首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The biological invasion of the lizard Anolis sagrei provides an opportunity to study evolutionary mechanisms that produce morphological differentiation among non-native populations. Because the A. sagrei invasion represents multiple native-range source populations, differential admixture as well as random genetic drift and natural selection, could shape morphological evolution during the invasion. Mitochondrial DNA (mtDNA) analyses reveal seven distinct native-range source populations for 10 introduced A. sagrei populations from Florida, Louisiana and Texas (USA), and Grand Cayman, with 2-5 native-range sources contributing to each non-native population. These introduced populations differ significantly in frequencies of haplotypes from different native-range sources and in body size, toepad-lamella number, and body shape. Variation among introduced populations for both lamella number and body shape is explained by differential admixture of various source populations; mean morphological values of introduced populations are correlated with the relative genetic contributions from different native-range source populations. The number of source populations contributing to an introduced population correlates with body size, which appears independent of the relative contributions of particular source populations. Thus, differential admixture of various native-range source populations explains morphological differences among introduced A. sagrei populations. Morphological differentiation among populations is compatible with the hypothesis of selective neutrality, although we are unable to test the hypothesis of interdemic selection among introductions from different native-range source populations.  相似文献   

2.
Variation in temperature imposes selection pressures on organisms. In variable environments, organisms must adopt fixed or plastic strategies that enable persistence over a broad range of temperatures. In coarse-grained environments, where the thermal variation among generations exceeds that within generations, selection should favor developmental plasticity. Here, we compare the degree of developmental plasticity of thermal tolerances between populations of Drosophila melanogaster from environments with relatively high (Marlton, NJ, USA) and relatively low (Miami, FL, USA) variance in temperature among generations. We predicted that flies from Marlton would exhibit a greater plasticity of thermal tolerances than would flies from Miami. Flies from both populations were reared in three ecologically relevant treatments, after which we assessed knockdown and chill-coma recovery times. Flies from both populations responded plastically to temperature, but flies from New Jersey did not exhibit greater plasticity. Our results complement previous comparative studies and indicate that selection favors plasticity of thermal tolerances equally in these populations.  相似文献   

3.
4.
The success of non-native species may depend on the genetic resources maintained through the invasion process. The Coqui ( Eleutherodactylus coqui ), a frog endemic to Puerto Rico, was introduced to Hawaii in the late 1980s via the horticulture trade, and has become an aggressive invader. To explore whether genetic diversity and population structure changed with the introduction, we assessed individuals from 15 populations across the Hawaiian Islands and 13 populations across Puerto Rico using six to nine polymorphic microsatellite loci and five dorsolateral colour patterns. Allelic richness ( R T) and gene diversity were significantly higher in Puerto Rico than in Hawaii populations. Hawaii also had fewer colour patterns (two versus three to five per population) than Puerto Rico. We found no isolation by distance in the introduced range, even though it exists in the native range. Results suggest extensive mixing among frog populations across Hawaii, and that their spread has been facilitated by humans. Like previous research, our results suggest that Hawaiian Coquis were founded by individuals from sites around San Juan, but unlike previous research the colour pattern and molecular genetic data (nuclear and mtDNA) support two separate introductions, one on the island of Hawaii and one on Maui. Coquis are successful invaders in Hawaii despite the loss of genetic variation. Future introductions may increase genetic variation and potentially its range.  相似文献   

5.
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short‐term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short‐term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short‐term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill‐coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short‐term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill‐coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high‐elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high‐temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations.  相似文献   

6.

