共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Myogenic differentiation during regrowth of atrophied skeletal muscle is associated with inactivation of GSK-3beta 总被引:1,自引:0,他引:1
van der Velden Jos L. J.; Langen Ramon C. J.; Kelders Marco C. J. M.; Willems Jodil; Wouters Emiel F. M.; Janssen-Heininger Yvonne M. W.; Schols Annemie M. W. J. 《American journal of physiology. Cell physiology》2007,292(5):C1636
Muscle atrophy contributes to morbidity and mortality in aging and chronic disease, emphasizing the need to gain understanding of the mechanisms involved in muscle atrophy and (re)growth. We hypothesized that the magnitude of muscle regrowth during recovery from atrophy determines whether myonuclear accretion and myogenic differentiation are required and that insulin-like growth factor (IGF)-I/Akt/glycogen synthase kinase (GSK)-3 signaling differs between regrowth responses. To address this hypothesis we subjected mice to hindlimb suspension (HS) to induce atrophy of soleus (40%) and plantaris (27%) muscle. Reloading-induced muscle regrowth was complete after 14 days and involved an increase in IGF-IEa mRNA expression that coincided with Akt phosphorylation in both muscles. In contrast, phosphorylation and inactivation of GSK-3 were observed during soleus regrowth only. Furthermore, soleus but not plantaris regrowth involved muscle regeneration based on a transient increase in expression of histone 3.2 and myosin heavy chain-perinatal, which are markers of myoblast proliferation and differentiation, and a strong induction of muscle regulatory factor (MRF) expression. Experiments in cultured muscle cells showed that IGF-I-induced MRF expression is facilitated by inactivation of GSK-3 and selectively occurs in the myoblast population. This study suggests that induction of IGF-I expression and Akt phosphorylation during recovery from muscle atrophy is independent of the magnitude of muscle regrowth. Moreover, our data demonstrate for the first time that the regenerative response characterized by myoblast proliferation, differentiation, and increased MRF expression in recovering muscle is associated with the magnitude of regrowth and may be regulated by inactivation of GSK-3. glycogen synthase kinase-3; Akt; muscle growth; muscle atrophy 相似文献
3.
GSK-3beta negatively regulates skeletal myotube hypertrophy 总被引:7,自引:0,他引:7
Vyas DR Spangenburg EE Abraha TW Childs TE Booth FW 《American journal of physiology. Cell physiology》2002,283(2):C545-C551
Todetermine whether changes in glycogen synthase kinase-3 (GSK-3)phosphorylation contribute to muscle hypertrophy, we delineated theeffects of GSK-3 activity on C2C12 myotubesize. We also examined possible insulin-like growth factor I (IGF-I) signaling of NFAT (nuclear factors of activated T cells)-inducible geneactivity and possible modulation of NFAT activation by GSK-3. Application of IGF-I (250 ng/ml) or LiCl (10 mM) alone (i.e., bothinhibit GSK-3 activity) increased the area ofC2C12 myotubes by 80 and 85%, respectively.The application of IGF-I (250 ng/ml) elevated GSK-3 phosphorylationand reduced GSK-3 kinase activity by ~800% and ~25%,respectively. LY-294002 (100 µM) and wortmannin (150 µM), specificinhibitors of phosphatidylinositol 3'-kinase, attenuated IGF-I-inducedGSK-3 phosphorylation by 67 and 92%, respectively. IGF-I suppressedthe kinase activity of GSK-3. IGF-I (250 ng/ml), but not LiCl (10 mM), induced an increase in NFAT-activated luciferase reporteractivity. Cotransfection of a constitutively active GSK-3(cGSK-3) inhibited the induction by IGF-I of NFAT-inducible reporteractivity. LiCl, which inhibits GSK-3, removed the block by cGSK-3on IGF-I-inducible NFAT-responsive reporter gene activity. These datasuggest that the IGF-I-induced increase in skeletal myotube size issignaled, in part, through the inhibition of GSK-3. 相似文献
4.
