首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Eukaryotic signal transduction involves the assembly of transient protein-protein complexes mediated by modular interaction domains. Specific Pro-rich sequences with the consensus core motif PxxP adopt the PPII helix conformation upon binding to SH3 domains. For short Pro-rich peptides, little or no ordered secondary structure is usually observed before binding interactions. The association of a Pro-rich peptide with the SH3 domain involves unfavorable binding entropy due to the loss of rotational freedom on forming the PPII helix. With the aim of stabilizing the PPII helix conformation in the Pro-rich HPK1 decapeptide PPPLPPKPKF (P2), a series of P2 analogues was prepared, in which specific Pro positions were alternatively occupied by 4(S)- or 4(R)-4-fluoro-L-proline. The interactions of these peptides with the SH3 domain of the HPK1-binding partner HS1 were quantitatively analyzed by the NILIA-CD approach. A CD thermal analysis of the P2 analogues was performed to assess their propensity to adopt the PPII helix conformation. Contrary to our expectations, the K(d) values of the analogues were lower than that of the parent peptide P2. These results clearly show that the induction of a stable PPII helix conformation in short Pro-rich peptides is not sufficient to increase their affinity toward the SH3 domain and that the effect of 4-fluoroproline strongly depends on the position of this residue in the sequence and the chirality of the substituent in the pyrrolidine ring.  相似文献   

2.
The proline analogue cis-4-hydroxy-l-proline (CHOP), which inhibits the biosynthesis of collagen, has been clinically evaluated as an anticancer drug, but its water solubility and low molecular weight limits its therapeutic potential since it is rapidly excreted. In addition, CHOP is too toxic to be practical as an anticancer drug, due primarily to its systematic effects on noncollagen proteins. To promote CHOP’s retention in blood and/or to decrease its toxicity, N-acetylation of CHOP might be a novel approach as a prodrug. The present study was designed to achieve the microbial production of N-acetyl CHOP from l-proline by coexpression of l-proline cis-4-hydroxylases converting l-proline into CHOP (SmP4H) from the Rhizobium Sinorhizobium meliloti and N-acetyltransferase converting CHOP into N-acetyl CHOP (Mpr1) from the yeast Saccharomyces cerevisiae. We constructed a coexpression plasmid harboring both the SmP4H and Mpr1 genes and introduced it into Escherichia coli BL21(DE3) or its l-proline oxidase gene-disrupted (ΔputA) strain. M9 medium containing l-proline produced more N-acetyl CHOP than LB medium containing l-proline. E. coli ΔputA cells accumulated l-proline (by approximately 2-fold) compared to that in wild-type cells, but there was no significant difference in CHOP production between wild-type and ΔputA cells. The addition of NaCl and l-ascorbate resulted in a 2-fold increase in N-acetyl CHOP production in the l-proline-containing M9 medium. The highest yield of N-acetyl CHOP was achieved at 42 h cultivation in the optimized medium. Five unknown compounds were detected in the total protein reaction, probably due to the degradation of N-acetyl CHOP. Our results suggest that weakening of the degradation or deacetylation pathway improves the productivity of N-acetyl CHOP.  相似文献   

3.
Due to the unique role of l-proline in the folding and structure of protein, a variety of synthetic proline analogues have been developed. l-Proline analogues have been proven to be valuable reagents for studying cellular metabolism and the regulation of macromolecule synthesis in both prokaryotic and eukaryotic cells. In addition to these fundamental researches, they are useful compounds for industrial use. For instance, microorganisms that overproduce l-proline have been obtained by isolating mutants resistant to l-proline analogues. They are also promising candidates for tuning the biological, pharmaceutical, or physicochemical properties of naturally occurring or de novo designed peptides. Among l-proline analogues, l-azetidine-2-carboxylic acid (l-AZC) is a toxic non-proteinogenic amino acid originally found in lily of the valley plants and trans-4-hydroxy-l-proline (4-l-THOP) is the most abundant component of mammalian collagen. Many hydroxyprolines (HOPs), such as 4-l-THOP and cis-4-hydroxy-l-proline (4-l-CHOP), are useful chiral building blocks for the organic synthesis of pharmaceuticals. In addition, l-AZC and 4-l-CHOP, which are potent inhibitors of cell growth, have been tested for their antitumor activity in tissue culture and in vivo. In this review, we describe the recent discoveries regarding the physiological properties and microbial production and metabolism of l-proline analogues, particularly l-AZC and HOPs. Their applications in fundamental research and industrial use are also discussed.  相似文献   

