首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligands of the IGF-II/mannose 6-phosphate receptor (IGF2R) include IGF-II and mannose 6-phosphate modified proteins. Disruption of the negative regulatory effects of IGF2R on IGF-II-induced growth can lead to embryonic lethality and cancer promotion. Of the 15 IGF2R extracellular domains, domains 1-3 and 11 are known to have a conserved beta-barrel structure similar to that of avidin and the cation-dependent mannose 6-phosphate receptor, yet only domain 11 binds IGF-II with high specificity and affinity. In order to define the functional basis of this critical biological interaction, we performed alanine mutagenesis of structurally determined solvent-exposed loop residues of the IGF-II-binding site of human domain 11, expressed these mutant forms in Pichia pastoris, and determined binding kinetics with human IGF-II using isothermal calorimetry and surface plasmon resonance with transition state thermodynamics. Two hydrophobic residues in the CD loop (F1567 and I1572) were essential for binding, with a further non-hydrophobic residue (T1570) that slows the dissociation rate. Aside from alanine mutations of AB loop residues that decrease affinity by modifying dissociation rates (e.g. Y1542), a novel mutation (E1544A) of the AB loop enhanced affinity by threefold compared to wild-type. Conversion from an acidic to a basic residue at this site (E1544K) results in a sixfold enhancement of affinity via modification principally of the association rate, with enhanced salt-dependence, decreased entropic barrier and retained specificity. These data suggest that a functional hydrophobic binding site core is formed by I1572 and F1567 located in the CD loop, which initially anchors IGF-II. Within the AB loop, residues normally act to either stabilise or function as negative regulators of the interaction. These findings have implications for the molecular architecture and evolution of the domain 11 IGF-II-binding site, and the potential interactions with other domains of IGF2R.  相似文献   

2.
The insulin receptor (IR) lacking the alternatively spliced exon 11 (IR-A) is preferentially expressed in fetal and cancer cells. The IR-A has been identified as a high-affinity receptor for insulin and IGF-II but not IGF-I, which it binds with substantially lower affinity. Several cancer cell types that express the IR-A also overexpress IGF-II, suggesting a possible autocrine proliferative loop. To determine the regions of IGF-I and IGF-II responsible for this differential affinity, chimeras were made where the C and D domains were exchanged between IGF-I and IGF-II either singly or together. The abilities of these chimeras to bind to, and activate, the IR-A were investigated. We also investigated the ability of these chimeras to bind and activate the IR exon 11+ isoform (IR-B) and as a positive control, the IGF-I receptor (IGF-1R). We show that the C domain and, to a lesser extent, the D domains represent the principal determinants of the binding differences between IGF-I and IGF-II to IR-A. The C and D domains of IGF-II promote higher affinity binding to the IR-A than the equivalent domains of IGF-I, resulting in an affinity close to that of insulin for the IR-A. The C and D domains also regulate the IR-B binding specificity of the IGFs in a similar manner, although the level of binding for all IGF ligands to IR-B is lower than to IR-A. In contrast, the C and D domains of IGF-I allow higher affinity binding to the IGF-1R than the analogous domains of IGF-II. Activation of IGF-1R by the chimeras reflected their binding affinities whereas the phosphorylation of the two IR isoforms was more complex.  相似文献   

3.
Embryonic development and normal growth require exquisite control of insulin-like growth factors (IGFs). In mammals the extracellular region of the cation-independent mannose-6-phosphate receptor has gained an IGF-II-binding function and is termed type II IGF receptor (IGF2R). IGF2R sequesters IGF-II; imbalances occur in cancers and IGF2R is implicated in tumour suppression. We report crystal structures of IGF2R domains 11-12, 11-12-13-14 and domains 11-12-13/IGF-II complex. A distinctive juxtaposition of these domains provides the IGF-II-binding unit, with domain 11 directly interacting with IGF-II and domain 13 modulating binding site flexibility. Our complex shows that Phe19 and Leu53 of IGF-II lock into a hydrophobic pocket unique to domain 11 of mammalian IGF2Rs. Mutagenesis analyses confirm this IGF-II 'binding-hotspot', revealing that IGF-binding proteins and IGF2R have converged on the same high-affinity site.  相似文献   

