首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a consequence of their mobilisation to support compensatory root growth. A preliminary model linking the effects of these root herbivores to the physiological processes of C. maculosa is presented.  相似文献   

2.
The competitive interactions between woody seedlings and herbaceous vegetation have received increasing interest in recent years. However, little is known about the relative contributions and underlying mechanisms of above- and below-ground competition between species. We used a novel experimental approach to assess the responses of Fraxinus excelsior seedlings to different combinations of root and shoot competition imposed by the grass Dactylis glomerata under greenhouse conditions. Seedling growth was significantly reduced by competition for soil resources, but neither biomass nor height were significantly affected by shoot competition for light. Competitive response indices based on biomass confirmed that below-ground competition was more important than above-ground competition, and indicated that root and shoot competition did not interact to influence plant growth. Fraxinus biomass allocation and seedling traits were almost all significantly affected by root competition; these responses varied depending on the trait examined. In contrast, morphological responses to shoot competition were limited. In the absence of root competition, seedlings showed a significant increase in the biomass allocated to leaves and a greater leaf area ratio in response to shoot competition. Our findings suggest that morphological modifications help to mitigate the negative effects of competition, but the expression of plasticity may be suboptimal due to resource constraints. The present study also highlights the importance of appropriate experimental controls and analysis to avoid confounding effects of experimental design and ontogeny on the interpretation of competitive responses.  相似文献   

3.
Brazilian peppertree (Schinus terebinthifolius Raddi), native to South America, is invading many ecosystems in south and central Florida. The defoliating tortricid moth Episimus unguiculus Clarke was selected as a potential biocontrol agent of Brazilian peppertree in Florida. The objective of this study was to examine the effect of different levels of herbivore damage on growth and biomass allocation of Brazilian peppertree seedlings in the laboratory. Three treatments were established: (1) no herbivory (control), (2) low herbivory (~4 larvae/plant), and (3) high herbivory (~12 larvae/plant). High levels of herbivory significantly reduced the number of leaflets, plant height, foliar biomass, foliar relative growth rate (RGR) and shoot: root ratio of Brazilian peppertree seedlings. Moreover, plants were not able to recover from herbivory after 2 months. The performance of Brazilian peppertree subjected to low herbivory levels did not differ from the control plants (no herbivory). The potential effectiveness of the biocontrol agent E. unguiculus to suppress this noxious weed is examined.  相似文献   

4.
Separate and combined effects of root and leaf herbivores on plant growth, flower visitation and seed set were tested in a factorial experiment using potted mustard, Sinapis arvensis, at an old fallow field. A 50% leaf removal by cabbageworms (Pieris rapae) when the seedlings had their first four leaves reduced plant height and shoot mass, and delayed the onset of flowering. Root herbivory by two wireworms (Agriotes sp.) over the whole experiment changed flower visitation; the number of flower visitors per plant was higher in plants with root herbivores than in plants without root herbivores. Combined leaf and root herbivory affected flowering period, number of fruits per plant and number of seeds per fruit. Plants attacked by leaf and root herbivores had a shorter flowering period and produced fewer fruits per plant than plants with root herbivores only. Although the experimental plants faced major herbivore-induced growth changes, plant reproduction (seed set and weight per plant) was similar in all treatments, documenting their ability to effectively compensate for leaf and root herbivory.  相似文献   

5.
Schippers  Peter  Olff  Han 《Plant Ecology》2000,149(2):219-231
Three grasses (Holcus lanatus, Anthoxanthum odoratum and Festuca ovina) and three herbs (Rumex obtusifolius, Plantago lanceolata and Hieracium pilosella) were grown in a greenhouse at 3 nutrient levels in order to evaluate plant allocation, architecture and biomass turnover in relation to fertility level of their habitats.Four harvests were done at intervals of 4 weeks. Various plant traits related to biomass partitioning, plant architecture, biomass turnover and performance were determined. Differences in nutrient supply induced a strong functional response in the species shoot:root allocation, but architecture and turnover showed little or no response. Architectural parameters like specific leaf area and specific root length, however, in general decreased during plant development.Species from more nutrient-rich successional stages were characterized by a larger specific leaf area and longer specific shoot height (height/shoot biomass), resulting in a higher RGR and total biomass in all nutrient conditions. There was no evidence that species from nutrient-poor environments had a longer specific root length or any other superior growth characteristic. The only advantage displayed by these species was a lower leaf turnover when expressed as the fraction of dead leaves and a shorter specific shoot height (SSH) which might prevent herbivory and mowing losses.The dead leaf fraction, which is a good indicator for biomass and nutrient loss, appeared to be not only determined by the leaf longevity, but was also found to be directly related to the RGR of the species. This new fact might explain the slow relative growth rates in species from a nutrient-poor habitat and should be considered in future discussions about turnover.  相似文献   