4.
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and with cytoskeletal and other proteins. A central segment of MBP is highly conserved in mammals and consists of a membrane surface-associated amphipathic alpha-helix, immediately followed by a proline-rich segment that we hypothesize is an SH3 ligand. We show by circular dichroic spectroscopy that this proline-rich segment forms a polyproline type II helix in vitro under physiological conditions and that phosphorylation at a constituent threonyl residue has a stabilizing effect on its conformation. Using SH3 domain microarrays, we observe that the unmodified recombinant murine 18.5 kDa MBP isoform (rmC1 component) binds the following SH3 domains: Yes1 > PSD95 > cortactin = PexD = Abl = Fyn = c-Src = Itk in order of decreasing affinity. A quasi-deiminated form of the protein (rmC8) binds the SH3 domains Yes1 > Fyn > cortactin = c-Src > PexD = Abl. Phosphorylation of rmC1 at 1-2 threonines within the proline-rich segment by mitogen-activated protein kinase in vitro has no effect on the binding specificity to the SH3 domains on the array. An SH3 domain of chicken Fyn is also demonstrated to bind to lipid membrane-associated C1, phosphorylated C1, and rmC8. Molecular docking simulations of the interaction of the putative SH3 ligand of classic MBP with the human Fyn SH3 domain indicate that the strength of the interaction is of the same order of magnitude as with calmodulin and that the molecular recognition and association is mediated by some weak CH...pi interactions between the ligand prolyl residues and the aromatic ones of the SH3 binding site. One such interaction is well-conserved and involves the stacking of an MBP-peptide prolyl and an SH3 domain tryptophanyl residue, as in most other SH3-ligand complexes. Lysyl and arginyl residues in the peptide canonically interact via salt bridges and cation-pi interactions with negatively charged and aromatic residues in the SH3 domain binding site. Posttranslational modifications (phosphorylation or methylation) of the ligand cause noticeable shifts in the conformation of the flexible peptide and its side chains but do not predict any major inhibition of the binding beyond somewhat less favorable interactions for peptides with phosphorylated seryl or threonyl residues.  相似文献   

