首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Liver microsomes from pregnant rabbits converted prostaglandins F2 alpha, E1, and E2 to their 20-hydroxy metabolites along with smaller amounts of the corresponding 19-hydroxy compounds. Prostaglandins E1 and E2 were also reduced to prostaglandins F1 alpha and F2 alpha, respectively, and prostaglandin E1 was isomerized to 8-isoprostaglandin E1. The above products were also identified after incubation of prostaglandins with liver microsomes from non-pregnant rabbits. In this case, the yield of 20-hydroxy metabolites was much lower. Thromboxane B2 and a number of prostaglandin F2 alpha analogs were also hydroxylated by lung and liver microsomes from pregnant rabbits. The relative rates of hydroxylation by lung microsomes were: prostaglandin E2 approximately prostaglandin F2 alpha approximately 16,16-dimethylprostaglandin F2 alpha approximately 13,14-didehydroprostaglandin F2 alpha greater than thromboxane B2 greater than 15-methylprostaglandin F2 alpha approximately 17-phenyl-18,19,-20-trinorprostaglandin F2 alpha approximately ent-13,14-didehydro-15-epiprostaglandin F2 alpha. Similar results were obtained with liver microsomes except that thromboxane B2 was a relatively poorer substrate for hydroxylation.  相似文献   

2.
The release of prostaglandin E2 and F, thromboxane B2 and 6-keto-prostaglandin F was measured in isolated human placental cotyledons perfused under high- and low-oxygen conditions. Also the effect of reoxygenation on prostaglandin production was studied. During the high-oxygen period, prostaglandin E2 accounted for 44 % and 6-keto-prostaglandin F for 28 % of all prostaglandin release, and the rank order of prostaglandin release was E2 > 6-keto-prostaglandin F > thromboxane B2 > prostaglandin F. Hypoxia had no significant effect on quantitative prostaglandin release, but the ration of prostaglandin E2 to prostaglandin F was significantly increased. After the hypoxic period during reoxygenation the release of 6-keto-prostaglandin F was significantly decreased, as was the ratio of 6-keto-prostaglandin F to thromboxane B2. Also the ratio of the vasodilating prostaglandins (E2, 6-keto-prostaglandin F) to the vasocontricting prostaglandins (thromboxane B2, prostaglandin F) was decreased during reoxygenation period. With the constant flow rate, the perfusion pressure increased during hypoxia in six and was unchanged in three preparation. The results indicate that changes in the tissue oxygenation in the placenta affect prostaglandin release in the fetal placental circulation. This may also have circulatory consequences.  相似文献   

3.
We studied the uterine venous plasma concentrations of prostaglandins E2, F, 15 keto 13,14 dihydro E2 and 15 keto 13,14 dihydro F in late pregnant dogs in order to evaluate the rates of production and metabolism of prostaglandin E2 and F in pregnancy in vivo. We used a very specific and sensitive gas chromatography-mass spectrometry assay to measure these prostaglandins. The uterine venous concentrations of prostaglandin E2 and 15 keto 13,14 dihydro E2 were 1.35±.27 ng/ml and 1.89±.37 ng/ml, respectively; however, we could not find any prostaglandin F and very little of its plasma metabolite in uterine venous plasma. Since uterine microsomes can generate prostaglandin F and E2 from endoperoxides, prostaglandin F production in vivo must be regulated through an enzymatic step after endoperoxide formation. Prostaglandin E2 is produced by pregnant canine uterus in quantities high enough to have a biological effect in late pregnancy; however, prostaglandin F does not appear to play a role at this stage of pregnancy.  相似文献   

4.
The rates of metabolic degradation and the patterns of metabolite formation of tritium-labeled prostaglandins E2 and F were assessed in vitro in tissues obtained from normal rabbits and from rabbits subjected to hemorrhagic or endotoxic shock. Normal rabbit tissues metabolized prostaglandin E2 at the following rates: renal cortex 479 ± 34, liver 389 ± 95, and lung 881 ± 93 pmol of PGE2 metabolized/mg soluble protein per min at 37°C (mean ± S.E.). Prostaglandin F metabolism proceeded in normal animal tissues at rates of 477 ± 39, 324 ± 95, and 633 ± 69 pmol of PGF metabolized/mg soluble protein per min for renal cortex, liver and lung, respectively. There were no significant differences between these rates of PGE2 and PGF metabolism when compared to rates in tissues obtained from animals subjected to either hemorrhagic or endotoxic shock. In addition, no significant differences were observed between the rate of PGE2 metabolism and that of PGF metabolism for any tissue. However, the lung was able to metabolize PGE2 and PGF significantly more rapidly than the liver, and to degrade PGE2 at a significantly greater rate than the renal cortex. Although slightly different patterns of metabolite production were observed between lung and kidney homogenates, only the liver metabolized prostaglandins almost exclusively to more polar metabolites. While hemorrhagic or endotoxic shock induced slight changes in the patterns of PGE2 metabolite formation in all three tissues studied, PGF metabolite formation patterns were not significantly altered by circulatory shock. Thus, prostaglandin metabolism is not significantly impaired during the first 2 h of hemorrhagic or endotoxic shock in rabbit tissues. Therefore, impairment of prostaglandin metabolism is not the major factor responsible for the early increase in circulating prostaglandin concentrations in these forms of shock.  相似文献   

