首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyoxometalates (POMs) are interesting biomedical agents due to their versatile anticancer and antiviral properties, such as remarkable anti-HIV activity. Although POMs are tunable and easily accessible inorganic drug prototypes in principle, their full potential can only be tapped by enhancing their biocompatibility, for example, through organic functionalization. We have therefore investigated the HIV-1 protease inhibition potential of functionalized Keggin- and Dawson-type POMs with organic side chains. Their inhibitory performance was furthermore compared to other POM types, and the buffer dependence of the results is discussed. In addition, chemical shift mapping NMR experiments were performed to exclude POM-substrate interactions. Whereas the introduction of organic side chains into POMs is a promising approach in principle, the influence of secondary effects on the reaction system also merits detailed investigation.  相似文献   

2.
3.
BackgroundThe genetic differences among HIV-1 subtypes may be critical to clinical management and drug resistance surveillance as antiretroviral treatment is expanded to regions of the world where diverse non-subtype-B viruses predominate.ConclusionGlobal surveillance and genotypic assessment of drug resistance should focus primarily on the known subtype B drug-resistance mutations.  相似文献   

4.
Conformational sampling of pre- and post-therapy subtype B HIV-1 protease sequences derived from a pediatric subject infected via maternal transmission with HIV-1 were characterized by double electron–electron resonance spectroscopy. The conformational ensemble of the PRE construct resembles native-like inhibitor bound states. In contrast, the POST construct, which contains accumulated drug-pressure selected mutations, has a predominantly semi-open conformational ensemble, with increased populations of open-like states. The single point mutant L63P, which is contained in PRE and POST, has decreased dynamics, particularly in the flap region, and also displays a closed-like conformation of inhibitor-bound states. These findings support our hypothesis that secondary mutations accumulate in HIV-1 protease to shift conformational sampling to stabilize open-like conformations, while maintaining the predominant semi-open conformation for activity.  相似文献   

5.
6.
Human immunodeficiency virus type 1 (HIV-1) Vpu protein promotes both extracellular release of viral particles and degradation of CD4 in the endoplasmic reticulum. The correlation of anti-Vpu antibody (Ab) reactivity to Vpu and AIDS disease progression was studied in 162 HIV-1/AIDS patients after they had received highly active antiretroviral therapy (HAART) for 1 year. Anti-Vpu Ab reactivity was analyzed by Western blot using a recombinant Vpu protein. Results showed that at baseline (prior to initiation of HAART), 31.5% of patients (51/162) had anti-Vpu Ab. The proportion of anti-Vpu Ab in patients with CD4 counts > or =500, 200-500 and <200/mm(3) were 40.6, 34.7 and 14.3%, respectively (chi(2) test, p < 0.05). In addition, decreasing levels of anti-Vpu Ab reactivity were significantly correlated with increasing levels of HIV-1 viral load. After receiving HAART for 1 year, 7 of 111 anti-Vpu Ab-negative patients (6.3%) seroconverted (- --> + group) and 8 of 51 anti-Vpu Ab-positive (15.7%) patients became negative (+ --> - group). Among 104 anti-Vpu Ab-negative patients, 40 were selected for analysis of the VPU gene. All of them had an intact VPU gene. Patients were further divided into four groups according to their anti-Vpu Ab serostatus and anti-HIV-1 Ab was measured. The results showed that only the anti-Vpu Ab seroconverted group (- --> +) had increased serum levels of anti-HIV-1 Abs after 1 year of HAART, while the other three groups (+ --> +, - --> - and + --> -) had decreased serum levels of anti-HIV-1 Abs after 1 year of HAART (p < 0.05). In conclusion, the presence of anti-Vpu Ab is associated with improved prognosis following HIV-1 infection, and seroconversion of anti-Vpu Ab in patients on HAART indicates significant recovery of immunity.  相似文献   

7.

Background

The clinical outcomes of short interruptions of PI-based ART regimens remains undefined.