5.
Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases.Src homology 2 (SH2) domains are modular protein structures that are important for signal transduction due to their ability to bind phosphotyrosine (pY)-containing polypeptides within defined amino acid sequence motifs (1). SH2 domains are found in various signaling enzymes and adaptor proteins. Given the reversibility of protein tyrosine phosphorylation and the affinity of SH2-pY binding, the interactions of SH2 domains are inherently dynamic and diverse. Indeed, selective, transient binding to pY motifs is a key mechanism through which intracellular signaling networks are dynamically assembled, localized, and regulated. In addition to mediating protein interactions in trans, SH2 domains bind intramolecularly (2). For example, in Src family kinases (SFKs), the SH2 domain binds in cis to the phosphorylated C-terminal tail as a mechanism to constrain and thereby auto-inhibit the intervening tyrosine kinase domain (3, 4). As well, SH2 domains of cytoplasmic tyrosine kinases have been shown to affect the kinase activity of adjacent kinase domains through allosteric interactions (5). The SFKs are therefore highly regulated as a function of their SH2 domains, which exist in dynamic equilibrium between intra- and intermolecular interactions (6). Hence, as discussed by Pawson (7), the transient and diverse interactions of an SH2 domain can regulate signaling enzymes and constitutes a major mechanism of signal transduction in response to extracellular signals.The structure of the SH2 domain has been extensively characterized. At its core is a conserved antiparallel β-sheet sandwiched between two α-helices (8). SH2 domains bind phosphotyrosine-containing peptides in an extended conformation across the central β-sheet, with the pY residue inserted in a deep recognition pocket formed by conserved residues from strands βB, βC, and βD, helix αA, and the phosphate binding loop. Peptide binding specificity is determined by more variable binding surfaces on the SH2 domain, which recognize residues C-terminal to the pY residue. For the SFK SH2 domains, the three residues C-terminal to the pY residue (pY+1,+2,+3) are dominant determinants of specificity (9, 10), with the domain binding most tightly to sequences containing the motif pYEEI (11, 12). The hydrophobic pY+3 residue inserts in a deep hydrophobic specificity pocket defined by residues of the EF and BG loops (8, 13, 14). Indeed, structural analysis of the SH2 domain revealed that the configuration of the EF and BG loops is critical in dictating SH2 domain specificity by shaping the ligand-binding surface and controlling accessibility of the pY+3 binding pocket (15). Mutation of a single residue of the EF loop can drastically impact peptide binding specificity by altering the pY+3 pocket (1517), indicating the importance of the pY+3 pocket in substrate selectivity for the SFK SH2 domains.In addition to binding pY-containing polypeptides, SH2 domains themselves may be modulated by phosphorylation. For example, phosphorylation of the Src SH2 domain at conserved Y213 resulted in activation of the cognate kinase domain, possibly by impairing SH2 binding to the phosphorylated C-terminal tail (18). Similarly, phosphorylation of Lck at the equivalent SH2 residue (Y192) generally reduced binding to pY-peptides and proteins (19). Phosphorylation at S690 in the SH2 domain of the p85α subunit of PI 3-kinase decreased its affinity for pY-containing proteins and promoted feedback inhibition of PI 3-kinase and Akt in response to cellular starvation (20). Conversely, tyrosine phosphorylation of the tensin-3 SH2 domain stimulated substrate binding and biological activity (21). Therefore, phosphorylation of SH2 domains appears to be a general mechanism for modulating their binding properties.Here, we report that Y194 in the SH2 domain of the SFK Lyn, a residue conserved in SFK SH2 domains, is frequently phosphorylated in hematopoietic and other cancers. In vitro protein and peptide interactions with the Lyn SH2 domain were affected by this phosphorylation. Our results suggest that tyrosine phosphorylation of the SFK SH2 domain modulates both its binding affinity and specificity and may constitute another layer of regulation in signaling networks.  相似文献   

6.
7.
The fungitoxicity of mercuric chloride to Aspergillus niger was increased in the presence of d-, l-, dl-methionine, dl-ethionine, dl-S-methylcysteine or sodium methylmercaptide. The same effect was observed with methionine for two other fungi investigated: Cladosporium cucumerinum and Scopulariopsis brevicaulis. It is suggested that this effect can be ascribed to the formation of CH3SHg+ or (CH3S)2Hg, or the corresponding ethyl compounds. CH3SHgCl and (CH3S)2Hg were synthetically prepared and proved indeed far more fungitoxic than HgCl2. The hypothesis was further substantiated by the observation that A. niger rapidly converts dl-methionine into CH3SH, which undoubtedly reacts with Hg2+ to give the above mentioned methylthiomercury compounds.  相似文献   

8.
γ-Glutamylamine cyclotransferase (gGACT) catalyzes the intramolecular cyclization of a variety of l-γ-glutamylamines producing 5-oxo-l-proline and free amines. Its substrate specificity implicates it in the downstream metabolism of transglutaminase products, and is distinct from that of γ-glutamyl cyclotransferase which acts on l-γ-glutamyl amino acids. To elucidate the mechanism by which gGACT distinguishes between l-γ-glutamylamine and amino acid substrates, the specificity of the rabbit kidney enzyme for the amide region of substrates was probed through the kinetic analysis of a series of l-γ-glutamylamines. The isodipeptide N ?-(l-γ-glutamyl)-l-lysine 1 was used as a reference. The kinetic constants of the l-γ-glutamyl derivative of n-butylamine 7, were nearly identical to those of 1. Introduction of a methyl or carboxylate group on the carbon adjacent to the side-chain amide nitrogen in l-γ-glutamylamine substrates resulted in a dramatic decrease in substrate properties for gGACT thus providing an explanation of why gGACT does not act on l-γ-glutamyl amino acids except for l-γ-glutamylglycine. Placement of substituents on carbons further removed from the side-chain amide nitrogen in l-γ-glutamylamines restored activity for gGACT, and l-γ-glutamylneohexylamine 19 had a higher specificity constant (k cat /K m) than 1. gGACT did not exhibit any stereospecificity in the amide region of l-γ-glutamylamine substrates. In addition, analogues (2630) with heteroatom substitutions for the γ methylene position of the l-γ-glutamyl moiety were examined. Several thiocarbamoyl derivatives of l-cysteine (2830) were excellent substrates for gGACT.  相似文献   

