首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 822 毫秒
1.
We studied the production of xyloglucanase enzymes of pea and lettuce roots in the presence of saprobe and arbuscular mycorrhizal (AM) fungi. The AM fungus Glomus mosseae and the saprobe fungi Fusarium graminearum, Fusarium oxysporum-126, Trichoderma harzianum, Penicillium chrysogenum, Pleurotus ostreatus and Aspergillus niger were used. G. mosseae increased the shoot and root dry weight of pea but not of lettuce. Most of the saprobe fungi increased the level of mycorrhization of pea and lettuce, but only P. chrysogenum and T. harzianum inoculated together with G. mosseae increased the dry weight of pea and lettuce respectively. The AM and saprobe fungi increased the production of xyloglucanases by plant roots. The level of xyloglucanase activities and the number of xyloglucanolytic isozymes in plants inoculated with G. mosseae and most of the saprobe fungi tested were higher than when both microorganisms were inoculated separately. The possible relationship between xylogucanase activities and the ability of AM and saprobe fungi to improve the dry weight and AM root colonization of plants was discussed.  相似文献   

2.
3.
This study investigated the impact of constitutively expressed Trichoderma atroviride genes encoding exochitinase nag70 or endochitinase ech42 in transgenic lines of the apple cultivar Pinova on the symbiosis with arbuscular mycorrhizal fungi (AMF). We compared the exo- and endochitinase activities of leaves and roots from non-transgenic Pinova and the transgenic lines T386 and T389. Local and systemic effects were examined using own-rooted trees and trees grafted onto rootstock M9. Scab susceptibility was also assessed in own-rooted and grafted trees. AMF root colonization was assessed microscopically in the roots of apple trees cultivated in pots with artificial substrate and inoculated with the AMF Glomus intraradices and Glomus mosseae. Own-rooted transgenic lines had significantly higher chitinase activities in their leaves and roots compared to non-transgenic Pinova. Both of the own-rooted transgenic lines showed significantly fewer symptoms of scab infection as well as significantly lower root colonization by AMF. Biomass production was significantly reduced in both own-rooted transgenic lines. Rootstock M9 influenced chitinase activities in the leaves of grafted scions. When grafted onto M9, the leaf chitinase activities of non-transgenic Pinova (M9/Pinova) and transgenic lines (M9/T386 and M9/T389) were not as different as when grown on their own roots. M9/T386 and M9/T389 were only temporarily less infected by scab than M9/Pinova. M9/T386 and M9/T389 did not differ significantly from M9/Pinova in their root chitinase activities, AMF root colonization and biomass.  相似文献   

4.
5.
Polygalacturonases (PGs) hydrolyze the homogalacturonan of plant cell-wall pectin and are important virulence factors of several phytopathogenic fungi. In response to abiotic and biotic stress, plants accumulate PG-inhibiting proteins (PGIPs) that reduce the activity of fungal PGs. In Arabidopsis thaliana, PGIPs with comparable activity against BcPG1, an important pathogenicity factor of the necrotrophic fungus Botrytis cinerea, are encoded by two genes, AtPGIP1 and AtPGIP2. Both genes are induced by fungal infection through different signaling pathways. We show here that transgenic Arabidopsis plants expressing an antisense AtPGIP1 gene have reduced AtPGIP1 inhibitory activity and are more susceptible to B. cinerea infection. These results indicate that PGIP contributes to basal resistance to this pathogen and strongly support the vision that this protein plays a role in Arabidopsis innate immunity.  相似文献   

6.
7.
8.
Root colonization by arbuscular mycorrhizal (AM) fungi is a dynamic process involving major changes in plant gene expression. Here, the expression of a phosphate transporter gene (PT3) and several defense genes, already known to be involved in the various stages of AM establishment, were monitored in the mycelium donor plant (MDP) in vitro culture system associating potato plantlets with an AM fungus. This system allows fast and homogenous mycorrhization of seedlings at their early stage of development by growing the plantlets in active mycelial networks, but has never been validated for gene expression analysis. Here, QRT-PCR analyses were conducted in parallel to pre- (1 day), early (2 and 3 days), and late (6, 9, and 15 days) stages of root colonization. We observed the induction of a plant gene marker of AM root colonization (PT3) at the late stage and the induction of MAPK and PAL genes at the early and late stages of root colonization. We also demonstrated the induction of PR1 and PR2 genes at pre- and late stages and of GST1 and Lox genes at a late stage of root colonization. These results validated the MDP in vitro culture system as an optimal tool to study gene expression analysis during the AM fungi establishment. This system further opened the door to investigate gene networks associated with the plants–AM fungi symbiosis.  相似文献   

