首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How cell wall elasticity, plasticity, and time‐dependent extension (creep) relate to one another, to plant cell wall structure and to cell growth remain unsettled topics. To examine these issues without the complexities of living tissues, we treated cell‐free strips of onion epidermal walls with various enzymes and other agents to assess which polysaccharides bear mechanical forces in‐plane and out‐of‐plane of the cell wall. This information is critical for integrating concepts of wall structure, wall material properties, tissue mechanics and mechanisms of cell growth. With atomic force microscopy we also monitored real‐time changes in the wall surface during treatments. Driselase, a potent cocktail of wall‐degrading enzymes, removed cellulose microfibrils in superficial lamellae sequentially, layer‐by‐layer, and softened the wall (reduced its mechanical stiffness), yet did not induce wall loosening (creep). In contrast Cel12A, a bifunctional xyloglucanase/cellulase, induced creep with only subtle changes in wall appearance. Both Driselase and Cel12A increased the tensile compliance, but differently for elastic and plastic components. Homogalacturonan solubilization by pectate lyase and calcium chelation greatly increased the indentation compliance without changing tensile compliances. Acidic buffer induced rapid cell wall creep via endogenous α‐expansins, with negligible effects on wall compliances. We conclude that these various wall properties are not tightly coupled and therefore reflect distinctive aspects of wall structure. Cross‐lamellate networks of cellulose microfibrils influenced creep and tensile stiffness whereas homogalacturonan influenced indentation mechanics. This information is crucial for constructing realistic molecular models that define how wall mechanics and growth depend on primary cell wall structure.  相似文献   

2.
Enlargement of the cell wall requires separation of cellulose microfibrils, mediated by proteins such as expansin; according to the multi-net growth hypothesis, enlargement passively reorients microfibrils. However, at the molecular scale, little is known about the specific movement of microfibrils. To find out, we examined directly changes in microfibril orientation when walls were extended slowly in vitro under constant load (creep). Frozen-thawed cucumber hypocotyl segments were strained by 20-30% by incubation in pH 4.5 buffer or by incubation of heat-inactivated segments in alpha-expansin or a fungal endoglucanase (Cel12A). Subsequently, the innermost layer of the cell wall was imaged, with neither extraction nor homogenization, by field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). AFM images revealed that sample preparation for FESEM did not appreciably alter cell wall ultrastructure. In both FESEM and AFM, images from extended and non-extended samples appeared indistinguishable. To quantify orientational order, we used a novel algorithm to characterize the fast Fourier transform of the image as a function of spatial frequency. For both FESEM and AFM images, the transforms of non-extended samples were indistinguishable from those of samples extended by alpha-expansin or Cel12A, as were AFM images of samples extended by acidic buffer. We conclude that cell walls in vitro can extend slowly by a creep mechanism without passive reorientation of innermost microfibrils, implying that wall loosening agents act selectively on the cross-linking polymers between parallel microfibrils, rather than more generally on the wall matrix.  相似文献   

3.
Park YB  Cosgrove DJ 《Plant physiology》2012,158(4):1933-1943
Xyloglucan is widely believed to function as a tether between cellulose microfibrils in the primary cell wall, limiting cell enlargement by restricting the ability of microfibrils to separate laterally. To test the biomechanical predictions of this "tethered network" model, we assessed the ability of cucumber (Cucumis sativus) hypocotyl walls to undergo creep (long-term, irreversible extension) in response to three family-12 endo-β-1,4-glucanases that can specifically hydrolyze xyloglucan, cellulose, or both. Xyloglucan-specific endoglucanase (XEG from Aspergillus aculeatus) failed to induce cell wall creep, whereas an endoglucanase that hydrolyzes both xyloglucan and cellulose (Cel12A from Hypocrea jecorina) induced a high creep rate. A cellulose-specific endoglucanase (CEG from Aspergillus niger) did not cause cell wall creep, either by itself or in combination with XEG. Tests with additional enzymes, including a family-5 endoglucanase, confirmed the conclusion that to cause creep, endoglucanases must cut both xyloglucan and cellulose. Similar results were obtained with measurements of elastic and plastic compliance. Both XEG and Cel12A hydrolyzed xyloglucan in intact walls, but Cel12A could hydrolyze a minor xyloglucan compartment recalcitrant to XEG digestion. Xyloglucan involvement in these enzyme responses was confirmed by experiments with Arabidopsis (Arabidopsis thaliana) hypocotyls, where Cel12A induced creep in wild-type but not in xyloglucan-deficient (xxt1/xxt2) walls. Our results are incompatible with the common depiction of xyloglucan as a load-bearing tether spanning the 20- to 40-nm spacing between cellulose microfibrils, but they do implicate a minor xyloglucan component in wall mechanics. The structurally important xyloglucan may be located in limited regions of tight contact between microfibrils.  相似文献   