9.

Background

Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown.

Results

Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly.

Conclusion

Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.
  相似文献   

10.
Myosins play essential roles in migration, cytokinesis, endocytosis, and adhesion. They are composed of a large N-terminal motor domain with ATPase and actin binding sites and C-terminal neck and tail regions, whose functional roles and structural context in the protein are less well characterized. The tail regions of myosins I, IV, VII, XII, and XV each contain a putative SH3 domain that may be involved in protein-protein interactions. SH3 domains are reported to bind proline-rich motifs, especially "PxxP" sequences, and such interactions serve regulatory functions. The activity of Src, PI3, and Itk kinases, for example, is regulated by intramolecular interactions between their SH3 domain and internal proline-rich sequences. Here, we use NMR spectroscopy to reveal the structure of a protein construct from Dictyostelium myosin VII (DdM7) spanning A1620-T1706, which contains its SH3 domain and adjacent proline-rich region. The SH3 domain forms the signature beta-barrel architecture found in other SH3 domains, with conserved tryptophan and tyrosine residues forming a hydrophobic pocket known to bind "PxxP" motifs. In addition, acidic residues in the RT or n-Src loops are available to interact with the basic anchoring residues that are typically found in ligands or proteins that bind SH3 domains. The DdM7 SH3 differs in the hydrophobicity of the second pocket formed by the 3(10) helix and following beta-strand, which contains polar rather than hydrophobic side chains. Most unusual, however, is that this domain binds its adjacent proline-rich region at a surface remote from the region previously identified to bind "PxxP" motifs. The interaction may affect the orientation of the tail without sacrificing the availability of the canonical "PxxP"-binding surface.  相似文献   

11.
In the present study, we report on the cardiovascular effects caused by the microinjection of l-proline (l-Pro) into the supraoptic nucleus (SON) in unanesthetized rats: the possible involvement of ionotropic glutamate receptors in the SON, as well as the peripheral mechanisms involved in the mediation of its cardiovascular effects. We compared the l-Pro effects with those caused by the injection of l-glutamate (l-Glu) into the SON. Microinjection of increasing doses of l-Pro into the SON caused dose-related cardiovascular responses in unanesthetized rats that were similar to those observed after the injection of l-Glu. Pretreatment of the SON with either a selective non-NMDA (NBQX) or a selective NMDA (LY235959) glutamate receptor antagonist blocked the cardiovascular response to l-Pro. The dose–effect curve for the pretreatment with increasing doses of LY235959 was shifted to the left in relation to the curve for NBQX, showing that LY235959 is more potent than NBQX in inhibiting the cardiovascular response to l-Pro. On the other hand, the cardiovascular response to l-Glu was only significantly reduced by pretreatment with NBQX (2 nmol/100 nL), but not affected by LY235959 (2 nmol/100 nL). The pressor response to l-Pro was not affected by intravenous pretreatment with the ganglion blocker pentolinium, but it was blocked by intravenous pretreatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP. In conclusion, these results suggest that l-Pro has a selective receptor that is sensitive to ionotropic glutamate receptor antagonists. Its activation in the SON results in vasopressin release into the systemic circulation, causing pressor and bradycardiac responses.  相似文献   