Richard-Bulteau H Serrurier B Crassous B Banzet S Peinnequin A Bigard X Koulmann N 《American journal of physiology. Cell physiology》2008,294(2):C467-C476
The present study was designed to test the hypothesis that increasing physical activity by running exercise could favor the recovery of muscle mass after extensive injury and to determine the main molecular mechanisms involved. Left soleus muscles of female Wistar rats were degenerated by notexin injection before animals were assigned to either a sedentary group or an exercised group. Both regenerating and contralateral intact muscles from active and sedentary rats were removed 5, 7, 14, 21, 28 and 42 days after injury (n = 8 rats/group). Increasing contractile activity through running exercise during muscle regeneration ensured the full recovery of muscle mass and muscle cross-sectional area as soon as 21 days after injury, whereas muscle weight remained lower even 42 days postinjury in sedentary rats. Proliferator cell nuclear antigen and MyoD protein expression went on longer in active rats than in sedentary rats. Myogenin protein expression was higher in active animals than in sedentary animals 21 days postinjury. The Akt-mammalian target of rapamycin (mTOR) pathway was activated early during the regeneration process, with further increases of mTOR phosphorylation and its downstream effectors, eukaryotic initiation factor-4E-binding protein-1 and p70(s6k), in active rats compared with sedentary rats (days 7-14). The exercise-induced increase in mTOR phosphorylation, independently of Akt, was associated with decreased levels of phosphorylated AMP-activated protein kinase. Taken together, these results provided evidence that increasing contractile activity during muscle regeneration ensured early and full recovery of muscle mass and suggested that these beneficial effects may be due to a longer proliferative step of myogenic cells and activation of mTOR signaling, independently of Akt, during the maturation step of muscle regeneration. 相似文献
5.
Aschenbach WG Ho RC Sakamoto K Fujii N Li Y Kim YB Hirshman MF Goodyear LJ 《American journal of physiology. Endocrinology and metabolism》2006,291(1):E152-E158
beta-catenin is a multifunctional protein involved in cell-cell adhesion and the Wnt signaling pathway. beta-Catenin is activated upon its dephosphorylation, an event triggered by Dishevelled (Dvl)-mediated phosphorylation and deactivation of glycogen synthase kinase-3beta (GSK-3beta). In skeletal muscle, both insulin and exercise decrease GSK-3beta activity, and we tested the hypothesis that these two stimuli regulate beta-catenin. Immunoblotting demonstrated that Dvl, Axin, GSK-3beta, and beta-catenin proteins are expressed in rat red and white gastrocnemius muscles. Treadmill running exercise in vivo significantly decreased beta-catenin phosphorylation in both muscle types, with complete dephosphorylation being elicited by maximal exercise. beta-Catenin dephosphorylation was intensity dependent, as dephosphorylation was highly correlated with muscle glycogen depletion during exercise (r(2) = 0.84, P < 0.001). beta-Catenin dephosphorylation was accompanied by increases in GSK-3beta Ser(9) phosphorylation and Dvl-GSK-3beta association. In contrast to exercise, maximal insulin treatment (1 U/kg body wt) had no effect on skeletal muscle beta-catenin phosphorylation or Dvl-GSK-3beta interaction. In conclusion, exercise in vivo, but not insulin, increases the association between Dvl and GSK-3beta in skeletal muscle, an event paralleled by beta-catenin dephosphorylation. 相似文献
6.