4.
Cosgrove DJ  Li ZC 《Plant physiology》1993,103(4):1321-1328
Expansins are wall proteins that mediate a type of acid-induced extension in isolated plant cell walls (S. McQueen-Mason, D.M. Durachko, D.J. Cosgrove [1992] Plant Cell 4: 1425-1433). To assess the role of these proteins in the process of cell enlargement in living tissues, we compared the spatial and temporal growth patterns of oat (Avena sativa L.) coleoptiles with four wall properties related to expansin action. These properties were (a) the ability of isolated walls and living segments to extend in acidic buffer, (b) the ability of heat-inactivated walls to extend upon application of expansins, (c) the amount of immunologically detectable expansin in wall protein extracts, and (d) the extractable expansin activity of walls. Growth rate was maximal in the apical half of dark-grown coleoptiles and negligible in the basal region. This growth pattern correlated with properties a and b; in contrast, the amount and activity of extractable expansin (properties c and d) were reduced only in the most basal region. Upon exposure to white light, coleoptiles abruptly ceased elongation at 8 to 10 h after start of irradiation, and this cessation correlated with reductions in properties a to c. The growth cessation at 8 to 10 h also coincided with the loss of growth response to exogenous auxin and fusicoccin in excised coleoptile segments. These results lend correlative support to the hypothesis that expansin action is important for growth responses of living oat coleoptiles (e.g. responses to acidic buffers, auxin, fusicoccin, aging, and light). Our results suggest that changes in the susceptibility of the wall to expansin action, rather than changes in expansin activity, may be a key determinant of the growth patterns in oat coleoptiles.  相似文献   

5.
Expansins, a newly discovered class of cell wall proteins, were the only proteins that, to date, have been shown to have the ability to restore the "acid growth" response of the heat-inactivated cell wall in an in vitro assay. In order to characterize these proteins, an automatic extensometer had been previously constructed by modification of an equal-arm mechanical balance with a linear variable differential transformer (LVDT) and with some easily available laboratory equipment. The objective of this study was to confirm and complement the work on expansin in cucumber ( Cucumis sativus L. ) seedlings carried out in the expansin-discoverers' laboratory and in addition, to further examination of the extensometer built in the authors' laboratory. It was reported that, firstly, expansin activity was maximal in cell wall from the growing region of soybean (Glycine max L. ) hypocotyls but was negligible or lacking in that from mature, basal regions and cotyledons. Corre- spondingly, walls from the growing tissue had a strong susceptibility to the action of expansin, whereas the nongrowing tissues became insensitive to the expansin action. It was concluded that the growth of soybean hypocotyl was associated with an increase in both expansin activity and wall susceptibility to the expansin action. Secondly, the heat-inactivated wall extension could be induced by cross reconstitution with crude expansin extract between soybean and cucumber species. Thirdly, once the heat-inactivated wall has been pretreated with the exogenous expansin, the reconstituted wall required no further expansin for extension indicating that exogenous expansin could specifically bind to cell wall and be enough to repeatedly exert its action without releasing from the cell wall into the external solution, i.e., a single expansin molecule could gradually break a series of load-bearing bonds one by one while moving along the cell wall, and thereby permitting the wall to extend. Fourthly, reconstitution of the wall extension activity was evidently dependent on the expansin concentration and the pH of the bathing solution, which was consistent with the catalytic characteristics of classical enzymes. Finally, endogenous and reconstituted wall extension could be significantly induced in 50 mmoL/L sodium acetate at pH 4.5 and completely inhibited in 50 mmol/L Hepes at pH 6.8, especially these phenomena could continuously be caused by switching incubation buffer from one to the other alternately, suggesting that change in pH of bathing solution could only affect the conformation of expansin (thus leading to denaturation or renaturation of it) but not the affinity of it for cell wall. In summary, these observations lend further support to the fact that expansin could mediate the acid-induced extension of the isolated wall, probably through a biochemical or enzymatic process exerting directly to the cell wall. This protein may play an essential role in the control of plant cell growth in vivo.  相似文献   

