首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tomchik SM  Davis RL 《Neuron》2008,58(2):161-163
In Drosophila, the neuropeptide PDF is required for circadian rhythmicity, but it is unclear where PDF acts. In this issue of Neuron, Shafer et al. use a novel bioimaging methodology to demonstrate that PDF elevates cAMP in nearly all clock neurons. Thus, PDF apparently exerts more widespread effects on the circadian clock network than suggested by previous studies of PDF receptor expression.  相似文献   

2.
3.
The responses of red squirrels(Tamiasciurus hudsonicus) and eastern chipmunks(Tamias striatus) to complete and skeleton light-dark (LD) cycles were compared. The skeletons, comprised of two 1-h pulses of light per day, effectively simulated the complete photoperiods in the squirrels, but not the chipmunks. Skeleton photoperiods greater than 12-h caused the chipmunks to shift activity from the longer to the shorter of the two intervals between the pulses. To interpret the mechanism of phase control, squirrels and chipmunks were kept in continuous darkness and exposed to 1-h light pulses every 10 days. The time-course of entrainment was also quantified. Both techniques produced light-response curves. The data suggest that the parametric and non-parametric contributions to entrainment are different in these two rodent species.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

4.
Renn SC  Park JH  Rosbash M  Hall JC  Taghert PH 《Cell》1999,99(7):791-802
The mechanisms by which circadian pacemaker systems transmit timing information to control behavior are largely unknown. Here, we define two critical features of that mechanism in Drosophila. We first describe animals mutant for the pdf neuropeptide gene, which is expressed by most of the candidate pacemakers (LNv neurons). Next, we describe animals in which pdf neurons were selectively ablated. Both sets of animals produced similar behavioral phenotypes. Both sets entrained to light, but both were largely arrhythmic under constant conditions. A minority of each pdf variant exhibited weak to moderate free-running rhythmicity. These results confirm the assignment of LNv neurons as the principal circadian pacemakers controlling daily locomotion in Drosophila. They also implicate PDF as the principal circadian transmitter.  相似文献   

5.
Neural cells from fetal rat brain were grown in tissue culture in the absence of serum and maintained for 4–5 weeks without medium renewal. Over 80% of the embryonic cells in the culture had a neuronal appearance and formed intercellular synaptic connections. When mature, a definite population of the neuronal cells accumulated 3H-dopamine in a sodium-dependent, benztropine inhibited process. The mature cells were also able to release 3H-dopamine in a potassium evoked, calcium-dependent process, with half maximal dopamine release achieved at a Ca2+ concentration of 120μM. In the maturing cells the capacity for potassium evoked, calcium-dependent dopamine release increased from an undetectable level in the first three days to a plateau level after 10–11 days in vitro. The fully expressed release capacity (20–30% of the neurotransmitter retained in the cells) was maintained thereafter. These results demonstrate that primary brain neurons develop a functional neurosecretion apparatus in a chemically defined medium in the absence of animal serum. This extends the utility of primary cultures of brain neurons for developmental structural and biochemical studies of neurotransmission.  相似文献   

6.
Abstract

Wheel‐running activity of forty antelope ground squirrels, Ammospermophilus leucurus, was monitored for several months in both an outdoor cage and in the laboratory. The squirrels demonstrated a highly diurnal pattern which persisted in “constant conditions.” After removal from the field the initial free‐running period was close to 24 hrs, but typically lengthened in a nearly linear fashion at least for the first few months. There was no evidence of any difference in this trend for squirrels, in D/D, L/L 100 lx, 250 lx or 1200 lx. Eventually, about 90 percent of the squirrels had periods longer than 24 hrs.

The synchronizing capacity of the natural photoperiod was used to “catch the free‐running rhythm” and thereby demonstrate a response curve. Synchronization occurred by a shortening of the period when the time of sunrise was between 125° and 0° (subjective night) and by a lengthening of the period when the time of sunrise was between 0° and 125° (subjective day).