Intramyocellular lipid content is increased after exercise in nonexercising human skeletal muscle. 总被引:3,自引:0,他引:3
V B Schrauwen-Hinderling L J C van Loon R Koopman K Nicolay W H M Saris M E Kooi 《Journal of applied physiology》2003,95(6):2328-2332
Intramyocellular lipid (IMCL) content has been reported to decrease after prolonged submaximal exercise in active muscle and, therefore, seems to form an important local substrate source. Because exercise leads to a substantial increase in plasma free fatty acid (FFA) availability with a concomitant increase in FFA uptake by muscle tissue, we aimed to investigate potential differences in the net changes in IMCL content between contracting and noncontracting skeletal muscle after prolonged endurance exercise. IMCL content was quantified by magnetic resonance spectroscopy in eight trained cyclists before and after a 3-h cycling protocol (55% maximal energy output) in the exercising vastus lateralis and the nonexercising biceps brachii muscle. Blood samples were taken before and after exercise to determine plasma FFA, glycerol, and triglyceride concentrations, and substrate oxidation was measured with indirect calorimetry. Prolonged endurance exercise resulted in a 20.4 +/- 2.8% (P < 0.001) decrease in IMCL content in the vastus lateralis muscle. In contrast, we observed a substantial (37.9 +/- 9.7%; P < 0.01) increase in IMCL content in the less active biceps brachii muscle. Plasma FFA and glycerol concentrations were substantially increased after exercise (from 85 +/- 6 to 1450 +/- 55 and 57 +/- 11 to 474 +/- 54 microM, respectively; P < 0.001), whereas plasma triglyceride concentrations were decreased (from 1498 +/- 39 to 703 +/- 7 microM; P < 0.001). IMCL is an important substrate source during prolonged moderate-intensity exercise and is substantially decreased in the active vastus lateralis muscle. However, prolonged endurance exercise with its concomitant increase in plasma FFA concentration results in a net increase in IMCL content in less active muscle. 相似文献
7.
Microvascular injury after ischemia and reperfusion in skeletal muscle of exercise-trained rats 总被引:1,自引:0,他引:1
Ischemia and reperfusion in skeletal muscle is associated with increases in total vascular resistance (Rt) and the microvascular permeability to plasma proteins. To determine whether exercise training can attenuate ischemia and reperfusion-induced microvascular injury in skeletal muscle, intact (with skin) and skinned, maximally vasodilated (papaverine), isolated hindquarters of control (C) and exercise-trained (ET) rats were subjected to ischemia (intact 120 min; skinned 60 min) followed by 60 min of reperfusion. ET rats ran on a motorized treadmill at 32 m/min (8% grade), 2 h/day for 12 wk, whereas the C rats were cage confined. Before ischemia, ET hindquarters had higher isogravimetric flow, lower Rt, and similar solvent drag reflection coefficients (sigma f) compared with C. During reperfusion in intact hindquarters, flow was higher (P less than 0.05) and Rt tended to be lower (15 +/- 2 vs. 25 +/- 5 mmHg.ml-1.min.100 g; P less than 0.1) in ET compared with C; however, in skinned hindquarters flow and Rt (14 +/- 2 vs. 13 +/- 2 mmHg.ml-1.min.100 g) were not different between C and ET. During reperfusion, sigma f was reduced (P less than 0.05) in both intact (C 0.68 +/- 0.03; ET 0.68 +/- 0.02) and skinned (C 0.66 +/- 0.03; ET 0.68 +/- 0.03) hindquarters, indicative of an increased microvascular permeability to plasma proteins. These results indicate that exercise training did not attenuate the microvascular injury (increased Rt and decreased sigma f) associated with ischemia and reperfusion in rat skeletal muscle. 相似文献
8.
Kimura T Yamashita S Nakao S Park JM Murayama M Mizoroki T Yoshiike Y Sahara N Takashima A 《PloS one》2008,3(10):e3540
Activation of GSK-3beta is presumed to be involved in various neurodegenerative diseases, including Alzheimer's disease (AD), which is characterized by memory disturbances during early stages of the disease. The normal function of GSK-3beta in adult brain is not well understood. Here, we analyzed the ability of heterozygote GSK-3beta knockout (GSK+/-) mice to form memories. In the Morris water maze (MWM), learning and memory performance of GSK+/- mice was no different from that of wild-type (WT) mice for the first 3 days of training. With continued learning on subsequent days, however, retrograde amnesia was induced in GSK+/- mice, suggesting that GSK+/- mice might be impaired in their ability to form long-term memories. In contextual fear conditioning (CFC), context memory was normally consolidated in GSK+/- mice, but once the original memory was reactivated, they showed reduced freezing, suggesting that GSK+/- mice had impaired memory reconsolidation. Biochemical analysis showed that GSK-3beta was activated after memory reactivation in WT mice. Intraperitoneal injection of a GSK-3 inhibitor before memory reactivation impaired memory reconsolidation in WT mice. These results suggest that memory reconsolidation requires activation of GSK-3beta in the adult brain. 相似文献
9.