Background  

Introductions of non-native species can significantly alter the selective environment for populations of native species, which can respond through phenotypic plasticity or genetic adaptation. We examined phenotypic and genetic responses of Daphnia populations to recent introductions of non-native fish to assess the relative roles of phenotypic plasticity versus genetic change in causing the observed patterns. The Daphnia community in alpine lakes throughout the Sierra Nevada of California (USA) is ideally suited for investigation of rapid adaptive evolution because there are multiple lakes with and without introduced fish predators. We conducted common-garden experiments involving presence or absence of chemical cues produced by fish and measured morphological and life-history traits in Daphnia melanica populations collected from lakes with contrasting fish stocking histories. The experiment allowed us to assess the degree of population differentiation due to fish predation and examine the contribution of adaptive plasticity in the response to predator introduction.  相似文献   

7.
Summary Populations of the milkweed-oleander aphid,Aphis nerii, were sampled in California, Iowa and Puerto Rico. Among these localities the aphid's host plants differ greatly in permanence. I compared populations for migratory potential, measured as the proportion of winged offspring produced in response to being crowded, and for life history and morphometric traits of the subsequent adult winged aphids. I predicted a negative correlation between degree of host plant permanence and migratory potential. As predicted, aphids from Iowa, where migration on to temporary hosts must occur each year, produce a greater proportion of winged offspring (37.7%) than those from California (25.7%) or Puerto Rico (31.6%) where hosts are more permanent. However, hosts in Puerto Rico appear to be more permanent than those in California, yet the difference between populations for migratory potential was opposite to that predicted. Within California the prediction again held: aphids collected from the most impermanent sites produce the greatest proportion of winged offspring. There were no population differences for any life history or morphometric traits of winged aphids that are important contributors to fitness or migratory ability such as time to reproductive maturity, fecundity or wing length. Nor did any traits covary with migratory potential. Thus, there does not appear to be an association of life history and morphology with migratory potential that could enhance the colonizing ability of migrant aphids. I was unable to detect population differentiation for life history and morphology even though there is ample genetic variation within populations on which selection could act and an absence of constraints arising from genetic correlations that could prevent appropriate evolution of traits within populations. The exploitation of temporary host plants therefore occurs by an increase in the number of colonists produced and not by change in life history or morphology of those colonists.  相似文献   

8.
Aspects of the thermal physiology of the water hyacinth biological control agent Eccritotarsus catarinensis Carvalho (Hemiptera: Miridae) have been extensively investigated over the past 20 years to understand and improve post‐release establishment in the field. Thermal physiology studies predicted that the agent would not establish at a number of cold sites in South Africa, where it has nonetheless subsequently established and thrived. Recently, studies have begun to incorporate the plastic nature of insect thermal physiology into models of agent establishment. This study determined whether season and locality influenced the thermal physiology of two field populations of E. catarinensis, one collected from the hottest site where the agent has established in South Africa, and one from the coldest site. The thermal physiology of E. catarinensis was significantly influenced by season and site, demonstrating a degree of phenotypic plasticity, and that some post‐release local adaptation to climatic conditions has occurred through microevolution. We then determined whether cold acclimation under laboratory conditions was possible. Successfully cold‐acclimated E. catarinensis had a significantly lower critical thermal minimum (CTmin) compared to the field cold‐acclimated population. This suggests that cold acclimation of agents could be conducted in the laboratory before future releases to improve their cold tolerance, thereby increasing their chance of establishment at cold sites and allowing further adaptation to colder climates to occur in the field. Although the thermal tolerance of E. catarinensis is limited by local adaptations to climatic conditions in the native range, the plastic nature of the insect's thermal physiology has allowed it to survive in the very different climatic conditions of the introduced range, and there has been some adaptive change to the insect's thermal tolerance since establishment. This study highlights the importance of plasticity and microevolutionary processes in the success of biological control agents under the novel climatic conditions in the introduced range.  相似文献   

9.
Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill‐coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations.  相似文献   

10.
In 2006, reports of potential Spodoptera frugiperda resistance to TC1507 maize in Puerto Rico were received. Subsequent investigation confirmed that pest populations collected from several sites in Puerto Rico were largely unaffected by the Cry1F protein in bioassays, with resistance ratios likely in excess of 1000. Since then, we have continued monitoring populations in Puerto Rico and in southern areas of the mainland US. The majority of the collections from Puerto Rico continue to show high levels of Cry1F resistance whereas populations collected from the southern US mainland continue to show full susceptibility to Cry1F and TC1507 maize. It does not appear that resistant populations have spread to any measurable extent from Puerto Rico to mainland US, nor that local selection pressure from Cry1F-expressing maize or cotton production in the southern US has caused a measurable change in population susceptibility. Lessons learned from Puerto Rico are being applied in other parts of the Americas where TC1507 maize is grown and additional steps being taken to protect the long-term durability of Cry1F in maize in areas where similar selection pressure may be expected. Tactics include using locally-adapted germplasm that contain native Spodoptera resistance, a robust education program to teach end-users about the potential for resistance to develop appropriate crop stewardship, resistance monitoring, and the use of insecticides under high S. frugiperda pressure. Perhaps most importantly, pyramided trait products that produce two or more different Bt proteins are being introduced to further delay resistance development to Cry1F.  相似文献   