Methods

A 2-arm non-inferiority trial was conducted on 53 HIV-1 infected South African participants with viral load <50 copies/ml and CD4 T cell count >450 cells/µl on stavudine (or zidovudine), lamivudine and lopinavir/ritonavir. Subjects were randomized to a) sequential 2, 4 and 8-week ART interruptions or b) continuous ART (cART). Primary analysis was based on the proportion of CD4 count >350 cells(c)/ml over 72 weeks. Adherence, HIV-1 drug resistance, and CD4 count rise over time were analyzed as secondary endpoints.

Results

The proportions of CD4 counts >350 cells/µl were 82.12% for the intermittent arm and 93.73 for the cART arm; the difference of 11.95% was above the defined 10% threshold for non-inferiority (upper limit of 97.5% CI, 24.1%; 2-sided CI: −0.16, 23.1). No clinically significant differences in opportunistic infections, adverse events, adherence or viral resistance were noted; after randomization, long-term CD4 rise was observed only in the cART arm.

Conclusion

We are unable to conclude that short PI-based ART interruptions are non-inferior to cART in retention of immune reconstitution; however, short interruptions did not lead to a greater rate of resistance mutations or adverse events than cART suggesting that this regimen may be more forgiving than NNRTIs if interruptions in therapy occur.

Trial Registration

ClinicalTrials.gov NCT00100646  相似文献   

8.
VRC01,a broadly neutralizing monoclonal antibody(bnmAb),can neutralize a diverse array of HIV-1 isolates by mimicking CD4 binding to the envelope glycoprotein gp120.We have previously demonstrated the presence of VRC01-resistant strains in an HIV-1 infected patient during antiretroviral therapy.Here,we report follow-up studies of two subsequent samples from the same patient.With genetic and phenotypic analysis of over 70 full-length molecular clones of the HIV-1 envelope,we show that VRC01-resistant HIV-1 continued to exist and change in its proportion of the infecting virus during treatment with a highly active antiretroviral therapy.Consistent with our previous observation,the resistant phenotype was associated with a single asparagine residue at position 460(N460),a potential N-linked glycosylation site in the V5 region.The persistence and continuing evolution of VRC01-resistant HIV-1 in vivo presents a great challenge to our future preventative and therapeutic interventions based on VRC01.  相似文献   

9.
We exploit a model that considers three compartments: blood plasma (BP), lymphoid tissue-interstitial spaces (LT-IS), and follicular dendritic cells (FDC), for the HIV-1 dynamics under the application of highly active antiretroviral therapy (HAART) which allowed us to unravel distinct viral dynamics occurring in short- (2 days), middle- (21 days), and long-term (183 days) time scales. The different time scales are determined by the viral clearance rate, the ratio of productively infected CD4+ T cells to chronically infected cells, and the dissociation rate of HIV-1 complexes from FDC. This generates a scenario in which, after an initial transient stage, the viral BP dynamics decouples and becomes governed by the lymphoid tissue (LT) dynamics; in a later stage, a new decoupling occurs in which the LT-IS dynamics is slaved to that of the FDC dynamics. We observed an initial increase in the viremia after HAART in a patient who did not receive protease inhibitors (PI). By means of the above-mentioned model we were able to highlight the relevant parameters which need to be estimated at three different time scales after HAART.  相似文献   

10.
Highly active antiretroviral therapy (HAART) has dramatically decreased mortality from HIV-1 infection and is a major achievement of modern medicine. However, there is no fundamental theory of HAART. Elegant models describe the dynamics of viral replication, but a metric for the antiviral activity of drug combinations relative to a target value needed for control of replication is lacking. Treatment guidelines are based on empirical results of clinical trials in which other factors such as regimen tolerability also affect outcome. Why only certain drug combinations control viral replication remains unclear. Here we quantify the intrinsic antiviral activity of antiretroviral drug combinations. We show that most single antiretroviral drugs show previously unappreciated complex nonlinear pharmacodynamics that determine their inhibitory potential at clinical concentrations. We demonstrate that neither of the major theories for drug combinations accurately predicts the combined effects of multiple antiretrovirals. However, the combined effects can be understood with a new approach that considers the degree of independence of drug effects. This analysis allows a direct comparison of the inhibitory potential of different drug combinations under clinical concentrations, reconciles the results of clinical trials, defines a target level of inhibition associated with treatment success and provides a rational basis for treatment simplification and optimization.  相似文献   