To more thoroughly examine the underlying mechanisms of phase control, phase‐response curves based on sixty one light‐pulse experiments were constructed. Comparisons of curves based on 6‐hr and 15‐min pulses, showed that the integral action of light is important (i.e., the entire pulse is involved in phase shifting). It was found that light pulses not only affected the phase of the rhythm but also the phase. Large phase shifts were usually associated with decreases in free‐running period. Several hypotheses on the controlling mechanisms were advanced.  相似文献   

7.
While the majority of sympathetic neurons are noradrenergic, a minority population are cholinergic. At least one population of cholinergic sympathetic neurons arises during development by a target-dependent conversion from an initial noradrenergic phenotype. Evidence for retrograde specification has been obtained from transplantation studies in which sympathetic neurons that normally express a noradrenergic phenotype throughout life were induced to innervate sweat glands, a target normally innervated by cholinergic sympathetic neurons. This was accomplished by transplanting footpad skin containing sweat gland primordia from early postnatal donor rats to the hairy skin region of host rats. The sympathetic neurons innervating the novel target decreased their expression of noradrenergif traints and developed choline acetyltransferase (ChAT) activity. In addition, many sweat gland-associated fibers acquired acetylcholinesterase (AChE) staining and VIP immunoreactivity. These studies indicated that sympathetic neurons in vivo alter their neurotransmitter phenotype in response to novel envronmental signals and that sweat glands play a critical role in the cholinergic and peptidergic differentiation of the sympathetic neurons that innervate them. The sweat gland-derived cholinergic differentiation factor is distinct from leukemia inhibitory factor and ciliary neurotrophic factor, two well-characterized cytokines that alter the neurotransmitter properties of cultured sympathetic neurons in a similar fashion. Recent studies indicate that anterograde signalling is also important for the establishment of functional synapses in this system. We have found that the production of cholinergic differentiation activity by sweat glands required sympathetic innervation, and the acquisition and maintenance of secretory competence by sweat glands depends upon functional cholinergic innervation. 1994 John Wiley & Sons, Inc.  相似文献   

8.
9.
In Drosophila oogenesis, the programmed cell death of germline cells occurs predominantly at three distinct stages. These cell deaths are subject to distinct regulatory controls, as cell death during early and midoogenesis is stress-induced, whereas the cell death of nurse cells in late oogenesis is developmentally regulated. In this report, we show that the effector caspase Drice is activated during cell death in both mid- and late oogenesis, but that the level and localization of activity differ depending on the stage. Active Drice formed localized aggregates during nurse cell death in late oogenesis; however, active Drice was found more ubiquitously and at a higher level during germline cell death in midoogenesis. Because Drice activity was limited in late oogenesis, we examined whether another effector caspase, Dcp-1, could drive the unique morphological events that occur normally in late oogenesis. We found that premature activation of the effector caspase, Dcp-1, resulted in a disappearance of filamentous actin, rather than the formation of actin bundles, suggesting that Dcp-1 activity must also be restrained in late oogenesis. Overexpression of the caspase inhibitor DIAP1 suppressed cell death induced by Dcp-1 but had no effect on cell death during late oogenesis. This limited caspase activation in dying nurse cells may prevent destruction of the nurse cell cytoskeleton and the connected oocyte.  相似文献   

10.
Animal circadian clocks are based on multiple oscillators whose interactions allow the daily control of complex behaviors. The Drosophila brain contains a circadian clock that controls rest–activity rhythms and relies upon different groups of PERIOD (PER)–expressing neurons. Two distinct oscillators have been functionally characterized under light-dark cycles. Lateral neurons (LNs) that express the pigment-dispersing factor (PDF) drive morning activity, whereas PDF-negative LNs are required for the evening activity. In constant darkness, several lines of evidence indicate that the LN morning oscillator (LN-MO) drives the activity rhythms, whereas the LN evening oscillator (LN-EO) does not. Since mutants devoid of functional CRYPTOCHROME (CRY), as opposed to wild-type flies, are rhythmic in constant light, we analyzed transgenic flies expressing PER or CRY in the LN-MO or LN-EO. We show that, under constant light conditions and reduced CRY function, the LN evening oscillator drives robust activity rhythms, whereas the LN morning oscillator does not. Remarkably, light acts by inhibiting the LN-MO behavioral output and activating the LN-EO behavioral output. Finally, we show that PDF signaling is not required for robust activity rhythms in constant light as opposed to its requirement in constant darkness, further supporting the minor contribution of the morning cells to the behavior in the presence of light. We therefore propose that day–night cycles alternatively activate behavioral outputs of the Drosophila evening and morning lateral neurons.  相似文献   