6.
An expansin gene, LeExp2, was isolated from auxin-treated, etiolated tomato (Lycopersicon esculentum cv T5) hypocotyls. LeExp2 mRNA expression was restricted to the growing regions of the tomato hypocotyl and was up-regulated during incubation of hypocotyl segments with auxin. The pattern of expression of LeExp2 was also studied during tomato fruit growth, a developmental process involving rapid cell enlargement. The expression of genes encoding a xyloglucan endotransglycosylase (LeEXT1) and an endo-1, 4-beta-glucanase (Cel7), which, like LeExp2, are auxin-regulated in etiolated hypocotyls (C. Catalá, J.K.C. Rose, A.B. Bennett [1997] Plant J 12: 417-426), was also studied to examine the potential for synergistic action with expansins. LeExp2 and LeEXT1 genes were coordinately regulated, with their mRNA accumulation peaking during the stages of highest growth, while Cel7 mRNA abundance increased and remained constant during later stages of fruit growth. The expression of LeExp2, LeEXT1, and Cel7 was undetectable or negligible at the onset of and during fruit ripening, which is consistent with a specific role of these genes in regulating cell wall loosening during fruit growth, not in ripening-associated cell wall disassembly.  相似文献   

7.
Studying the binding properties of cellulases to lignocellulosic substrates is critical to achieving a fundamental understanding of plant cell wall saccharification. Lignin auto-fluorescence and degradation products formed during pretreatment impede accurate quantification of individual glycosyl hydrolases (GH) binding to pretreated cell walls. A high-throughput fast protein liquid chromatography (HT-FPLC)-based method has been developed to quantify cellobiohydrolase I (CBH I or Cel7A), cellobiohydrolase II (CBH II or Cel6A), and endoglucanase I (EG I or Cel7B) present in hydrolyzates of untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated corn stover (CS). This method can accurately quantify individual enzymes present in complex binary and ternary protein mixtures without interference from plant cell wall-derived components. The binding isotherms for CBH I, CBH II, and EG I were obtained after incubation for 2 h at 4 °C. Both AFEX and dilute acid pretreatment resulted in increased cellulase binding compared with untreated CS. Cooperative binding of CBH I and/or CBH II in the presence of EG I was observed only for AFEX treated CS. Competitive binding between enzymes was found for certain other enzyme-substrate combinations over the protein loading range tested (i.e., 25-450 mg/g glucan). Langmuir single-site adsorption model was fitted to the binding isotherm data to estimate total available binding sites E(bm) (mg/g glucan) and association constant K(a) (L/mg). Our results clearly demonstrate that the characteristics of cellulase binding depend not only on the enzyme GH family but also on the type of pretreatment method employed.  相似文献   