11.
The roots of the Hispanic populations of the Caribbean Islands and Central and South America go back to three continents of the Old World. In Puerto Rico major genetic contributions have come from (1) Asians in the form of the aboriginal Taino population, an Arawak tribe, present when Columbus arrived on the Island, (2) Europeans, largely Spanish explorers, settlers, government administrators, and soldiers, and (3) Africans who came as part of the slave trade. Since JC virus (JCV) genotypes characteristic of Asia, Europe, and Africa have been identified, and excretion of JCV in urine has been proposed as a marker for human migrations, we sought to characterize the JCV strains present in a Caribbean Hispanic population. We found that the strains of JCV present today in Puerto Rico are those derived from the Old World populations represented there: Types 1B and 4 from Spain, Types 3A, 3B, and 6 from Africa, and Type 2A from Asia. The Type 2A genotype represents the indigenous Taino people. This JCV genotype was represented much more frequently (61%) than would be predicted by the trihybrid model of genetic admixture. This might be attributable to characteristics of JCV Type 2A itself, as well as to the nature of the early relationships between Spanish men and native women. These findings indicate that the JCV strains carried by the Taino Indians can be found in today's Puerto Rican population despite the apparent demise of these people more than two centuries ago. Therefore, molecular characterization of JCV provides a tool to supplement genetic techniques for reconstructing population histories including admixed populations.  相似文献   

12.
Genetic rescue can be a successful way to restore species genetic diversity, but it can also lead to outbreeding depression (decreases in hybrid fitness) if attempted in incompatible populations. Thus, population genetic profiles and demographic history are needed to evaluate the feasibility of translocation. We used population genetic analyses and Approximate Bayesian Computation (ABC) to assess genetic rescue as an option for two populations of the yellow-shouldered blackbird (Agelaius xanthomus), an endangered Puerto Rico endemic. The candidate recipient population, a managed population in Pitahaya (southwestern Puerto Rico), had been characterized previously for its mating system and population genetics. Here, we used nine microsatellite loci to measure the genetic diversity of a candidate source population, a subspecies (A. x. monensis) on Mona Island, 66 km west of Puerto Rico. We compared genetic diversity and inferred historical and contemporary gene flow between the two populations. We found clear population structure and no migration between populations, as well as evidence that the Mona population descended from the Pitahaya population approximately 95 generations ago. Despite the historical gene flow, the degree of contemporary genetic and environmental divergence means the Mona population may not be suitable for immediate use as a source population. We recommend (a) further investigating whether the observed population structure is due to adaptive or neutral forces, (b) testing the Mona population for behavioral plasticity in different environments, and (c) evaluating other source populations in addition to the Mona population for genetic rescue.  相似文献   

13.
Three populations of non-native Asian swamp eels are established in peninsular Florida (USA), and comprise two different genetic lineages. To assess potential for these fish to penetrate estuarine habitats or use coastal waters as dispersal routes, we determined their salinity tolerances. Swamp eels from the three Florida populations were tested by gradual (chronic) salinity increases; additionally, individuals from the Miami population were tested by abrupt (acute) salinity increases. Results showed significant tolerance by all populations to mesohaline waters: Mean survival time at 14 ppt was 63 days. The Homestead population, a genetically distinct lineage, exhibited greater tolerance to higher salinity than Tampa and Miami populations. Acute experiments indicated that swamp eels were capable of tolerating abrupt shifts from 0 to 16 ppt, with little mortality over 10 days. The broad salinity tolerance demonstrated by these experiments provides evidence that swamp eels are physiologically capable of infiltrating estuarine environments and using coastal waters to invade new freshwater systems.  相似文献   