11.
12.
We have analyzed the distribution of putative cholinergic neurons in whole-mount preparations of adult Drosophila melanogaster. Putative cholinergic neurons were visualized by X-gal staining of P-element transformed flies carrying a fusion gene consisting of 5′ flanking DNA from the choline acetyltransferase (ChAT) gene and a lacZ reporter gene. We have previously demonstrated that cryostat sections of transgenic flies carrying 7.4 kb of ChAT 5′ flanking DNA show reporter gene expression in a pattern essentially similar to the known distribution of ChAT protein. Whole-mount staining of these same flies by X-gal should thus represent the overall distribution of ChAT-positive neurons. Extensive staining was observed in the cephalic, thoracic, and stomodeal ganglia, primary sensory neurons in antenna, maxillary palps, labial palps, leg, wing, and male genitalia. Primary sensory neurons associated with photoreceptors and tactile receptors were not stained. We also examined the effects of partial deletions of the 7.4 kb fragment on reporter gene expression. Deletion of the 7.4 kb fragment to 1.2 kb resulted in a dramatic reduction of X-gal staining in the peripheral nervous system (PNS). This indicates that important regulatory elements for ChAT expression in the PNS exist in the distal region of the 7.4 kb fragment. The distal parts of the 7.4 kb fragment, when fused to a basal heterologous promoter, can independently confer gene expression in subsets of putative cholinergic neurons. With these constructs, however, strong ectopic expression was also observed in several non-neuronal tissues. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Endogenous circadian clocks are inherent to all living organisms. They are needed to guarantee successful life since they regulate very important biological processes such as behavior and reproduction. Secretin-like G-protein coupled receptors are very important factors in the signal transduction pathways of circadian clocks. In this review, we will focus on the role of two secretin-like signaling pathways that play an important role in the regulation of the mammalian and the insect clock, respectively: the pituitary adenylate cyclase-activating polypeptide (PACAP) and pigment dispersing factor (PDF) signaling pathways. Both pathways are most likely related although their function in the biological clock differs.  相似文献   

14.
15.
Pigment-dispersing factor (PDF), an 18-amino acid neuropeptide, is a principal circadian neurotransmitter for the circadian rhythms of the locomotor activity in flies. Recently, two completely different types of PDF precursor were clarified; that of the cricket Gryllus bimaculatus and that of the last-summer cicada Meimuna opalifera. The G. bimaculatus PDF precursor is extraordinarily short and comprises a nuclear localization signal (NLS), while the M. opalifera PDF precursor is of ordinary length, comparable to that seen for the precursors of crustacean beta-PDH homologues. Although their PDF peptide regions were exactly the same, the regions containing a signal peptide combined with a PDF-associated peptide (PAP) were remarkably different from each other. Such a grouping suggested a fundamental role for the PAP peptide in the circadian clock, perhaps associated with PDF function. In the present study, the cDNA cloning of PDF from the adult brains of the housefly Musca domestica was carried out and it was found that an isolated clone (527 bp) encodes a PDF precursor protein of ordinary length. The PDF peptide shows a high sequence identity (78%-94%) and similarity (89%-100%) to insect PDFs and also to the crustacean beta-PDH peptides. In particular, there is only a single amino acid difference between the PDFs of Musca and Drosophila; at position 14 Ser for Musca PDF and Asn for Drosophila PDF. A characteristic Ser10 in Drosophila was retained in Musca, indicating the presence of a structural profile unique to these PDFs. The results of sequence analyses suggest that Musca and Drosophila PDFs are to be considered members of a single group that has evolved structurally. When the primary structure of the PAP regions was compared, the Musca PDF precursor also belonged to the same group as that to which the Drosophila PDF precursor belongs.  相似文献   