12.
X-linked agammaglobulinemia (XLA), an inherited disease, is caused by mutations in the Bruton's tyrosine kinase (BTK). The absence of functional BTK leads to failure of B cell differentiation which incapacitates antibody production in XLA patients leading to, sometimes lethal, bacterial infections. Point mutation in the BTK gene that leads to deletion of C-terminal 14 aa residues of BTK SH3 domain was found in one patient family. To understand the role of BTK in B cell development, we have determined the solution structure of BTK SH3 domain complexed with a proline-rich peptide from the protein product of c-cbl protooncogene (p120cbl). Like other SH3 domains, BTK SH3 domain consists of five -strands packed in two -sheets forming a -barrel-like structure. The rmsd calculated from the averaged coordinates for the BTK SH3 domain residues 218–271 and the p120cbl peptide residues 6–12 of the complex was 0.87 Å (±0.16 Å) for the backbone heavy atoms (N, C, and C) and 1.64 Å (±0.16 Å) for all heavy atoms. Based on chemical shift changes and inter-molecular NOEs, we have found that the residues located in the RT loop, n-Src loop and helix-like loop between 4 and 5 of BTK SH3 domain are involved in ligand binding. We have also determined that the proline-rich peptide from p120cbl binds to BTK SH3 domain in a class I orientation. These results correlate well with our earlier observation that the truncated BTK SH3 domain (deletion of 4, 5 and the helix-like loop) exhibits weaker affinity for the p120cbl peptide. It is likely that the truncated SH3 domain fails to present to the ligand the crucial residues in the correct context and hence the weaker binding. These results delineate the importance of the C-terminus in the binding of SH3 domains and also indicate that improper folding and the altered binding behavior of mutant BTK SH3 domain likely lead to XLA.  相似文献   

13.
We investigated d-amino acid oxidase (DAO) induction in the popular model yeast Schizosaccharomyces pombe. The product of the putative DAO gene of the yeast expressed in E.?coli displayed oxidase activity to neutral and basic d-amino acids, but not to an l-amino acid or acidic d-amino acids, showing that the putative DAO gene encodes catalytically active DAO. DAO activity was weakly detected in yeast cells grown on a culture medium without d-amino acid, and was approximately doubled by adding d-alanine. The elimination of ammonium chloride from culture medium induced activity by up to eight-fold. l-Alanine also induced the activity, but only by about half of that induced by d-alanine. The induction by d-alanine reached a maximum level at 2?h cultivation; it remained roughly constant until cell growth reached a stationary phase. The best inducer was d-alanine, followed by d-proline and then d-serine. Not effective were N-carbamoyl-d,l-alanine (a better inducer of DAO than d-alanine in the yeast Trigonopsis variabilis), and both basic and acidic d-amino acids. These results showed that S. pombe DAO could be a suitable model for analyzing the regulation of DAO expression in eukaryotic organisms.  相似文献   

14.
Substrate specifity of the proton-driven hexose cotransport carrier in the plasmalemma of photoautotrophic suspension cells of Chenopodium rubrum L. has been studies through the short-term perturbation of 14C-labelled efflux of 3-O-methyl-d-glucose. Efflux, occurring exclusively via carrier-mediated exchange diffusion, is trans-stimulated by the substrate and trans-inhibited by the glucose-transport inhibitors phlorizin (K 1/2=7.9 mM) and its aglucon phloretin (K 1/2=84 μM); with both inhibitors, 3-O-methyl-d-glucose efflux may be blocked completely. Trans-stimulation of efflux (up to fourfold) by a variety of the d-enantiomers of neutral hexoses, including glucose (K 1/2=48 μM), 3-O-methyl-d-glucose (K 1/2=139 μM), and fructose (K 1/2=730 μM), but not by, for instance, d-allose, and l-sorbose, shows that carrier-substrate interaction critically involves the axial position at C-1 and C-3, respectively. We suggest that substrate binding by the Chenopodium hexose carrier involves both hydrophobic interaction with the pyran-ring and hydrogen-ion bonding at C-1 and C-3 of the d-glucose conformation.  相似文献   