8.
In general, pretreatments are designed to enhance the accessibility of cellulose to enzymes, allowing for more efficient conversion. In this study, we have detected the penetration of major cellulases present in a commercial enzyme preparation (Spezyme CP) into corn stem cell walls following mild‐, moderate‐ and high‐severity dilute sulfuric acid pretreatments. The Trichoderma reesei enzymes, Cel7A (CBH I) and Cel7B (EG I), as well as the cell wall matrix components xylan and lignin were visualized within digested corn stover cell walls by immuno transmission electron microscopy (TEM) using enzyme‐ and polymer‐specific antibodies. Low severity dilute‐acid pretreatment (20 min at 100°C) enabled <1% of the thickness of secondary cell walls to be penetrated by enzyme, moderate severity pretreatment at (20 min at 120°C) allowed the enzymes to penetrate ~20% of the cell wall, and the high severity (20 min pretreatment at 150°C) allowed 100% penetration of even the thickest cell walls. These data allow direct visualization of the dramatic effect dilute‐acid pretreatment has on altering the condensed ultrastructure of biomass cell walls. Loosening of plant cell wall structure due to pretreatment and the subsequently improved access by cellulases has been hypothesized by the biomass conversion community for over two decades, and for the first time, this study provides direct visual evidence to verify this hypothesis. Further, the high‐resolution enzyme penetration studies presented here provide insight into the mechanisms of cell wall deconstruction by cellulolytic enzymes. Biotechnol. Bioeng. 2009;103: 480–489. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
Expansins in growing tomato leaves   总被引:18,自引:0,他引:18  
An expansin-like protein from growing tomato leaves was identified by its ability to restore the 'acid-growth' response to heat-inactivated tomato walls and by its similarity to expansins from cucumber hypocotyls. Native walls from growing tomato leaves exhibit an endogenous acid-induced extension (creep) that resembles in various biochemical characteristics the acid-growth activity of cucumber hypocotyls. For example, the acid-growth activity is lost when the walls of tomato leaves are briefly heated and is largely restored by addition of a crude protein extract from the walls of growing leaves. Wall proteins from growing leaves enhance the stress relaxation spectrum of tomato walls in a fashion characteristic of cucumber expansins. HPLC fractionation of the crude wall protein from tomato leaves yielded an active fraction containing a major 27 kDa protein that cross-reacts with an antibody raised against cucumber expansin. The results show that tomato leafwalls possess at least one expansin that is responsible for the acid-growth property of leaves and indicate that cell wall extension in leaves shares an underlying protein mechanism common to cell wall expansion in stems.  相似文献   

10.
11.
Dispersed cellulose ribbons from bacterial cellulose were subjected to digestion with cloned Cel7A (cellobiohydrolase [CBH] I) and Cel6A (CBH II) from Humicola insolens either alone or in a mixture and in the presence of an excess of beta-glucosidase. Both Cel7A and Cel6A were effective in partially converting the ribbons into soluble sugars, Cel7A being more active than Cel6A. In combination, these enzymes showed substantial synergy culminating with a molar ratio of approximately two-thirds Cel6A and one-third Cel7A. Ultrastructural transmission electron microscopy (TEM) observations indicated that Cel7A induced a thinning of the cellulose ribbons, whereas Cel6A cut the ribbons into shorter elements, indicating an endo type of action. These observations, together with the examination of the digestion kinetics, indicate that Cel6A can be classified as an endo-processive enzyme, whereas Cel7A is essentially a processive enzyme. Thus, the synergy resulting from the mixing of Cel6A and Cel7A can be explained by the partial endo character of Cel6A. A preparation of bacterial cellulose ribbons appears to be an appropriate substrate, superior to Valonia or bacterial cellulose microcrystals, to visualize directly by TEM the endo-processivity of an enzyme such as Cel6A.  相似文献   

12.
Four Humicola insolens Cel7B glycoside hydrolase mutants have been evaluated for the coupling of lactosyl fluoride on O-allyl N(I)-acetyl-2(II)-azido-beta-chitobioside. Double mutants Cel7B E197A H209A and Cel7B E197A H209G preferentially catalyze the formation of a beta-(1-->4) linkage between the two disaccharides, while single mutant Cel7B E197A and triple mutant Cel7B E197A H209A A211T produce predominantly the beta-(1-->3)-linked tetrasaccharide. This result constitutes the first report of the modulation of the regioselectivity through site-directed mutagenesis for an endoglycosynthase.  相似文献   