14.
Understanding the extent to which phylogenetic constraints and adaptive evolutionary forces help define the physiological sensitivity of species is critical for anticipating climate‐related impacts in aquatic environments. Yet, whether upper thermal tolerance and plasticity are shaped by common evolutionary and environmental mechanisms remains to be tested. Based on a systematic literature review, we investigated this question in 82 freshwater fish species (27 families) representing 829 experiments for which data existed on upper thermal limits and it was possible to estimate plasticity using upper thermal tolerance reaction norms. Our findings indicated that there are strong phylogenetic signals in both thermal tolerances and acclimation capacity, although it is weaker in the latter. We found that upper thermal tolerances are correlated with the temperatures experienced by species across their range, likely because of spatially autocorrelated processes in which closely related species share similar selection pressures and limited dispersal from ancestral environments. No association with species thermal habitat was found for acclimation capacity. Instead, species with the lowest physiological plasticity also displayed the highest thermal tolerances, reflecting to some extent an evolutionary trade‐off between these two traits. Although our study demonstrates that macroecological climatic niche features measured from species distributions are likely to provide a good approximation of freshwater fish sensitivity to climate change, disentangling the mechanisms underlying both acute and chronic heat tolerances may help to refine predictions regarding climate change‐related range shifts and extinctions.  相似文献   

15.
The effects of late Quaternary climate on distributions and evolutionary dynamics of insular species are poorly understood in most tropical archipelagoes. We used ecological niche models under past and current climate to derive hypotheses regarding how stable climatic conditions shaped genetic diversity in two ecologically distinctive frogs in Puerto Rico. Whereas the mountain coquí Eleutherodactylus portoricensis is restricted to montane forest in the Cayey and Luquillo Mountains, the red‐eyed coquí E. antillensis is a habitat generalist distributed across the entire Puerto Rican Bank (Puerto Rico and the Virgin Islands, excluding St Croix). To test our hypotheses, we conducted phylogeographic and population genetic analyses based on mitochondrial and nuclear loci of each species across their range in Puerto Rico. Patterns of population differentiation in E. portoricensis, but not in E. antillensis, supported our hypotheses. For E. portoricensis, these patterns include: individuals isolated by long‐term unsuitable climate in the Río Grande de Loíza Basin in eastern Puerto Rico belong to different genetic clusters; past and current climate strongly predicted genetic differentiation; and Cayey and Luquillo Mountains populations split prior to the last interglacial. For E. antillensis, these patterns include: genetic clusters did not fully correspond to predicted long‐term unsuitable climate; and past and current climate weakly predicted patterns of genetic differentiation. Genetic signatures in E. antillensis are consistent with a recent range expansion into western Puerto Rico, possibly resulting from climate change and anthropogenic influences. As predicted, regions with a large area of long‐term suitable climate were associated with higher genetic diversity in both species, suggesting larger and more stable populations. Finally, we discussed the implications of our findings for developing evidence‐based management decisions for E. portoricensis, a taxon of special concern. Our findings illustrate the role of persistent suitable climatic conditions in promoting the persistence and diversification of tropical island organisms.  相似文献   

16.
We tested whether thermal tolerance and aerobic performance differed between two populations of Nile perch (Lates niloticus) originating from the same source population six decades after their introduction into two lakes in the Lake Victoria basin in East Africa. We used short-term acclimation of juvenile fish to a range of temperatures from ambient to +6°C, and performed critical thermal maximum (CTmax) and respirometry tests to measure upper thermal tolerance, resting and maximum metabolic rates, and aerobic scope (AS). Across acclimation temperatures, Nile perch from the cooler lake (Lake Nabugabo, Uganda) tended to have lower thermal tolerance (i.e., CTmax) and lower aerobic performance (i.e., AS) than Nile perch from the warmer waters of Lake Victoria (Bugonga region, Uganda). Effects of temperature acclimation were more pronounced in the Lake Victoria population, with the Lake Nabugabo fish showing less thermal plasticity in most metabolic traits. Our results suggest phenotypic divergence in thermal tolerance between these two introduced populations in a direction consistent with an adaptive response to local thermal regimes.  相似文献   