11.
HIV-1 protease is a major drug target against AIDS as it permits viral maturation by processing the gag and pol polyproteins of the virus. The cleavage sites in these polyproteins do not have obvious sequence homology or a binding motif and the specificity of the protease is not easily determined. We used various threading approaches, together with the crystal structures of substrate complexes which served as template structures, to study the substrate specificity of HIV-1 protease with the aim of obtaining a better differentiation between binding and nonbinding sequences. The predictions from threading improved when distance-dependent interaction energy functions were used instead of contact matrices. To rank the peptides and properly account for the peptide's conformation in the total energy, the results from using short-range potentials on multiple template structures were averaged. Finally, a dynamic threading approach is introduced which is potentially useful for cases when there is only one template structure available. The conformational energy of the peptide-especially the term accounting for the side chains-was found to be important in differentiating between binding and nonbinding sequences. Hence, the substrate specificity, and thus the ability of the virus to mature, is affected by the compatibility of the substrate peptide to fit within the limited conformational space of the active site groove.  相似文献   

12.
13.
Proprotein processing is essential for HIV infectivity. Cellular trans-Golgi network (TGN) serine proteases (e.g., furin) are required to cleave HIV envelope gp160 to gp120. In addition, HIV protease (PR), an aspartyl protease, cleaves p55(Gag) to p24, etc., in budding virions. alpha1-Antitrypsin (alpha(1)AT) is cleaved by serine proteases, causing a conformational change in alpha(1)AT that sequesters and so inactivates the protease. alpha(1)AT blocks both gp160 and p55 processing, and so is a powerful inhibitor of HIV replication. We hypothesized that alpha(1)AT inhibited gp160 and p55 processing via different mechanisms, and that in both cases, alpha(1)AT bound and was itself cleaved by the proteases whose activities were blocked. alpha(1)AT delivered by SV(AT), a recombinant, Tag-deleted SV40-derived vector, localized to the TGN, co-precipitated with furin, and depleted furin from the TGN. After SV(AT) transduction and HIV challenge, alpha(1)AT was detected in resulting nascent immature HIV-1 virions. alpha(1)AT also blocked incorporation of the enzymatically active dimeric form of PR into HIV virions. Western analysis using recombinant proteins showed that alpha(1)AT directly bound HIV PR, and was cleaved by it. The simultaneous inhibition of two different steps in HIV morphogenesis both increases alpha(1)AT antilentiviral activity and decreases the possibility that HIV mutations will allow escape from inhibition.  相似文献   

14.
To investigate the prevalence of drug-resistance mutations, resistance to antiretroviral drugs, and the subsequent virological response to therapy in treatment-naive and antiretroviral-treated patients infected with HIV/AIDS in Henan, China, a total of 431 plasma samples were collected in Queshan county between 2003 and 2004, from patients undergoing the antiretroviral regimen Zidovudine + Didanosine + Nevirapine (Azt+Ddi+Nvp). Personal information was collected by face to face interview. Viral load and genotypic drug resistance were tested. Drug resistance mutation data were obtained by analyzing patient-derived sequences through the HIVdb Program (http://hivdb.stanford.edu). Overall, 38.5% of treatment-naive patients had undetectable plasma viral load (VL), the rate significantly increased to 61.9% in 0 to 6 months treatment patients (mean 3 months) (P<0.005) but again significantly decrease to 38.6% in 6 to 12 months treatment patients (mean 9 months) (P<0.001) and 40.0% in patients receiving more than 12 months treatment (mean 16 months) (P<0.005). The prevalence of drug resistance in patients who had a detectable VL and available sequences were 7.0%, 48.6%, 70.8%, 72.3% in treatment-naïve, 0 to 6 months treatment, 6 to 12 months treatment, and treatment for greater than 12 months patients, respectively. No mutation associated with resistance to Protease inhibitor (PI) was detected in this study. Nucleoside RT inhibitor (NRTI) mutations always emerged after non-nucleoside RT inhibitor (NNRTI) mutations, and were only found in patients treated for more than 6 months, with a frequency less than 5%, with the exception of mutation T215Y (12.8%, 6/47) which occurred in patients treated for more than 12 months. NNRTI mutations emerged quickly after therapy begun, and increased significantly in patients treated for more than 6 months (P<0.005), and the most frequent mutations were K103N, V106A, Y181C, G190A. There had been optimal viral suppression in patients undergoing treatment for less than 6 months in Queshan, Henan. The drug resistance strains were highly prevalent in antiretroviral-treated patients, and increased with the continuation of therapy, with many patients encountering virological failure after 6 months therapy.  相似文献   