16.
17.
Summary Anatomical studies on the 6 posterior cirri of the barnacle,Balanus hameri, have revealed the presence of a number of bipolar and multipolar sensory neurons in the coxopodite-basipodite-ramal (CBR) region which appear to function as proprioceptors. The cells are associated with two simple strands which terminate on the surface of the flexor muscles or on the hypodermis.Electrophysiological results suggest that the units show uni-directional responses to movements of the limb segments. No position receptors were identified. The difference in receptor activity to imposed and endogenously generated limb movements suggest that many units normally function as muscle tension receptors.  相似文献   

18.
Pedal peptide (Pep) is a modulatory neuropeptide that is predominantly synthesized in a group of neurons on the dorsal surfaces of the pedal ganglia of Aplysia. Following the determination that Pep is the major peptide selectively present in these neurons in situ, primary cell culture of single Pep-neurons was used to study the release of this neuropeptide. Individual Pep-neurons were grown in culture where they extended many branched neurites with large varicosities. Immunocytology revealed that these newly grown varicosities were intensely Pep immunoreactive. Cultured Pep-neurons, grown in a medium containing radiolabeled methionine, synthesized labeled Pep and transported it into their regenerated neurites. Finally, these neurons released radiolabeled Pep in a calcium- and stimulation-dependent fashion. These results, taken together with previous findings, strongly support the proposition that Pep is a transmitter in Aplysia.  相似文献   

19.
The relationship between the O2 input rate into a suspension of Rhizobium leguminosarum bacteroids, the cellular ATP and ADP pools, and the whole-cell nitrogenase activity during L-malate oxidation has been studied. It was observed that inhibition of nitrogenase by excess O2 coincided with an increase of the cellular ATP/ADP ratio. When under this condition the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) was added, the cellular ATP/ADP ratio was lowered while nitrogenase regained activity. To explain these observations, the effects of nitrogenase activity and CCCP on the O2 consumption rate of R. leguminosarum bacteroids were determined. From 100 to 5 microM O2, a decline in the O2 consumption rate was observed to 50 to 70% of the maximal O2 consumption rate. A determination of the redox state of the cytochromes during an O2 consumption experiment indicated that at O2 concentrations above 5 microM, electron transport to the cytochromes was rate-limiting oxidation and not the reaction of reduced cytochromes with oxygen. The kinetic properties of the respiratory chain were determined from the deoxygenation of oxyglobins. In intact cells the maximal deoxygenation activity was stimulated by nitrogenase activity or CCCP. In isolated cytoplasmic membranes NADH oxidation was inhibited by respiratory control. The dehydrogenase activities of the respiratory chain were rate-limiting oxidation at O2 concentrations (if >300 nM. Below 300 nM the terminal oxidase system followed Michaelis-Menten kinetics (Km of 45 +/- 8 nM). We conclude that (i) respiration in R. leguminosarum bacteroids takes place via a respiratory chain terminating at a high-affinity oxidase system, (ii) the activity of the respiratory chain is inhibited by the proton motive force, and (iii) ATP hydrolysis by nitrogenase can partly relieve the inhibition of respiration by the proton motive force and thus stimulate respiration at nanomolar concentrations of O2.  相似文献   

20.
Summary In higher organisms, many physiological and behavioral functions exhibit daily variations, generated by endogenous circadian oscillators. It is not yet clear whether all the various rhythms that occur within an individual depend on one and the same pacemaker or whether different pacemakers are involved. To examine this question, the feeding and perch-hopping rhythms were measured in European starlings (Sturnus vulgaris) under light-dark cycles and continuous dim light. In dim light, the internal phase relationship between the feeding and perch-hopping rhythms changed systematically as a function of the circadian period, and the two rhythms could even dissociate and show different circadian periods in individuals with extremely long or extremely short circadian periods. Moreover, in some birds kept on lowamplitude light-dark cycles, the rhythm of feeding was synchronized 180° out of phase with the rhythm of locomotor activity. These results strongly suggest that in the European starling the feeding and locomotor activity rhythms are controlled by separate circadian pacemakers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号