10.
11.
Kuemmerle JF 《American journal of physiology. Gastrointestinal and liver physiology》2005,288(1):G101-G110
We have previously shown that endogenous IGF-I regulates human intestinal smooth muscle cell proliferation by activation of phosphatidylinositol 3 (PI3)-kinase- and Erk1/2-dependent pathways that jointly regulate cell cycle progression and cell division. Whereas insulin-like growth factor-I (IGF-I) stimulates PI3-kinase-dependent activation of Akt, expression of a kinase-inactive Akt did not alter IGF-I-stimulated proliferation. In other cell types, Akt-dependent phosphorylation of glycogen synthase kinase-3 beta (GSK-3 beta) inhibits its activity and its ability to stimulate apoptosis. The aim of the present study was to determine whether endogenous IGF-I regulates Akt-dependent GSK-3 beta phosphorylation and activity and whether it regulates apoptosis in human intestinal muscle cells. IGF-I elicited time- and concentration-dependent GSK-3 beta phosphorylation (inactivation) that was measured by Western blot analysis using a phospho-specific GSK-3beta antibody. Endogenous IGF-I stimulated GSK-3 beta phosphorylation and inhibited GSK-3 beta activity (measured by in vitro kinase assay) in these cells. IGF-I-dependent GSK-3 beta phosphorylation and the resulting GSK-3 beta inactivation were mediated by activation of a PI3-kinase-dependent, phosphoinositide-dependent kinase-1 (PDK-1)-dependent, and Akt-dependent mechanism. Deprivation of serum induced beta-catenin phosphorylation, increased in caspase 3 activity, and induced apoptosis of muscle cells, which was inhibited by either IGF-I or a GSK-3 beta inhibitor. Endogenous IGF-I inhibited beta-catenin phosphorylation, caspase 3 activation, and apoptosis induced by serum deprivation. IGF-I-dependent inhibition of apoptosis, similar to GSK-3 beta activity, was mediated by a PI3-kinase-, PDK-1-, and Akt-dependent mechanism. We conclude that endogenous IGF-I exerts two distinct but complementary effects on intestinal smooth muscle cell growth: it stimulates proliferation and inhibits apoptosis. The growth of intestinal smooth muscle cells is regulated jointly by the net effect of these two processes. 相似文献
12.
Ribonuclease activity at pH 7.1 (alkaline ribonuclease) was determined in homogenates of rat superior cervical ganglion up to 5 days after postganglionic nerve injury under optimal conditions of assay. Measurements were performed in the presence and absence of the sulfhydryl blocking agent, N-ethylmaleimide, to assess the proportion of alkaline ribonuclease apparently bound to endogenous inhibitor. Total ribonuclease activity per ganglion was stimulated 1.3 fold by 1 day after injury and remained elevated over the 5 day period. Free ribonuclease activity accounted for about 60% of the observed increase in total activity at day 1, but had returned to control level by day 3. At day 3 the entire 90% increase in total activity was attributable to ribonuclease bound to endogenous inhibitor (i.e. latent activity). These changes are occurring at times after nerve injury when marked alterations in RNA turnover have been observed, implicating alkaline ribonucleases in the control of RNA metabolism during nerve regeneration. 相似文献
13.