9.
In vitro mycorrhization of Hevea brasiliensis under autotrophic culture conditions is a promising methodology to produce plantlets adapted to overcome stresses during acclimatization. However, to succeed in the in vitro production of mycorrhizal plantlets, root production and subsequent colonization by the mycorrhizal fungus need to be optimized. Plantlets of H. brasiliensis clone PB 260 were grown in contact with the extraradical mycelium network of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Addition of activated charcoal to the medium and pruning of the taproot were evaluated for their effects on root growth and colonization. None of the treatments stimulated the early formation of new roots. However, total root length, total root colonization, and production of arbuscules and intraradical spores/vesicles were significantly higher in plantlets grown in the presence of activated charcoal (especially after 13 wk of culture). In contrast, total root colonization was significantly lower in the pruned plantlets, while total root length and arbuscule formation were not affected. None of the treatments affected activities of succinate dehydrogenase and alkaline phosphatase measured in the extraradical mycelium of the fungus. It appeared that the addition of activated charcoal to the culture medium favored root growth and mycorrhization of rubber plantlets under in vitro culture conditions, while taproot pruning did not favor these parameters.  相似文献   

10.
11.
Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal Striga seed germination, thereby diminishing their effectiveness. In order to better understand these AM-induced effects, we tested the influence of root colonization by different AM fungi on the seed-germination activity of root exudates of the Striga hermonthica nonhost plants cowpea and cotton on S. hermonthica. We also tested the effect of AM fungi on the seed-germination activity of the Striga gesnerioides host plant cowpea on S. gesnerioides. Moreover, we studied whether mycorrhization affects the transport of seed-germination activity to above-ground plant parts. Mycorrhization not only resulted in a lower seed germination of S. gesnerioides in the presence of root exudates of the S. gesnerioides host cowpea but also seed germination of S. hermonthica was also lower in the presence of root exudates of the S. hermonthica nonhosts cowpea and cotton. Downregulation of the Striga seed-germination activity occurs not only in root exudates upon root colonization by different AM fungi but also in the compounds produced by stems. The lowered seed-germination activity does not appear to depend on the presence of seed germination inhibitors in the root exudates of mycorrhizal plants. The implication for Striga control in the field is discussed.  相似文献   

12.
American chestnut (Castanea dentata [Marsh.] Borkh.) dominated the eastern forests of North America, serving as a keystone species both ecologically and economically until the introduction of the chestnut blight, Cryphonectria parasitica, functionally eradicated the species. Restoration efforts include genetic transformation utilizing genes such as oxalate oxidase to produce potentially blight-resistant chestnut trees that could be released back into the native range. However, before such a release can be undertaken, it is necessary to assess nontarget impacts. Since oxalate oxidase is meant to combat a fungal pathogen, we are particularly interested in potential impacts of this transgene on beneficial fungi. This study compares ectomycorrhizal fungal colonization on a transgenic American chestnut clone expressing enhanced blight resistance to a wild-type American chestnut, a conventionally bred American-Chinese hybrid chestnut, and other Fagaceae species. A greenhouse bioassay used soil from two field sites with different soil types and land use histories. The number of colonized root tips was counted, and fungal species were identified using morphology, restriction fragment length polymorphism (RFLP), and DNA sequencing. Results showed that total ectomycorrhizal colonization varied more by soil type than by tree species. Individual fungal species varied in their colonization rates, but there were no significant differences between colonization on transgenic and wild-type chestnuts. This study shows that the oxalate oxidase gene can increase resistance against Cryphonectria parasitica without changing the colonization rate for ectomycorrhizal species. These findings will be crucial for a potential deregulation of blight-resistant American chestnuts containing the oxalate oxidase gene.  相似文献   