6.
Summary The effect of full sunlight, 60%, or 90% attenuated light on photosynthetic rate, growth, leaf morphology, dry weight allocation patterns, phenology, and tolerance to clipping was examined in the glasshouse for steppe populations of the introduced grass, Bromus tectorum. The net photosynthetic response to light for plants grown in shade was comparable to responses for plants grown in full sunlight. Plants grown in full sunlight produced more biomass, tillers and leaves, and allocated a larger proportion of their total production to roots than plants grown in shade. The accumulation of root and shoot biomass over the first two months of seedling growth was primarily responsible for the larger size at harvest of plants grown in full sunlight. Plants grown under 60% and 90% shade flowered an average of 2 and 6 weeks later, respectively, than plants grown in full sunlight. Regrowth after clipping was greater for plants grown in full sunlight compared to those grown in shade. Even a one-time clipping delayed flowering and seed maturation; the older the individual when leaf area was removed, the greater the delay in its phenology. Repeated removal of leaf area was more frequently fatal for plants in shade than in full sunlight. For plants originally grown in full sunlight, regrowth in the dark was greater than for shaded plants and was more closely correlated to non-flowering tiller number than to plant size. This correlation suggests that etiolated regrowth is more likely regulated by the number of functional meristems than by differences in the size of carbohydrate pools. Thus, shading reduces the rate of growth, number of tillers, and ability to replace leaf area lost to herbivory for B. tectorum. These responses, in turn, intensify the effect of competition and defoliation for this grass in forests. B. tectorum is largely restricted to forest gaps at least in part because of its inability to acclimate photosynthetically, the influence of shade on resource allocation, and the role of herbivory in exacerbating these effects.  相似文献   

7.
Thus far not many studies focussed on how herbivory in one plant part affects plant defence in the other. The effects of root damage and a leaf-feeding herbivore (Mamestra brassicae) on pyrrolizidine alkaloid (PA) levels of Senecio jacobaea were investigated in a controlled environment. Three cloned S. jacobaea genotypes, which differed in PA concentrations, received four treatments: (1) no damage, (2) root damage (removing half of the root system), (3) shoot herbivory by M. brassicae larvae, (4) root damage and shoot herbivory.Shoot herbivory did not significantly affect shoot biomass, while root damage decreased both root and shoot biomass. Shoot herbivory decreased PA concentrations in the roots. Conversely, root damage increased PA concentrations in the roots. Alkaloid concentrations in the shoot showed a weak response to root damage, shoot herbivory had no effect on PA levels in the shoot. The effect of damage on the allocation of PAs to shoot and roots depended on genotype. One genotype allocated more PAs to the damaged site, another genotype did not change allocation and the third genotype allocated more PAs to the shoot if the roots were damaged. Changes in PA composition were observed in one genotype. Shoot herbivory increased erucifoline concentrations in the shoot and decreased concentrations of senecionine in the roots. In conclusion, we have shown that even in an alleged constitutively defended plant, damage of one compartment affects secondary metabolite level in the other.  相似文献   