GSK-3beta regulation in skeletal muscles by adrenaline and insulin: evidence that PKA and PKB regulate different pools of GSK-3 总被引:1,自引:0,他引:1
We have recently shown that while adrenaline alone has no effect on the activation of Protein Kinase B (PKB) in rat soleus muscle, it greatly potentiates the effects of insulin (Brennesvik et al., Cellular Signalling 17: 1551-1559, 2005). In the current study we went on to investigate whether this was paralleled by a similar effect on GSK-3, which is a major PKB target. Surprisingly adrenaline alone increased phosphorylation of GSK-3beta Ser9 and GSK-3alpha Ser21 and adrenaline's effects were additive with those of insulin but did not synergistically potentiate insulin action. Dibutyryl-cAMP (5 mM) and the PKA specific cAMP analogue N6-Benzoyl-cAMP (2 mM) increased GSK-3beta Ser9 phosphorylation, whereas the Epac specific cAMP analogue 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (1 mM) did not. Wortmannin (PI 3-kinase inhibitor; 1 microM) blocked insulin-stimulated GSK-3 phosphorylation completely, but adrenaline increased GSK-3beta Ser9 phosphorylation in the presence of wortmannin. The PKA inhibitor H89 (50 microM) reduced adrenaline-stimulated GSK-3beta Ser9 phosphorylation but did not influence the effects of insulin. Insulin-stimulated GSK-3 Ser9 phosphorylation was paralleled by decreased glycogen synthase phosphorylation at the sites phosphorylated by GSK-3 as expected. However, adrenaline-stimulated GSK-3 Ser9 phosphorylation was paralleled by increased glycogen synthase phosphorylation indicating this pool of GSK-3 may not be directly involved in phosphorylation of glycogen synthase. Our results indicate the existence of at least two distinct pools of GSK-3beta in soleus muscle, one phosphorylated by PKA and another by PKB. Further, we hypothesise that each of these pools is involved in the control of different cellular processes. 相似文献
14.
15.
16.
Ciaraldi TP Oh DK Christiansen L Nikoulina SE Kong AP Baxi S Mudaliar S Henry RR 《American journal of physiology. Endocrinology and metabolism》2006,291(5):E891-E898
Glycogen synthase kinase-3 (GSK-3) is a ubiquitous kinase implicated in both insulin action and adipogenesis. To determine how these multiple roles may relate to insulin resistance, we studied the regulation of GSK-3 protein expression and phosphorylation in skeletal muscle and isolated adipocytes from nonobese healthy control (HC), obese control (OC), and obese type 2 diabetic (OT2D) subjects. At baseline there were no differences in the GSK-3 protein expression in adipocytes. OC subjects underwent a 6-mo caloric restriction resulting in a 7% decrease in body mass index (BMI) and a 21% improvement in insulin-stimulated whole body glucose disposal rate (GDR). GSK-3alpha and GSK-3beta expression decreased in adipocytes (P < 0.05), whereas GSK-3alpha protein expression increased in skeletal muscle (P < 0.05). OT2D subjects were treated with troglitazone or metformin for 3-4 mo. After troglitazone treatment GDR improved (P < 0.05) despite an increase in BMI (P < 0.05), whereas metformin had no significant effect on GDR. There was no significant change in GSK-3 expression in adipocytes following troglitazone, whereas both GSK-3alpha and -beta were decreased in skeletal muscle (P < 0.05). Metformin treatment had no significant impact on GSK-3 protein expression in either adipocytes or skeletal muscle. Neither treatment influenced GSK-3 serine phosphorylation in skeletal muscle or adipocytes. These results suggest that there is tissue specificity for the regulation of GSK-3 in humans. In skeletal muscle GSK-3 plays a role in control of metabolism and insulin action, whereas the function in adipose tissue is less clear. 相似文献
17.