13.
Alkaline hydrolysis liberated ferulic and diferulic acid from polysaccharides of the Avena coleoptile ( Avena sativa L. cv. Victory I) cell walls. The amount of the two phenolic acids bound to cell walls increased substantially at day 4–5 after sowing, when the growth rate of the coleoptile started to decrease. The level of these acids was almost constant from the tip to base in 3-day-old coleoptiles, but increased toward the basal zone in 4- and 5-day-old ones. The ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age and zone. An increase in the amount of ferulic and diferulic acids bound to cell wall polysaccharides correlated with a decrease in extensibility and with an increase in minimum stress-relaxation time and relaxation rate of the cell wall. The level of lignin in the cellulose fraction increased as coleoptiles aged, but this increase did not correlate with changes in mechanical properties of the cell walls. These results suggest that ferulic acid, ester-linked to cell wall polysaccharides, is oxidized to give diferulic acid, which makes the cell wall mechanically rigid by cross-linking matrix polysaccharides and results in limited cell extension growth. In addition, it is probable that the step of feruloylation of cell wall polysaccharides is rate-limiting in the formation of in-termolecular bridges by diferulic acid in Avena coleoptile cell walls.  相似文献   

14.
Cell wall isolation procedures were evaluated to determine their effect on the total pectin content and the degree of methylesterification of tomato (Lycopersicon esculentum L.) fruit cell walls. Water homogenates liberate substantial amounts of buffer soluble uronic acid, 5.2 milligrams uronic acid/100 milligrams wall. Solubilization appears to be a consequence of autohydrolysis mediated by polygalacturonase II, isoenzymes A and B, since the uronic acid release from the wall residue can be suppressed by homogenization in the presence of 50% ethanol followed by heating. The extent of methylesterification in heat-inactivated cell walls, 94 mole%, was significantly greater than with water homogenates, 56 mole%. The results suggest that autohydrolysis, mediated by cell wall-associated enzymes, accounts for the solubilization of tomato fruit pectin in vitro. Endogenous enzymes also account for a decrease in the methylesterification during the cell wall preparation. The heat-inactivated cell wall preparation was superior to the other methods studied since it reduces β-elimination during heating and inactivates constitutive enzymes that may modify pectin structure. This heat-inactivated cell wall preparation was used in subsequent enzymatic analysis of the pectin structure. Purified tomato fruit polygalacturonase and partially purified pectinmethylesterase were used to assess changes in constitutive substrates during tomato fruit ripening. Polygalacturonase treatment of heat-inactivated cell walls from mature green and breaker stages released 14% of the uronic acid. The extent of the release of polyuronides by polygalacturonase was fruit development stage dependent. At the turning stage, 21% of the pectin fraction was released, a value which increased to a maximum of 28% of the uronides at the red ripe stage. Pretreatment of the walls with purified tomato pectinesterase rendered walls from all ripening stages equally susceptible to polygalacturonase. Quantitatively, the release of uronides by polygalacturonase from all pectinesterase treated cell walls was equivalent to polygalacturonase treatment of walls at the ripe stage. Uronide polymers released by polygalacturonase contain galacturonic acid, rhamnose, galactose, arabinose, xylose, and glucose. As a function of development, an increase in the release of galacturonic acid and rhamnose was observed (40 and 6% of these polymers at the mature green stage to 54 and 15% at the red ripe stage, respectively). The amount of galactose and arabinose released by exogenous polygalacturonase decreased during development (41 and 11% from walls of mature green fruit to 11 and 6% at the red ripe stage, respectively). Minor amounts of glucose and xylose released from the wall by exogenous polygalacturonase (4-7%) remained constant throughout fruit development.  相似文献   