5.
The conversion of exogenous arachidonic acid into prostaglandins was studied in human placenta and fetal membrane microsomes. Only one prostaglandin was formed, prostaglandin E2 (PGE2), in fetal membrane microsomes. In placental microsomes PGE2 was further transformed into 15 keto-PGE2. Cofactor requirements and some characteristics of the system were studied. 1 to 3% conversion of arachidonic acid into prostaglandins was observed in placental microsomes and 5 to 8% conversion in fetal membrane microsomes.  相似文献   

6.
Prostaglandin E2 and F were measured in ejaculates from 10 fertile and 55 infertile men. Prostaglandin F was negatively correlated with motility (r=0.77; p<0.01) in normal men. In patients with disturbed fertility, prostaglandin F was always higher than in the controls, while prostaglandin E2 was elevated only in patients with persisting varicocele and in those with very low sperm counts and severely impaired motility. There was neither synthesis of prostaglandins in spermatozoa nor were binding sites for prostaglandin E2 and F detectable. Inactivation of seminal prostaglandins by incubation with prostaglandin 15-hydroxydehydrogenase resulted in a dramatic fall in motility. The results suggest that prostaglandin F act on motility, but the action is not mediated by receptors.  相似文献   

7.
Experiments in vitro demonstrate, that there are different patterns of PG-biosynthesis in the corpus luteum and in the follicles containing cortical substance of the human ovary. In the follicles 6-keto-F1α. the transformation product of prostacyclin, is the main fraction; prostaglandins F2α and E 2 being of inferior importance with regard to their amounts. The formation of the corpus luteum is in close correlation with a strongly increased prostaglandin E2 and a diminished prostacyclin biosynthesis; prostaglandin F2α hardly seems to be involved in this process.By means of indomethacin the formation of all three examined prostaglandins can be prevented almost completely, in the cortical substance as well as in the corpus luteum. LH (or HCG) at concentrations ranging from 2 ng to 20 μg per ml homogenate produce no stimulating effect of statistical significance on the rate of biosynthesis in both tissues.  相似文献   

8.
The rise in arterial blood pressure in response to angiotensin II was studied in the last third of pregnancy in rabbits. The response was compared with that of pregnant rabbits during infusion of prostaglandin E2 and F. Prostaglandin E2 significantly diminished the rise in diastolic pressure in response to angiotensin II. Prostaglandin F did not alter the response. Intravenous indomethacin elevated the blood pressure and caused an absolute increase in the pressor response. It did not mediate a change in the percentage rise in blood pressure in response to angiotensin II.  相似文献   

9.
In view of the recent finding that prostaglandin D2 is stereospecifically converted to 9α,11β-prostaglandin F2, an isomer of prostaglandin F2α, a highly specific and sensitive radioimmunoassay for 9α,11β-prostaglandin F2 was developed and applied to determine the content of this prostaglandin in various rat tissues. Antisera against 9α-11β-prostaglandin F2 were raised in rabbits immunized with the bovine serum albumin conjugate, and [3H]9α,11β-prostaglandin F2 was enzymatically prepared from [3H]prostaglandin D2. The assay detected 9α,11β-prostaglandin F2 over the range of 20 pg to 1 ng, and the antiserum showed less than 0.04% cross-section with prostaglandin F2α, prostaglandin F2β and 9β,11β-prostaglandin F2. To avoid postmortem changes, tissues were frozen in liquid nitrogen immediately after removal. The basal level of 9α,11β-prostaglandin F2 was hardly detectable in various tissues of the rat examined, including spleen, lung, liver and brain; although it was found to be 0.31 ± 0.06 ng/g wet weight in the small intestine. During convulsion induced by pentylenetetrazole, enormous amounts of prostaglandin D2 (ca. 180 ng/g wet weight) and prostaglandin F2α (ca. 70 ng/g) were produced in the brain; however, 9α,11β-prostaglandin F2 was detected neither there nor in the blood. This result demonstrates that the conversion to 9α,11β-prostaglandin F2 is a minor pathway, if one at all, of prostaglandin D2 metabolism in the rat brain.  相似文献   