13.
Polygalacturonase inhibiting protein (PGIP) is localized in plant cell walls and plays an important role both in pectic substance metabolism and in prevention of the penetration of phytopathogenic microorganisms. Apparently, PGIP is responsible for the specificity of cell--cell interactions during pollination or inoculation by fungi nonpathogenic for the particular plant. PGIPs from different plants share a basic common structure. They are rather thermostable glycoproteins enriched with leucine and contain about 20% carbohydrates; the molecular weight varies between 37-54 kD. The synthesis of PGIP is encoded by one gene, and its expression is stimulated by injury and fungal infection. The resistance of plant tissues to infection frequently correlates with PGIP expression and with inhibiting action on fungal PG. Thus, PGIP is believed to be useful for gene engineering to obtain transgenic plants resistant to fungal infection or retaining commercial value during storage.  相似文献   

14.
Little is known about direct and indirect effects of extreme weather events on arbuscular mycorrhizal fungi (AMF) under field conditions. In a field experiment, we investigated the response of mycorrhization to drought and heavy rain in grassland communities. We quantified AMF biomass in soil, mycorrhization of roots of the grass Holcus lanatus and the forb Plantago lanceolata, as well as plant performance. Plants were grown in four‐species communities with or without a legume. We hypothesised that drought increases and heavy rain decreases mycorrhization, and that higher mycorrhization will be linked to improved stress resistance and higher biomass production. Soil AMF biomass increased under both weather extremes. Heavy rain generally benefitted plants and increased arbuscules in P. lanceolata. Drought neither reduced plant performance nor root mycorrhization. Arbuscules increased in H. lanatus several weeks after drought, and in P. lanceolata several weeks after heavy rain spells. These long‐lasting effects of weather events on mycorrhization highlight the indirect influence of climate on AMF via their host plant. Legume presence increased plant community biomass, but had only minor effects on mycorrhization. Arbuscule colonisation was negatively correlated with senescence during the dry summer. Mycorrhization and biomass production in P. lanceolata were positively related. However, increased mycorrhization was related to less biomass in the grass. AMF mycelium in soil might generally increase under extreme events, root colonisation, however, is host species specific. This might amplify community shifts in grassland under climate change by further increasing stress resistance of species that already benefit from changed precipitation.  相似文献   

15.
以加工型黄瓜材料NW99为对象,利用RT-PCR技术克隆黄瓜多聚半乳糖醛酸酶抑制蛋白基因(PGIP),并分析其基因编码序列、组织表达特异性和诱导表达模式。结果表明:(1)从黄瓜中克隆到一个PGIP基因,命名为CsPGIP;CsPGIP基因全长1 026bp,读码框987bp,无内含子,编码328个氨基酸残基,具有xxLxLxxNxLt/sGxIPxxLxxLxxL结构域,属于Pgip基因家族。(2)CsPGIP基因与甜瓜PGIP基因同源性最高,与十字花科Pgip基因同源性较高。(3)CsPGIP在黄瓜各个器官都表达,但表达水平具有组织特异性,在嫩叶中表达量最高,在茎中表达量最低;该基因表达明显受到水杨酸诱导,可能在抵御外界病原菌入侵过程中起重要作用。  相似文献   

16.
Polygalacturonase-inhibiting proteins (PGIPs) selectively inhibit polygalacturonases (PGs) secreted by invading plant pathogenic fungi. PGIPs display differential inhibition towards PGs from different fungi, also towards different isoforms of PGs originating from a specific pathogen. Recently, a PGIP-encoding gene from Vitis vinifera (Vvpgip1) was isolated and characterised. PGIP purified from grapevine was shown to inhibit crude polygalacturonase extracts from Botrytis cinerea, but this inhibitory activity has not yet been linked conclusively to the activity of the Vvpgip1 gene product. Here we use a transgenic over-expression approach to show that the PGIP encoded by the Vvpgip1 gene is active against PGs of B. cinerea and that over-expression of this gene in transgenic tobacco confers a reduced susceptibility to infection by this pathogen. A calculated reduction in disease susceptibility of 47–69% was observed for a homogeneous group of transgenic lines that was statistically clearly separated from untransformed control plants following infection with Botrytis over a 15-day-period. VvPGIP1 was subsequently purified from transgenic tobacco and used to study the specific inhibition profile of individual PGs from Botrytis and Aspergillus. The heterologously expressed and purified VvPGIP1 selectively inhibited PGs from both A. niger and B.␣cinerea, including BcPG1, a PG from B. cinerea that has previously been shown to be essential for virulence and symptom development. Altogether our data confirm the antifungal nature of the VvPGIP1, and the in vitro inhibition data suggest at least in part, that the VvPGIP1 contributed to the observed reduction in disease symptoms by inhibiting the macerating action of certain Botrytis PGs in planta. The ability to correlate inhibition profiles to individual PGs provides a more comprehensive analysis of PGIPs as antifungal genes with biotechnological potential, and adds to our understanding of the importance of PGIP:PG interactions during disease and symptom development in plants.Dirk A. Joubert and Ana R. Slaughter contributed equally to this work.  相似文献   