15.
Plant cell walls expand considerably during cell enlargement, but the biochemical reactions leading to wall expansion are unknown. McQueen-Mason et al. (1992, Plant Cell 4, 1425) recently identified two proteins from cucumber (Cucumis sativus L.) that induced extension in walls isolated from dicotyledons, but were relatively ineffective on grass coleoptile walls. Here we report the identification and partial characterization of an oat (Avena sativa L.) coleoptile wall protein with similar properties. The oat protein has an apparent molecular mass of 29 kDa as revealed by sodium dodecyl sulfate-polyacrylamide gel eletrophoresis. Activity was optimal between pH 4.5 and 5.0, which makes it a suitable candidate for acid growth responses of plant cell walls. The oat protein induced extension in walls from oat coleoptiles, cucumber hypocotyls and pea (Pisum sativum L.) epicotyls and was specifically recognized by an antibody raised against the 29-kDa wall-extension-inducing protein from cucumber hypocotyls. Contrary to the situation in cucumber walls, the acid-extension response in heat-inactivated oat walls was only partially restored by oat or cucumber wall-extension proteins. Our results show that an antigenically conserved protein in the walls of cucumber and oat seedlings is able to mediate a form of acid-induced wall extension. This implies that dicotyledons and grasses share a common biochemical mechanism for at least part of acid-induced wall extensions, despite the significant differences in wall composition between these two classes of plants.Abbreviations ConA concanavalin A - CM carboxymethyl - DEAE diethylaminoethyl - DTT dithiothreitol - Ex29 29-kDa expansin  相似文献   

16.
Nock LP  Smith CJ 《Plant physiology》1987,84(4):1044-1050
Cell walls of Zea mays (cv L.G.11) seedlings labeled with 14C were treated with α-amylase from Bacillus subtilis to remove starch and mixed linkage glucans. These walls released arabinose, xylose, galactose, and galacturonic acid in addition to glucose when they were allowed to autolyze. Methylation analysis was performed on samples of wall which had been incubated autolytically and the results indicated that degradation of the major polymer of the wall, the glucoarabinoxylan, had occurred. A number of glycanases could be dissociated from the wall by use of 3 m LiCL. The proteins which were released were found to contain a number of exoglycosidase activities in addition to being effective in degrading the polysaccharide substrates, araban, xylan, galactan, laminarin, mannan, and polygalacturonic acid. The effects of these enzymes on the wall during autolysis appear to result from endo-activity in addition to exo-activity. The structural changes that occurred in the cell walls during autolysis were found to be related to the changes previously found to occur in cell walls during auxin induced extension.  相似文献   

17.
Zhao Q  Yuan S  Wang X  Zhang Y  Zhu H  Lu C 《Plant physiology》2008,147(4):1874-1885
Mature plant cell walls lose their ability to expand and become unresponsive to expansin. This phenomenon is believed to be due to cross-linking of hemicellulose, pectin, or phenolic groups in the wall. By screening various hydrolytic enzymes, we found that pretreatment of nongrowing, heat-inactivated, basal cucumber (Cucumis sativus) hypocotyls with pectin lyase (Pel1) from Aspergillus japonicus could restore reconstituted exogenous expansin-induced extension in mature cell walls in vitro. Recombinant pectate lyase A (PelA) and polygalacturonase (PG) from Aspergillus spp. exhibited similar capacity to Pel1. Pel1, PelA, and PG also enhanced the reconstituted expansin-induced extension of the apical (elongating) segments of cucumber hypocotyls. However, the effective concentrations of PelA and PG for enhancing the reconstituted expansin-induced extension were greater in the apical segments than in the basal segments, whereas Pel1 behaved in the opposite manner. These data are consistent with distribution of more methyl-esterified pectin in cell walls of the apical segments and less esterified pectin in the basal segments. Associated with the degree of esterification of pectin, more calcium was found in cell walls of basal segments compared to apical segments. Pretreatment of the calcium chelator EGTA could also restore mature cell walls' susceptibility to expansin by removing calcium from mature cell walls. Because recombinant pectinases do not hydrolyze other wall polysaccharides, and endoglucanase, xylanase, and protease cannot restore the mature wall's extensibility, we can conclude that the pectin network, especially calcium-pectate bridges, may be the primary factor that determines cucumber hypocotyl mature cell walls' unresponsiveness to expansin.  相似文献   