10.
The results reported here show some characteristics of adenylate cyclase (EC 4.6.1.1) derived from homogenates of rat spleen, and describe the in vitro stimulation of this enzyme by prostaglandins, nucleotides, and F under conditions where cyclic nucleotide degradative pathways are effectively inhibited.Particulate fractions from rat spleen homogenates contain high adenylate cyclase activities, and the highest specific activity is recovered in a particulate fraction prepared by low speed (1200 × g) centrifugation. Activity found in all particulate fractions is stimulated by fluoride, prostaglandins E1 and E2, catecholamines, and purine nucleotides. No stimulation is caused by prostaglandins F and F. Stimulation by prostaglandin E1 or E2 is augmented by GTP and other purine nucleotides, and stimulation by the combination of GTP and prostaglandin E1 is equal to that caused by optimal fluoride concentrations. Stimulation c caused by L-isoproterenol is additive to that caused by GTP but is not increased by GTP.  相似文献   

11.
A series of straight phase gel chromatography systems have been developed for the separation of prostaglandin methyl esters. Using the methyl esters of prostaglandins B2, E2, F2α and F2β, the basic relationships between elution volume and the polarities of the gel, the solvent system (heptane-chloroform mixtures), and the prostaglandin have been determined. The separation of prostaglandin methyl esters with slight differences in structure has been demonstrated. Examples include oxo and hydroxy prostaglandins, hydroxy epimers, double bond isomers, prostaglandins of varying α- and ω-chain length, and 1- and 2- (5,6 cis double bond) series prostaglandins. In view of the general advantages of liquid-gel chromatography, it is suggested that these systems may be useful for isolation and purification in a number of areas in the prostaglandin field.  相似文献   

12.
The synthesis of prostacyclin and prostaglandins was examined in isolated blood-free brain capillaries of guinea-pigs and rats using 1-14C-arachidonic acid as a precursor. The main prostaglandins synthesized by guinea-pig microvessels were prostaglandin D2 and prostaglandin E2. Substantially less prostaglandin F2α or the prostacyclin stable metabolite, 6-oxo-prostaglandin F1α was synthesized. Rat capillary prostaglandin distribution differed substantially from that of the guinea-pigs although the principle prostaglandin was also PGD2. Total prostaglandin conversion was greater in guinea-pig capillaries than in the rat.Norepinephrine stimulated the prostaglandin forming capacity of blood free cerebral microvasculature of guinea-pigs. Prostacyclin and prostaglandins could be involved in the activity dependent regulation of regional cerebral blood flow and permeability.  相似文献   

13.
Methodology for measurement and characterization of prostaglandin binding to membranes has been developed. The binding assay was used to study the presence of prostaglandin receptors in high purified cell fractions derived from rat liver. High affinity binding receptors which have a saturation value of 1.0 pmole/mg protein and a dissociation constant of 1.2 nM were found exclusively in the plasma membrane. High affinity receptors were not found in cell fractions containing nuclei, rough microsomes. Golgi complex or mitochondria. The binding by other prostaglandins was competitive with prostaglandin E1. Competitive binding studies were used to obtain dissociation constants for prostaglandins F1α, F2α, B1, B2, A1, A2, and 15-keto prostaglandin E2 which were 1100, 100, 300, 180, 16. 16 and 700 nM, respectively. Eicosa-5.8.11.19-tetraynoic acid, an inhibitor of prostaglandin synthesis did not bind appreciably to the prostaglandin E receptor, whereas two prostaglandin analogues, which have high physiological activity compete effectively with prostaglandin E1 for the receptor. Thus, the binding receptor for the E-type prostaglandins is highly specific both with respect to cell localization as well as the type of substrate. Numerical routines for the fitting of the data and a procedure for the determination of the specific activity of the labelled prostaglandin are provided.  相似文献   

14.
We have recently shown that mitochondrial and plasma-membrane fractions from kidney medulla possess Ca2+-stimulated acylhydrolase and prostaglandin synthase activities. The nature of the enzymic coupling between the Ca2+-stimulated arachidonic acid release and its subsequent conversion into prostaglandins was investigated in subcellular fractions from rabbit kidney medulla. Plasma-membrane, mitochondrial and microsomal fractions were found to have similar apparent Km values for conversion of added exogenous arachidonate into prostaglandins. The rate of prostaglandin biosynthesis (Vmax.) from added arachidonic acid in the microsomal fraction was approx. 2-fold higher than in the other subcellular fractions. In contrast, prostaglandin E2 synthesis from endogenous arachidonate in plasma-membrane and mitochondrial fractions was 3–4-fold higher than in microsomes. Furthermore, Ca2+ stimulated endogenous arachidonate deacylation and prostaglandin E2 generation in the former two fractions but not in microsomes. In mitochondrial or crude plasma-membrane fractions, in which prostaglandin biosynthesis was inhibited with aspirin, arachidonate released from these fractions was converted into prostaglandins by the microsomal prostaglandin synthase. Thus an intracellular prostaglandin generation process that involves inter-fraction transfer of arachidonic acid can operate. Prostaglandin generation by such an inter-fraction process is, however, less efficient than by an intra-fraction process, where arachidonic acid released by mitochondria or crude plasma membranes is converted into prostaglandins by prostaglandin synthase present in the same fraction. This demonstrates the presence of a tight intra-fraction enzymic coupling between Ca2+-stimulated acylhydrolase and prostaglandin synthase enzyme systems in both mitochondrial and plasma-membrane fractions.  相似文献   