15.
16.
Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20–30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs—DSSP-PPII, PROSS, SEGNO, and XTLSSTR—and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.  相似文献   

17.
Human osteoclast-stimulating factor (hOSF) is an intracellular protein produced by osteoclasts that induces osteoclast formation and bone resorption in osteoporosis by recruiting multiple signaling complexes with its diverse biological partners through peptide-mediated interactions (PMIs). The protein contains a modular peptide-recognition domain of Src homology 3 (SH3), which can recognize and bind to the polyproline regions of its partner proteins, as well as two N-terminal polyproline segments, which can be recognized and bound by the SH3 domains of its partner proteins. Here, we attempted to elucidate the complicated PMIs between the different SH3 domains and different polyprolines of hOSF and its three known interacting partners, i.e. proto-oncogene tyrosine-protein kinase (c-Src), survival motor neuron (SMN) and Src-associated in mitosis, 68 kD (Sam68). A total of 29 peptide segments containing the SH3-binding motif PXXP were extracted from these partner proteins, which are potential binding sites of hOSF SH3 domain, while the c-Src kinase also possesses a SH3 domain that may recognize and bind the two polyproline peptides at hOSF N-terminus. Structural bioinformatics analysis identified a number of biologically functional PMI candidates between these SH3 domains and these polyproline peptides, which were then tested in vitro using fluorescence spectroscopy assays. Consequently, it is found that (i) hOSF SH3 domain exhibits strong binding potency to two Sam68 peptides 36RQPPLPHR43 (K d = 13.7 μM) and 425APPARPVK432 (K d = 3.2 μM) as well as moderate affinity to three SMN peptides 193FLPPPPPM200 (K d = 56.2 μM), 235PFPSGPPI242 (K d = 28.4 μM) and 246PPPICPDS253 (K d = 74.5 μM), but has only weak or no binding to c-Src peptides. Instead, a proline-rich region at hOSF N-terminal that contains two overlapping peptides (3KPPPKPVK10 and 6PKPVKPGQ13) can be bound tightly by c-Src SH3 domain with high and moderate affinity (K d = 5.8 and 39.6 μM, respectively).  相似文献   

18.
Humanin (HN), a peptide of 24 amino acid residues, suppresses the neuronal cell death that is induced by the gene products of Alzheimer’s disease. HN contains two Ser residues at positions 7 and 14. Because the proportion of d-Ser isomerized from l-Ser in proteins appears to increase as cellular organs age, we explored the structural effects of the isomerization of each Ser residue in HN. By using a thioflavin-T assay to detect fibril formation, we found that an HN derivative that contained two isomerized d-Ser residues had a greater tendency to form fibrils than did wild-type HN or HNs containing single d-Ser residues. A previous report showed that HN containing two d-Ser residues exerts neuroprotective activity. Our data, therefore, suggest that the fibril formation by HN that contains two d-Ser residues may promote HN neuroprotective activity.  相似文献   

19.
Blood-brain barrier transport ofL-[l-14C]pipecolic acid was studied in the rat by single intracarotid injection using3H2O as a diffusible internal standard. Brain uptake index (BUI) forL-[14C]pipecolic acid (0.036 mM) was found to be 18.1, 10.5, and 12.6 for the cerebral cortex, brain stem, and cerebellum, respectively which was substantially higher than that reported for its analogL-proline in the whole brain. Influx ofL-pipecolic acid into the brain was concentration dependent and differed significantly between the cerebral cortex and the brain stem, and between the cerebral cortex and the cerebellum, but not between the brain stem and the cerebellum. Kinetic study ofL-pipecolic acid influx revealed a low- and a high-capacity uptake mechanisms. The low-capacity saturable component hasK m values ranging from 38 to 73 μM, andV max values ranging from 10 to 13 nmol/g/min for the three brain regions. The nonsaturable component has aK m of 4 mM, aV max of 200 nmol/g/min and similar diffusion constant (K d) (0.03 to 0.06 mlg?1 min?1) for all three brain regions. A possible role of the two-component brain uptake mechanism in the regulation of the neuronal function ofL-pipecolic acid was suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号