8.
Herbivory and water shortage are key ecological factors affecting plant performance. While plant compensatory responses to herbivory include reallocation of biomass from below‐ground to above‐ground structures, plant responses to reduced soil moisture involve increased biomass allocation to roots and a reduction in the number and size of leaves. In a greenhouse study we evaluated the effects of experimental drought and leaf damage on biomass allocation in Convolvulus demissus (Convolvulaceae), a perennial herb distributed in central Chile, where it experiences summer drought typical of Mediterranean ecosystems and defoliation by leaf beetles and livestock. The number of leaves and internode length were unaffected by the experimental treatments. The rest of plant traits showed interaction of effects. We detected that drought counteracted some plant responses to damage. Thus, only in the control watering environment was it observed that damaged plants produced more stems, even after correcting for main stem length (index of architecture). In the cases of shoot : root ratio, relative shoot biomass and relative root biomass we found that the damage treatment counteracted plant responses to drought. Thus, while undamaged plants under water shortage showed a significant increase in root relative biomass and a significant reduction in both shoot : root ratio and relative shoot biomass, none of these responses to drought was observed in damaged plants. Total plant biomass increased in response to simulated herbivory, apparently due to greater shoot size, and in response to drought, presumably due to greater root size. However, damaged plants under experimental drought had the same total biomass as control plants. Overall, our results showed counteractive biomass allocation responses to drought and damage in C. demissus. Further research must address the fitness consequences under field conditions of the patterns found. This would be of particular importance because both current and expected climatic trends for central Chile indicate increased aridity.  相似文献   

9.
The European leaf-feeding moth Abrostola asclepiadis and root-feeding beetle Eumolpus asclepiadeus are promising biological control agents for two European swallow-worts (Vincetoxicum rossicum and Vincetoxicum nigrum) in North America, however, their impact on plant performance is uncertain. Densities of each herbivore were manipulated in a common garden to determine whether leaf and root herbivory affect the performance of these plants. During the second year of the experiment, V. rossicum and V. nigrum unexpectedly became infected with the fungal pathogens Ascochyta sp. and Cercospora sp. (Ascomycota), respectively. Although pathogen infection mainly reduced shoot height and delayed reproduction, herbivore effects on plant growth were still evident. Leaf herbivory by A. asclepiadis had no effect on plant growth 1 year after defoliation. Root herbivory by E. asclepiadeus reduced shoot height and plant biomass and decreased the ability of plants to compensate for pathogen attack. Pathogen infection prevented detection of herbivore effect on reproduction. Due to its substantial impact on plant biomass, E. asclepiadeus should be further evaluated as a biological control agent against Vincetoxicum spp. populations invading open habitats in North America. Further research is needed to evaluate the impact of A. asclepiadis in combination with E. asclepiadeus and plant competition under high and low light conditions.  相似文献   

10.
Abstract. Resprouting from underground structures is one of the main regeneration strategies of Mediterranean shrubs after aerial biomass disturbance such as fire or clear-cutting to reduce fire risk. In order to study the effect of root competition and shading (simulated shoot competition) on Erica multiflora, growth, morphology, flowering performance and sprout size variability during resprouting, a factorial field experiment was conducted in which neighbours around target plants were eliminated and plants were shaded with mesh for two years. Root competition reduced sprout recruitment and sprout density (number of sprouts per unit stump area) more strongly than did shading. The negative effect of root competition on sprout biomass was constant with time, while the reduction due to shading increased with time. There was an interaction between root competition and shading on the biomass of sprouts 22 months after treatment: genets without root competition and shading were four times larger than in any other treatment. Both shading and root competition also decreased percentage branching but did not modify maximum sprout height. Only shading decreased the leaf/shoot biomass ratio and the percentage of flowering genets. One year after resprouting, root competition counteracted the effect of shading on inducing sprout biomass variability within the genet because it decreased sprout density. 22 months after treatment, sprout biomass variability was not affected by any main effect. The results suggest that competition among sprouts within the genet is asymmetric. However, shading by genet neighbours may not always increase sprout biomass variability if root competition is also severe.  相似文献   

11.
Centaurea maculosa, an invasive North American plant species, shows a high degree of tolerance to the root-boring biocontrol herbivore, Agapeta zoegana. For example, infested individuals of C. maculosa often exhibit more rigorous growth and reproduction compared with their non-infested counterparts. Compensatory responses to aboveground herbivores often involve increases in leaf area and/or photosynthetic capacity, but considerably less is known about root system compensatory responses to belowground herbivory. We used a 15N labeling approach to evaluate whether compensatory adjustments in N acquisition via changes in root morphology and/or physiological uptake capacity could explain the ability of C. maculosa to tolerate root herbivory. Root herbivory reduced whole plant N uptake by more than 30% and root uptake capacity by about 50%. Despite a marked reduction in N procurement, herbivory did not affect total biomass or shoot N status. Infested plants maintained shoot N status by shifting more of the acquired N from the root to the shoot. To our knowledge, shifting N allocation away from a root herbivore has not been reported and provides a plausible mechanism for the host plant to overcome an otherwise devastating effect of a root herbivore-induced N deficit.  相似文献   