目的 研究大鼠骨骼肌损伤后中性粒细胞、巨噬细胞和肌成纤维细胞数量的变化情况,为今后骨骼肌损伤修复的病理学机制研究打下坚实的基础.方法 建立大鼠骨骼肌机械性损伤动物模型,随机分为伤后6h、12h、1d、3d、7d、10d、14d及正常对照组.应用免疫组织荧光染色和免疫组织化学染色,检测大鼠骨骼肌损伤后不同时间点中性粒细胞、巨噬细胞和肌成纤维细胞的数量.结果 伤后6h-12h,损伤区可见中性粒细胞和巨噬细胞浸润,中性粒细胞数量达到高峰.伤后1d,损伤区巨噬细胞数量急剧增加,迅速达到高峰,而中性粒细胞数量开始下降.伤后3d,中性粒细胞和巨噬细胞数量都显著下降.伤后7d,肌成纤维细胞开始出现.到伤后10d-14d,损伤区主要以肌成纤维细胞为主,偶见巨噬细胞.结论 大鼠骨骼肌损伤区中性粒细胞、巨噬细胞和肌成纤维细胞数量呈时间规律性变化,以期为骨骼肌损伤修复的病理学机制研究提供参考资料. 相似文献
18.
Takagi R Fujita N Arakawa T Kawada S Ishii N Miki A 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,110(2):382-388
The influence of icing on muscle regeneration after crush injury was examined in the rat extensor digitorum longus. After the injury, animals were randomly divided into nonicing and icing groups. In the latter, ice packs were applied for 20 min. Due to the icing, degeneration of the necrotic muscle fibers and differentiation of satellite cells at early stages of regeneration were retarded by ~1 day. In the icing group, the ratio of regenerating fibers showing central nucleus at 14 days after the injury was higher, and cross-sectional area of the muscle fibers at 28 days was evidently smaller than in the nonicing group. Besides, the ratio of collagen fibers area at 14 and 28 days after the injury in the icing group was higher than in the nonicing group. These findings suggest that icing applied soon after the injury not only considerably retarded muscle regeneration but also induced impairment of muscle regeneration along with excessive collagen deposition. Macrophages were immunohistochemically demonstrated at the injury site during degeneration and early stages of regeneration. Due to icing, chronological changes in the number of macrophages and immunohistochemical expression of transforming growth factor (TGF)-β1 and IGF-I were also retarded by 1 to 2 days. Since it has been said that macrophages play important roles not only for degeneration, but also for muscle regeneration, the influence of icing on macrophage activities might be closely related to a delay in muscle regeneration, impairment of muscle regeneration, and redundant collagen synthesis. 相似文献
19.
The activities of phosphofructokinase, aldolase and pyruvate kinase were diminished in extracts from skeletal muscle of streptozotocin diabetic rats, whereas the activities of glucose phosphate isomerase and phosphoglucomutase were not changed. Treatment of diabetic rats with insulin restored the activity of phosphofructokinase to normal. A kinetic study of the partially purified enzyme from normal and diabetic rats showed identical Michaelis constants for ATP and equal sensitivity to inhibition by excess of this substrate. Extracts of quick frozen muscle from diabetic rats had higher levels of citrate (an inhibitor of phosphofructokinase) and lower levels of D-fructose-1,6-bisphosphate and D-glucose-1,6-bisphosphate (activators of this enzyme). The levels of D-fructose-6-phosphate, D-glucose-6-phosphate, ATP, ADP and AMP were the same for the two groups. Our data suggest that the in vivo decrease of phosphofructokinase activity in skeletal muscle of diabetic rats is due to a decrease in the level of the enzymatically active protein as well as to an unfavorable change in the level of several of its allosteric modulators. 相似文献
20.
V I Morozov P V Tsyplenkov V A Rogozkin 《Biulleten' eksperimental'no? biologii i meditsiny》1990,110(11):489-491
Rat muscle infiltration by neutrophils after muscle activity (MA) was investigated on myeloperoxidase (MPO) concentration. MPO distribution in muscle subcellular fractions was also studied. Increase of MPO concentration in skeletal muscles was discovered after MA. Its maximum was determined within 1-5 days of the rest. This fact can be considered as an evidence of neutrophil influx in muscle tissue. The electroral MPO concentration increase in plasmalemma membrane fraction after MA was shown. In vitro MPO was able to catalyze 125I inclusion in membrane material. These results give a possibility to propose that neutrophil MPO can have a certain significance in muscle tissue damage by haloid joining to plasmalemma proteins. 相似文献