18.
Trichoderma reesei produces five known endoglucanases. The most studied are Cel7B (EG I) and Cel5A (EG II) which are the most abundant of the endoglucanases. We have performed a characterisation of the enzymatic properties of the less well-studied endoglucanases Cel12A (EG III), Cel45A (EG V) and the catalytic core of Cel45A. For comparison, Cel5A and Cel7B were included in the study. Adsorption studies on microcrystalline cellulose (Avicel) and phosphoric acid swollen cellulose (PASC) showed that Cel5A, Cel7B, Cel45A and Cel45Acore adsorbed to these substrates. In contrast, Cel12A adsorbed weakly to both Avicel and PASC. The products formed on Avicel, PASC and carboxymethylcellulose (CMC) were analysed. Cel7B produced glucose and cellobiose from all substrates. Cel5A and Cel12A also produced cellotriose, in addition to glucose and cellobiose, on the substrates. Cel45A showed a clearly different product pattern by having cellotetraose as the main product, with practically no glucose and cellobiose formation. The kinetic constants were determined on cellotriose, cellotetraose and cellopentaose for the enzymes. Cel12A did not hydrolyse cellotriose. The k(Cat) values for Cel12A on cellotetraose and cellopentaose were significantly lower compared with Cel5A and Cel7B. Cel7B was the only endoglucanase which rapidly hydrolysed cellotriose. Cel45Acore did not show activity on any of the three studied cello-oligosaccharides. The four endoglucanases' capacity to hydrolyse beta-glucan and glucomannan were studied. Cel12A hydrolysed beta-glucan and glucomannan slightly less compared with Cel5A and Cel7B. Cel45A was able to hydrolyse glucomannan significantly more compared with beta-glucan. The capability of Cel45A to hydrolyse glucomannan was higher than that observed for Cel12A, Cel5A and Cel7B. The results indicate that Cel45A is a glucomannanase rather than a strict endoglucanase.  相似文献   

19.
A rhamnogalacturonan I polysaccharide was isolated from potato (Solanum tuberosum cv. Posmo) tuber cell walls and characterised by enzymatic digestion with an endo-beta-1 --> 4-galactanase and an endo-alpha-1 --> 5-arabinanase, individually or in combination. The reaction products were separated using size-exclusion chromatography and further analysed for monosaccharide composition and presence of epitopes using the LM5 anti-beta-1 --> 4-galactan and LM6 anti-alpha-1 --> 5-arabinan monoclonal antibodies. The analyses point to distinct structural features of potato tuber rhamnogalacturonan I, such as the abundance of beta-1 --> 4-galactan side chains that are poorly substituted with short arabinose-containing side chains, the presence of alpha-1 --> 5-arabinan side chains substituted with beta-1 --> 4-galactan oligomers (degree of polymerisation > 4), and the presence of alpha-1 --> 5-arabinans that resist enzymatic degradation. A synergy between the enzymes was observed towards the degradation of arabinans but not towards the degradation of galactans. The effect of the enzymes on isolated RG I is discussed in relation to documented effects of enzymes heterologously expressed in potato tubers. In addition, a novel and rapid method for the determination of the monosaccharide and uronic acid composition of cell wall polysaccharides using high-performance anion exchange chromatography with pulsed amperometric detection is described.  相似文献   

20.
Pectin is a class of complex cell wall polysaccharides with multiple roles during cell development. Assigning specific functions to particular polysaccharides is in its infancy, in part, because of the limited number of mutants and transformants available with modified pectic polymers in their walls. Pectins are also important polymers with diverse applications in the food and pharmaceutical industries, which would benefit from technology for producing pectins with specific functional properties. In this report, we describe the generation of potato (Solanum tuberosum L. cv Posmo) tuber transformants producing pectic rhamnogalacturonan I (RGI) with a low level of arabinosylation. This was achieved by the expression of a Golgi membrane-anchored endo-alpha-1,5-arabinanase. Sugar composition analysis of RGI isolated from transformed and wild-type tubers showed that the arabinose content was decreased by approximately 70% in transformed cell walls compared with wild type. The modification of the RGI was confirmed by immunolabeling with an antibody recognizing alpha-1,5-arabinan. This is the first time, to our knowledge, that the biosynthesis of a plant cell wall polysaccharide has been manipulated through the action of a glycosyl hydrolase targeted to the Golgi compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号