12.
Combining specialist herbivory with interspecific plant competition can be an effective means of controlling pasture weeds. Cirsium arvense (Canada thistle, Californian thistle, creeping thistle) is one of the worst weeds of pastoral production systems in New Zealand (NZ). The oligophagous leaf-feeding beetle, Cassida rubiginosa, was recently released in NZ for control of C. arvense. To assess the impact of this biocontrol agent we conducted an outdoor potted-plant experiment with low and high densities of Cassida larvae combined with different levels of interspecific competition from typical NZ pasture species. Secondly, we carried out a field-release experiment to quantify the impact of high densities of Cassida under more natural conditions. Interspecific competition reduced all measured plant parameters of C. arvense except mean shoot height and base diameter. Herbivory by Cassida only reduced root biomass, and showed a weak additive response when combined with competition. All other measured parameters of C. arvense showed a substitutive response, with competition being the only factor having a significant impact on the weed. There were no significant synergistic interactions with competition and herbivory on C. arvense. Interestingly, the number of root buds per plant was significantly greater in the presence of herbivory by Cassida, suggesting that C. arvense may compensate for defoliation. Similar to the potted-plant experiment, Cassida had no significant effect on shoot growth and development in the field-release experiment. The results of this study indicate that competition from typical NZ pasture species is a more important factor than herbivory by Cassida, and unless Cassida reaches outbreak densities, it will likely have an insignificant impact on this weed.  相似文献   

13.
Abstract. 1. Euedaphic collembola alter their soil distribution in response to above‐ground aphid herbivory of Poa annua L. Graminae, a host grass. 2. Two mechanisms potentially underpin this effect. Carbon‐rich aphid honeydew falling onto the soil surface may affect mycophagous collembola; alternatively aphid‐induced changes in root biomass may be necessary to produce changes in collembola abundance. 3. When compared to a plant‐only control, aphid herbivory increased the number of collembola in the top 5 cm of soil, reduced both foliar and root biomass, and increased shoot/root ratio. Honeydew addition had no effect on collembola numbers or any recorded host‐plant parameter. 4. Honeydew deposition is not responsible for the increased numbers of collembola found in the upper soil after aphid herbivory; aphid‐induced reductions in root biomass may be the most important factor explaining knock‐on effects of aphid herbivory on soil fauna.  相似文献   

14.
The effects of different intensities of cattle grazing on theaboveground growth, reproduction, and abundances of three palatable forbs werestudied in native tallgrass prairie. Populations of Asterericoides, Ruellia humilis, andAmorpha canescens were sampled at peak flowering duringthe1993–1995 growing seasons in four annually-burned sites varying incattle stocking density [ungrazed, low, moderate, high]. The threeforbs exhibited reduced shoot growth and/or reproduction under moderate toheavy grazing, and in no case did grazing increase any measure of plantperformance. Ruellia showed reduced shoot height andbiomass, percentage of stems flowering, and reproductive biomass in response tograzing. Aster showed decreases in shoot biomass andheightwith grazing. Amorpha showed no change in shoot orreproductive biomass, but a decrease in percent of flowering stems and inreproductive allocation with grazing. Patterns in the percentage of stemsgrazedindicated generally high but variable palatability among these species. Bycontrast, the three species showed inconsistent population response to grazing.Abundance (frequency) of all three species indicated no short-term changebetween years in response to grazing intensity. Responses of these speciesdiffer considerably from those of most other perennial tallgrass prairie forbsthat are unpalatable, unconsumed, and increase in performance (e.g. size,abundance) due to release from competition from the dominant grasses underungulate grazing. The results demonstrate that immediate aboveground growth andreproductive responses of established adults to grazing are not good predictorsof grazer effects on population abundances in tallgrass prairie.  相似文献   