15.
Radioimmunoassays of platelet prostaglandins E1 and F in platelet rich plasma or platelet suspension, demonstrate that both PGE1 and PGF are present at higher concentrations than prostaglandins E2 and F. Gas chromatography — mass spectrometry determinations of prostaglandins E1 and E2 in resting washed platelets confirm this difference. Lastly, there is a greater incorporation of [1-14C] acetate into prostaglandins E1 and F compared to that into prostaglandins E2 and F.  相似文献   

16.
The effects of prostaglandins A2, A1, F, E2, E1, F and an analog of PGH2 upon calcium release from mitochondria isolated from bovine intrapulmonary vein and contraction of helical strips of the same tissue were determined. The order of activity of the prostaglandins for calcium release was similar to that for contraction with the exception of the PGH2 analog. It is suggested that prostaglandin A2, F, E2 and A1 induced release of mitochondrial calcium may influence the contractile state of bovine intrapulmonary vein. However, the PGH2 analog has a subcellular mechanism other than or in addition to mitochondrial calcium release and is different from the other prostaglandins.  相似文献   

17.
Experiments were performed to determine if prostaglandins were able to reduce cervical tone in the rat. Cervical tone was assessed indirectly by measuring uterine luminal fluid accumulation in ovariectomized rats implanted subcutaneously with Silastic capsules containing crystalline estradiol-17β. When given subcutaneously in separate experiments, 16,16-dimethyl-prostaglandin E2, methyl ester, and 15(S)-15-methyl-prostaglandin F, analogous of prostaglandins E2 and F, respectively, caused the loss of uterine luminal fluid. Fluid accumulation in uterine horns ligated at the cervical end did not differ in control and treated rats, whereas in non-ligated horns the prostaglandin analogues reduced fluid accumulation, suggesting the cervix as their site of action. For both prostaglandin analogues, the effects on uterine luminal fluid accumulation were seen within 45 min of administration and were related to the dose administered. The effects of submaximal doses of the analogues were additive. These results suggest that prostaglandins are able to reduce cervical tone in the estrogen-treated rat.  相似文献   

18.
Labour was induced successfully at or near term in 34 out of 35 cases by combined amniotomy and intravenous infusion of either prostaglandins F2α, E2, or E1. Of particular importance is the finding of hypertonus in 4 of the 18 cases induced with prostaglandin E2.  相似文献   

19.
A model is proposed for the regulation of the placental blood flows to the near-term pregnancy. The model has three features. 1) The maternal uterine and fetal placental tissues can synthesize constrictor and dilator prostaglandins. 2) Prostaglandins can cross the placenta. 3) There must exist a prostaglandin which has a vasodilating action in one of the placental circulations and a vasoconstricting action in the other circulation.Evidence is provided to indicate that in the sheep, prostaglandin E2 (PGE2) can cross the placenta and has a vasodilating action in the uterine placental circulation and a vasoconstricting action in the umbilical placental circulation.The placenta and the lung are compared and PGE2 is shown to have similar actions in each of these organs.  相似文献   

20.
The effects of prostaglandins E2 and F on the electrofusion of pea (Pisum sativum cv Ran 1) mesophyll protoplasts were examined. Prostaglandins E2 and F influenced electrofusion by lowering the threshold voltage necessary for fusion of dielectrophoretically arranged pairs of protoplasts. The direct current voltage threshold decreased with increasing Ca2+ concentration up to 0.1 millimolar CaCl2 and the effects of prostaglandins E2 and F were more pronounced when CaCl2 was present in the medium. Treatment with calcium channel blocker methoxy verapamil did not change the prostaglandin effects, while the addition of ethyleneglycol-bis (β-aminoethyl either)-N,N,N′,N′-tetraacetic acid, which binds free Ca2+, increased the threshold voltage. Influence of prostaglandins E2 and F and Ca2+ on the membrane fluidity was investigated by analysis of pyrene fluorescence spectra. The values of the ratio between the maximum fluorescence emission intensities of the excimer and the monomer forms (Iex/Imon) indicated that prostaglandins and Ca2+ decrease the membrane fluidity. It is proposed that electrically evoked displacement of plasmalemma components takes part in the fusion process (U Zimmermann 1982 Biochim Biophys Acta 694: 227-277). We suggest that prostaglandins E2 and F facilitate the electrofusion of pea mesophyll protoplasts by changing the fluidity of plasmalemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号