17.
Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbiotic relationship with the beneficial mycorrhizal fungus.  相似文献   

18.
The pea (Pisum sativum L.) varieties Baroness (United Kingdome) and Baccara (France) were transformed via Agrobacterium tumefaciens-mediated gene transfer with pGPTV binary vectors containing the bar gene in combination with two different antifungal genes coding for polygalacturonase-inhibiting protein (PGIP) from raspberry (Rubus idaeus L.) driven by a double 35S promoter, or the stilbene synthase (Vst1) from grape (Vitis vinifera L.) driven by its own elicitor-inducible promoter. Transgenic lines were established and transgenes combined via conventional crossing. Resveratrol, produced by Vst1 transgenic plants, was detected using HPLC and the PGIP expression was determined in functional inhibition assays against fungal polygalacturonases. Stable inheritance of the antifungal genes in the transgenic plants was demonstrated.  相似文献   

19.
In vitro cultivation systems of arbuscular mycorrhizal fungi are useful tools to study the interaction between plants and their fungal symbiont, and also to develop new biotechnologies. Plantlets of the latex-producing species Hevea brasiliensis clone PB 260 were grown in a dense extraradical mycelium network of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 developed from a mycelium donor plant (Medicago truncatula A17). The factors indole-3-butyric acid (IBA), 2-morpholineoethanesulfonic acid monohydrate (MES) buffer, and carbon dioxide (CO2) were tested on root development and colonization by the fungus. No colonization was observed in the presence of plantlets pre-treated with IBA. The highest levels of root colonization were obtained when plantlets were mycorrhized under a high CO2 concentration (1,000 μmol?mol?1) with MES (10 mM) added to the growth medium. Widespread root colonization (with presence of arbuscules, intraradical mycelium, and spores/vesicles) was predominantly observed in newly produced roots. Therefore, it appears essential to improve root initiation and growth for improving in vitro mycorrhization of H. brasiliensis. We demonstrated the potential of the “mycelium donor plant” in vitro culture system to produce colonized H. brasiliensis plantlets before their transfer to ex vitro conditions.  相似文献   

20.
During the efficient genetic transformation of plants with the gene of interest, some selectable marker genes are also used in order to identify the transgenic plant cells or tissues. Usually, antibiotic- or herbicide-selective agents and their corresponding resistance genes are used to introduce economically valuable genes into crop plants. From the biosafety authority and consumer viewpoints, the presence of selectable marker genes in released transgenic crops may be transferred to weeds or pathogenic microorganisms in the gastrointestinal tract or soil, making them resistant to treatment with herbicides or antibiotics, respectively. Sexual crossing also raises the problem of transgene expression because redundancy of transgenes in the genome may trigger homology-dependent gene silencing. The future potential of transgenic technologies for crop improvement depends greatly on our abilities to engineer stable expression of multiple transgenic traits in a predictable fashion and to prevent the transfer of undesirable transgenic material to non-transgenic crops and related species. Therefore, it is now essential to develop an efficient marker-free transgenic system. These considerations underline the development of various approaches designed to facilitate timely elimination of transgenes when their function is no longer needed. Due to the limiting number of available selectable marker genes, in future the stacking of transgenes will be increasingly desirable. The production of marker-free transgenic plants is now a critical requisite for their commercial deployment and also for engineering multiple and complex trait. Here we describe the current technologies to eliminate the selectable marker genes (SMG) in order to develop marker-free transgenic plants and also discuss the regulation and biosafety concern of genetically modified (GM) crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号