15.
Kuijper DP  Nijhoff DJ  Bakker JP 《Oecologia》2004,141(3):452-459
Competition models including competition for light predict that small plant species preferred by herbivores will be outshaded by taller unpreferred plant species with increasing productivity. When the tall plant species is little grazed by the herbivores, it can easily invade and dominate short vegetation. The tall-growing grass Elymus athericus dominates the highly productive stages of a salt-marsh succession in Schiermonnikoog and is not preferred by the herbivores which occur there, hares and geese. We studied how interspecific competition and herbivory affected performance during early establishment of this species with increasing productivity. Seedlings were planted in the field in a full factorial design, manipulating both interspecific competition and herbivory. The experiment was replicated along a natural productivity gradient. Competition reduced aboveground biomass production and decreased the number of ramets that were produced but did not affect survival of seedlings. The negative effects of competition on seedling performance increased with increasing productivity. In contrast to our expectations, herbivory strongly reduced seedling survival, especially at the unproductive sites and had only small effects on seedling growth. The present study shows that unpreferred tall-growing species cannot easily invade vegetation composed of short preferred species. Grazing by (intermediate-sized) herbivores can prevent establishment at unproductive sites, and increased competition can prevent a rapid invasion of highly productive sites. Herbivores can have a long-lasting impact on vegetation succession by preventing the establishment of tall-growing species, such as E. athericus, in a window of opportunity at young unproductive successional stages.Plant nomenclature follows Van der Meijden et al. (1990)  相似文献   

16.
Competition, herbivory and their interaction play a significant role in determining the competitive ability and survival of individual plant species. Understanding these processes and interactions can improve the efficacy of biocontrol programs against invasive weeds. Senecio madagascariensis (fireweed) is an invasive weed of South African origin that reduces pastoral productivity and poisons livestock in several countries, notably Australia. Although competitive pastures can suppress the weed’s growth in Australia, its competitive nature is poorly understood in relation to its invasion success. This greenhouse study assessed the growth and reproductive yield of fireweed growing in competition with six native and introduced grasses present in both South Africa and Australia. Since fireweed is a target for biocontrol in Australia, we examined whether its response to grass competition changed with herbivory (simulated by 40% leaf removal). The effect of grass competition and herbivory on the weed’s biomass and floral productivity was examined during a 12‐week pot trial in South Africa. Floral numbers were unaffected by both grass competition and herbivory. Biomass was used to calculate Relative Interaction Indices (RII) to quantify the weed’s competitive or facilitative response. This index compares a specific measurable trait, such as biomass, of fireweed growing alone, to fireweed growing with grass to determine the level of competitive suppression or facilitation resulting from the interaction. Despite the lack of species‐specific effects of grass competition, the presence of grass suppressed fireweed’s foliar, root and whole plant biomass the most when herbivory was absent. With herbivory, fireweed did not suffer from any measurable competitive suppression. This lack of competitive suppression may be due to an induced allelopathic response, given the levels of pyrrolizidine alkaloids common in many Senecio species. Since this result may weaken the case for biocontrol, the weed’s competitive responses should be verified in relation to actual insect herbivory.  相似文献   

17.
Nutrient cycling in terrestrial ecosystems is affected by various factors such as plant diversity and insect herbivory. While several studies suggest insect herbivory to depend on plant diversity, their interacting effect on nutrient cycling is unclear. In a greenhouse experiment with grassland microcosms of one to six plant species of two functional groups (grasses and legumes), we tested the influence of plant species richness (diversity) and functional composition on plant community biomass production, insect foliar herbivory, soil microbial biomass, and nutrient concentrations in throughfall. To manipulate herbivory, zero, three or six generalist grasshoppers (Chorthippus parallelus) were added to the plant communities. Increasing plant species richness increased shoot biomass and grasshopper performance, without significantly affecting root biomass or insect herbivory. Plant functional composition affected all of these parameters, e.g. legume communities showed the highest shoot biomass, the lowest grasshopper performance and suffered the least herbivory. Nutrient concentrations (dissolved mineral N, PO4‐P, SO4‐S) and pH in throughfall increased with herbivory. PO4‐P and pH increases were positively affected by plant diversity, especially under high herbivore pressure. Plant functional composition affected several throughfall variables, sometimes fully explaining diversity effects. Increasing plant diversity tended to increase soil microbial biomass, but only under high herbivore pressure. Faeces quantities strongly correlated with changes in pH and PO4‐P; frass may therefore be an important driver of throughfall pH and a main source of PO4‐P released from living plants. Our results indicate that insect herbivory may significantly influence fast nutrient cycling processes in natural communities, particularly so in managed grasslands.  相似文献   

