markers, provide good anchor points for future map alignment studies in rose and related species. Codominantly scored AFLP markers were helpful in the integration of the parental maps.  相似文献   

18.
Drought is a major constraint in sorghum production worldwide. Drought-stress in sorghum has been characterized at both pre-flowering and post-flowering stages resulting in a drastic reduction in grain yield. In the case of post-flowering drought stress, lodging further aggravates the problem resulting in total loss of crop yield in mechanized agriculture. The present study was conducted to identify quantitative trait loci (QTLs) controlling post-flowering drought tolerance (stay green), pre-flowering drought tolerance and lodging tolerance in sorghum using an F7 recombinant inbred line (RIL) population derived from the cross SC56×Tx7000. The RIL lines, along with parents, were evaluated for the above traits in multiple environments. With the help of a restriction fragment length polymorphism (RFLP) map, which spans 1,355 cM and consists of 144 loci, nine QTLs, located over seven linkage groups were detected for stay green in several environments using the method of composite interval mapping. Comparison of the QTL locations with the published results indicated that three QTLs located on linkage groups A, G and J were consistent. This is considered significant since the stay green line SC56 used in our investigation is from a different source compared to B35 that was used in all the earlier investigations. Comparative mapping has shown that two stay green QTLs identified in this study corresponded to stay green QTL regions in maize. These genomic regions were also reported to be congruent with other drought-related agronomic and physiological traits in maize and rice, suggesting that these syntenic regions might be hosting a cluster of genes with pleiotropic effects implicated in several drought tolerance mechanisms in these grass species. In addition, three and four major QTLs responsible for lodging tolerance and pre-flowering drought tolerance, respectively, were detected. This investigation clearly revealed the important and consistent stay green QTLs in a different stay green source that can logically be targeted for positional cloning. The identification of QTLs and markers for pre-flowering drought tolerance and lodging tolerance will help plant breeders in manipulating and pyramiding those traits along with stay green to improve drought tolerance in sorghum. Received: 2 June 2000 / Accepted: 15 November 2000  相似文献   

19.
AFLP markers have been successfully employed for the development of a high-density linkage map of ryegrass (Lolium perenne L.) using a progeny set of 95 plants from a testcross involving a doubled-haploid tester. This genetic map covered 930 cM in seven linkage groups and was based on 463 amplified fragment length polymorphism (AFLP) markers using 17 primer pairs, three isozymes and five EST markers. The average density of markers was approximately 1 per 2.0 cM. However, strong clustering of AFLP markers was observed at putative centromeric regions. Around these regions, 272 markers covered about 137 cM whereas the remaining 199 markers covered approximately 793 cM. Most genetic distances between consecutive pairs of markers were smaller than 20 cM except for five gaps on groups A, C, D, F and G. A skeletal map with a uniform distribution of markers can be extracted from this high-density map, and can be applied to detect and map QTLs. We report here the application of AFLP markers to genome mapping, in Lolium as a prelude to quantitative trait locus (QTL) identification for diverse agronomic traits in ryegrass and for marker-assisted plant breeding. Received: 4 November 1998 / Accepted:15 March 1999  相似文献   

20.
To investigate the genetic background for aluminum (Al) tolerance in rice, a recombinant inbred (RI) population, derived from a cross between an Al-sensitive lowland indica rice variety IR1552 and an Al-tolerant upland japonica rice variety Azucena, was used in culture solution. A molecular linkage map, together with 104 amplified fragment length polymorphism (AFLP) markers and 103 restriction fragment length polymorphism (RFLP) markers, was constructed to map quantitative trait loci (QTLs) and epistatic loci for Al tolerance based on the segregation for relative root length (RRL) in the population. RRL was measured after stress for 2 and 4 weeks at a concentration of 1mM of Al3+ and a control with a pH 4.0, respectively. Two QTLs were detected at both the 2nd and the 4th weeks on chromosomes 1 and 12 from unconditional mapping, while the QTL on chromosome 1 was only detected at the 2nd stress week from conditional mapping. The effect of the QTL on chromosome 12 was increased with an increase of the stress period from 2 to 4 weeks. The QTL on chromosome 1 was expressed only at the earlier stress, but its contribution to tolerance was prolonged during growth. At least one different QTL was detected at the different stress periods. Mean comparisons between marker genotypic classes indicated that the positive alleles at the QTLs were from the Al-tolerant upland rice Azucena. An important heterozygous non-allelic interaction on Al tolerance was found. The results indicated that tolerance in the younger seedlings was predominantly controlled by an additive effect, while an epistatic effect was more important to the tolerance in older seedlings; additionally the detected QTLs may be multiple allelic loci for Al tolerance and phosphorus-uptake efficiency, or for Al and Fe2+ tolerance. Received: 29 July 1999 / Accepted: 13 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号