17.
Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an organism are exposed to seasonal changes in temperature and its effect is irreversible, while reversible short‐term acclimation occurs daily in response to diurnal changes in temperature. We collected wild flies from a temperate population across seasons and measured two cold tolerance metrics (chill‐coma recovery and cold stress survival) and their responses to developmental and short‐term acclimation. Chill‐coma recovery responded to seasonal shifts in temperature, and phenotypic plasticity following both short‐term and developmental acclimation improved cold tolerance. This improvement indicated that both types of plasticity are adaptive, and that plasticity can compensate for genetic variation in basal cold tolerance during warmer parts of the season when flies tend to be less cold tolerant. We also observed a significantly stronger trade‐off between basal cold tolerance and short‐term acclimation during warmer months. For the longer‐term developmental acclimation, a trade‐off persisted regardless of season. A relationship between the two types of plasticity may provide additional insight into why some measures of thermal tolerance are more sensitive to seasonal variation than others.  相似文献   

18.
Both phenotypic plasticity and local genetic adaptation may contribute to a species’ ability to inhabit different environmental conditions. While phenotypic plasticity is usually considered costly, local adaptation takes generations to respond to environmental change and may be constrained by strong gene flow. The majority of marine species have complex life-cycles with pelagic stages that might be expected to promote gene flow and plastic responses, and yet several notable examples of local adaptation have been found in species with broadcast larvae. In the ascidian, Ciona intestinalis (Linnaeus, 1767),—a common marine species with broadcast spawning and a short larval stage—previous studies have found marked differences in salinity tolerance of early life-history stages among populations from different salinity regimes. We used common-garden experiments to test whether observed differences in salinity tolerance could be explained by phenotypic plasticity. Adult ascidians from two low salinity populations [2–5 m depth, ~25 practical salinity units (PSU)], and two full salinity populations (25–27 m depth, ~31 PSU) were acclimated for 2–4 weeks at both 25 and 31 PSU. Gametes were fertilized at the acclimation salinities, and the newly formed embryos were transferred to 10 different salinities (21–39 PSU) and cultured to metamorphosis. Adult acclimation salinity had an overriding and significant effect on larval metamorphic success: tolerance norms for larvae almost fully matched the acclimation salinity of the parents, independent of parental origin (deep or shallow). However we also detected minor population differences that could be attributed to either local adaptation or persistent environmental effects. We conclude that differences in salinity tolerance of C. intestinalis larvae from different populations are driven primarily by transgenerational phenotypic plasticity, a strategy that seems particularly favourable for an organism living in coastal waters where salinity is less readily predicted than in the open oceans.  相似文献   

19.
We examine the interaction between phenotypic plasticity and evolutionary adaptation using muscle gene expression levels among populations of the fish Fundulus heteroclitus acclimated to three temperatures. Our analysis reveals shared patterns of phenotypic plasticity due to thermal acclimation as well as non‐neutral patterns of variation among populations adapted to different thermal environments. For the majority of significant differences in gene expression levels, phenotypic plasticity and adaptation operate on different suites of genes. The subset of genes that demonstrate both adaptive differences and phenotypic plasticity, however, exhibit countergradient variation of expression. Thus, expression differences among populations counteract environmental effects, reducing the phenotypic differentiation between populations. Finally, gene‐by‐environment interactions among genes with non‐neutral patterns of expression suggest that the penetrance of adaptive variation depends on the environmental conditions experienced by the individual.  相似文献   

20.
Species’ tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances of wild animals are representative of cumulative responses to recent environments, while lengthy acclimation is necessary for controlled comparisons of physiological tolerances. Measures of inconsistent, intermediate acclimation states, as reported by many studies, represent neither the realised nor the potential tolerance in that population, are very likely underestimates of species’ physiological capacities and may consequently be of limited value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号