18.
While plant species respond differently to nutrient patches, the forces that drive this variability have not been extensively examined. In particular, the role of herbivory in modifying plant-resource interactions has been largely overlooked. We conducted a glasshouse study in which nutrient heterogeneity and root herbivory were manipulated, and used differences in foraging among plant species to predict the influence of root herbivores on these species in competition. We also tracked the influence of neighborhood composition, heterogeneity, and herbivory on whole-pot plant biomass. When herbivores were added to mixed-species neighborhoods, Eupatorium compositifolium, the most precise forager, was the only plant species to display a reduction in shoot biomass. Neighborhood composition had the greatest influence on whole-pot biomass, followed by nutrient heterogeneity; root herbivory had the smallest influence. These results suggest that root herbivory is a potential cost of morphological foraging in roots. Root herbivores reduced standing biomass and influenced the relative growth of species in mixed communities, but their effect was not strong enough at the density examined to overwhelm the bottom-up effects of resource distribution.  相似文献   

19.
Perennial, polycarpic herbs can respond to herbivory either by (1) regrowth in the same season in order to compensate for lost reproductive structures or by (2) postponing reproduction until the following growing season. We tested these response patterns with the perennial umbellifer Pimpinella saxifraga by simulating flower herbivory and shoot grazing both in the field and in a common garden experiment. In the field, both simulated flower herbivory and grazing effectively suppressed current reproduction, whereas no statistically significant effects of previous-year treatments on growth or reproduction were found in the following year. In the common garden, in the first year the species fully compensated for simulated flower herbivory in vegetative parameters but seed set was reduced by 26%. After 2 years of flower removal, the plants overcompensated in shoot and root biomass by 47 and 46%, respectively, and compensated fully in reproductive performance. Simulated grazing resulted in 21% lower shoot biomass in the first season, but the root biomass was not affected. In the second season the root biomass increased by 43% as compared to the control plants. However, regrowth following simulated grazing resulted in a significant delay in flowering with the consequence that the seed yield of fertile plants was reduced by 55% as compared to the control plants. These results suggest that in resource-rich garden conditions P. saxifraga may immediately repair injuries caused by flower herbivory, but repairs more extensive shoot injury less successfully. Delayed phenology decreases the benefits of immediate repair. In resource-poor conditions, the benefits of regrowth can be negligible. Accordingly, in our field population, the plants postponed their reproduction until the following year in response to simulated grazing and frequently in response to flower removal. When the plants gain very little from regrowth, the costs of reproduction would select for postponed reproduction in response to injury.  相似文献   

20.
We tested whether differences in the herbivory tolerance of plant species is related to their abundance in grassland communities and how herbivory and nutrient availability affect competitive balances among plant species through changes in their tolerance. The experimental approach involved a simulated grazing treatment (clipping) of two competitive grass species (Arrhenatherum elatius and Holcus lanatus) and two subordinate forb species (Prunella vulgaris and Lotus corniculatus) along a gradient of nutrient availability and under conditions of competition. Total standing, aboveground, root, and regrowth biomass were evaluated at the end of the experiment as an estimate of the capacity to compensate for twice removing aboveground biomass at different nutrient levels (NPK). Although clipping had a more pronounced negative effect on dominant plant species (Arrhenatherum and Holcus) than on subordinate species, the negative effects on dominant species were offset by the application of fertilizer. The combined effect of fertilizer and competition had more negative effects on the performance of Lotus and Prunella than on the dominant species. In terms of competition, the regrowth ability of Arrhenatherum and Holcus increased with the application of fertilizer, while the opposite pattern was observed for Lotus and Prunella. The addition of fertilizer has a positive effect on both grass species in terms of growth in clipped pots and competition, while subordinate species did not respond to the addition of fertilizer to the clipped pots and were negatively affected by competition with both grass species. The results suggest (1) that species replacement towards subordinate species as a function of herbivory is partially dependent on the herbivory tolerance of that species, (2) competitive relations between competitive grass species and subordinate forb species change under different environmental conditions, and (3) although grazing disturbance significantly influences competitive relations in favor of less competitive species, increasing nutrient levels counteract the negative effect of grazing on dominant competitive plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号