15.
16.
17.
Interest in the glycerophosphoinositols has been increasing recently, on the basis of their biological activities. The cellular metabolism of these water-soluble bioactive phosphoinositide metabolites has been clarified, with the identification of the specific enzyme involved in their synthesis, PLA2IVα (phospholipase A2 IVα), and the definition of their phosphodiesterase-based catabolism, and thus inactivation. The functional roles and mechanisms of action of these compounds have been investigated in different cellular contexts. This has led to their definition in the control of various cell functions, such as cell proliferation in the thyroid and actin cytoskeleton organization in fibroblasts and lymphocytes. Roles for the glycerophosphoinositols in immune and inflammatory responses are also being defined. In addition to these physiological functions, the glycerophosphoinositols have potential anti-metastatic activities that should lead to their pharmacological exploitation.  相似文献   

18.
Tubulin modifications and their cellular functions   总被引:7,自引:0,他引:7  
All microtubules are built from a basic alpha/beta-tubulin building block, yet subpopulations of microtubules can be differentially marked by a number of post-translational modifications. These modifications, conserved throughout evolution, are thought to act individually or in combination to control specific microtubule-based functions, analogous to how histone modifications regulate chromatin functions. Here we review recent studies demonstrating that tubulin modifications influence microtubule-associated proteins such as severing proteins, plus-end tracking proteins, and molecular motors. In this way, tubulin modifications play an important role in regulating microtubule properties, such as stability and structure, as well as microtubule-based functions, such as ciliary beating, cell division, and intracellular trafficking.  相似文献   

19.
Inhibitors of protein-protein interactions are currently considered as perspective prototypes of a new generation of drugs. The most attractive targets for such inhibitors are the oligomeric enzymes which active sites are formed by amino acid residues from different subunits. HIV-1 protease (HIVp), which is active only as a homodimer form, is the classic example of such enzymes. We have developed a new approach for experimental screening of HIVp dimerization inhibitors. It is based on an original biosensor test-system for differential analysis of interaction of tested substances with HIVp dimers and monomers. Using this test-system we have analyzed the most perspective candidate substances predicted by the method of virtual screening, and also some derivatives of glycyrrhizin, triterpenic and steroid glycosides. In the results of this study we have found one compound, which preferentially interacts with HIVp monomers and inhibits in vitro activity of this enzyme with the IC50 value of about 10?6 M.  相似文献   

20.
The mature human immunodeficiency virus type 1 protease rapidly folds into an enzymatically active stable dimer, exhibiting an intricate interplay between structure formation and dimerization. We now show by NMR and sedimentation equilibrium studies that a mutant protease containing the R87K substitution (PR(R87K)) within the highly conserved Gly(86)-Arg(87)-Asn(88) sequence forms a monomer with a fold similar to a single subunit of the dimer. However, binding of the inhibitor DMP323 to PR(R87K) produces a stable dimer complex. Based on the crystal structure and our NMR results, we postulate that loss of specific interactions involving the side chain of Arg(87) destabilizes PR(R87K) by perturbing the inner C-terminal beta-sheet (residues 96-99 from each monomer), a region that is sandwiched between the two beta-strands formed by the N-terminal residues (residues 1-4) in the mature protease. We systematically examined the folding, dimerization, and catalytic activities of mutant proteases comprising deletions of either one of the terminal regions (residues 1-4 or 96-99) or both. Although both N- and C-terminal beta-strands were found to contribute to dimer stability, our results indicate that the inner C-terminal strands are absolutely essential for dimer formation. Knowledge of the monomer fold and regions critical for dimerization may aid in the rational design of novel inhibitors of the protease to overcome the problem of drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号