4.
Insulin and the insulin-like growth factors (IGFs) bind with high affinity to their cognate receptor and with lower affinity to the noncognate receptor. The major structural difference between insulin and the IGFs is that the IGFs are single chain polypeptides containing A-, B-, C-, and D-domains, whereas the insulin molecule contains separate A- and B-chains. The C-domain of IGF-I is critical for high affinity binding to the insulin-like growth factor I receptor, and lack of a C-domain largely explains the low affinity of insulin for the insulin-like growth factor I receptor. It is less clear why the IGFs have lower affinity for the insulin receptor. In this study, 24 insulin analogues and four IGF analogues were expressed and analyzed to explore the role of amino acid differences in the A- and B-domains between insulin and the IGFs in binding affinity for the insulin receptor. Using the information obtained from single substituted analogues, four multiple substituted analogues were produced. A "quadruple insulin" analogue ([Phe(A8), Ser(A10), Thr(B5), Gln(B16)]Ins) showed affinity as IGF-I for the insulin receptor, and a "sextuple insulin" analogue ([Phe(A8), Ser(A10), Thr(A18), Thr(B5), Thr(B14), Gln(B16)]Ins) showed an affinity close to that of IGF-II for the insulin receptor, whereas a "quadruple IGF-I" analogue ([His(4), Tyr(15), Thr(49), Ile(51)]IGF-I) and a "sextuple IGF-II" analogue ([His(7), Ala(16), Tyr(18), Thr(48), Ile(50), Asn(58)]IGF-II) showed affinities similar to that of insulin for the insulin receptor. The mitogenic potency of these analogues correlated well with the binding properties. Thus, a small number of A- and B-domain substitutions that map to the IGF surface equivalent to the classical binding surface of insulin weaken two hotspots that bind to the insulin receptor site 1.  相似文献   

5.
Insulin-like growth factor II (IGF-II) is a protein with high structural and sequence similarity to insulin. Unlike insulin, it binds both the type 1 IGF receptor and the exon 11- isoform of the insulin receptor with high affinity. The overexpression and up regulation of IGF-II has been associated with the progression of various forms of cancer. The exact binding mechanism of IGF-II to its high affinity receptors is still not completely understood. Herein we describe the successful synthesis of a novel fluorescent IGF-II protein (F19Cou IGF-II), where residue 19 (phenylalanine) has been replaced by a fluorescent chromophore (coumaryl glycine). This novel coumaryl IGF-II analogue will be a useful tool for analysing the receptor interaction mechanisms in future studies.  相似文献   

6.
We have studied insulin-like-growth-factor (IGF) binding in two subclones of the C2 myogenic cell line. In the permissive parental subclone, myoblasts differentiate spontaneously into myotubes in medium supplemented with fetal calf serum. Unlike permissive myoblasts, inducible myoblasts require high concentrations of insulin (1.6 microM) or lower concentrations of IGF-I (25 nM) to differentiate, and expression of MyoD1 is not constitutive. IGF receptors were studied in microsomal membranes of proliferating and quiescent myoblasts and myotubes. IGF-II binding was also studied in inducible myoblasts transfected with the MyoD1 cDNA (clone EP5). Both inducible and permissive cells exhibited a single class of binding sites with similar affinity for IGF-I (Kd 0.8-1.2 nM). Affinity cross-linking of [125I]IGF-I to microsomal membranes, under reducing conditions, revealed a binding moiety with an apparent molecular mass of 130 kDa in permissive cells and 140 kDa in inducible cells, which corresponded to the alpha subunit of the IGF-I receptor. In permissive quiescent myoblasts, linear Scatchard plots suggested that [125I]IGF-II bound to a single class of binding sites (Kd 0.6 nM) compatible with binding to the IGF-II/M6P receptor. This was confirmed by affinity cross-linking experiments showing a labeled complex with an apparent molecular mass of 260 kDa and 220 kDa when studied under reducing and non-reducing conditions, respectively. In contrast, competitive inhibition of [125I]IGF-II binding to inducible quiescent myoblasts generated curvilinear Scatchard plots which could be resolved into two single classes of binding sites. One of them corresponded to the IGF-II/M6P receptor (Kd 0.2 nM) as evidenced by cross-linking experiments. The second was the binding site of highest affinity (Kd 0.04 nM) which was less inhibited by IGF-I than by IGF-II and was not inhibited by insulin. It migrated in SDS/PAGE at a position equivalent a molecular mass of 140 kDa, under reducing conditions, and at approximately 300 kDa, under non-reducing conditions. The labeling of this atypical binding moiety was not inhibited by anti(IGF-II/M6P-receptor) immunoglobulin. It was also observed in permissive and inducible myoblasts at proliferating stage. It was absent for permissive quiescent myoblasts and from permissive and inducible myotubes. Forced expression of MyoD1 in inducible cells (EP5 cells) dramatically reduced [125I]IGF-II binding to this atypical receptor. It emerges from these experiments that C2 cells express a putative alpha 2 beta 2 IGF-II receptor structurally related to the insulin/IGF-I receptor family. It is present in myoblasts but not in myotubes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Important functions in myogenesis have been proposed for FGF6, a member of the fibroblast growth factor family accumulating almost exclusively in the myogenic lineage. However, the use of FGF6(-/-) mutant mice gave contradictory results and the role of FGF6 during myogenesis remains largely unclear. Using FGF6(-/-) mice, we first analysed the morphology of the regenerated soleus following cardiotoxin injection and showed hypertrophied myofibres in soleus of the mutant mice as compared to wild-type mice. Secondly, to examine the function of the IGF family in the hypertrophy process, we used semiquantitative and real-time RT-PCR assays and Western blots to monitor the expression of the insulin-like growth factors (IGF-I and IGF-II), their receptors [type I IGF receptor (IGF1R) and IGF-II receptor (IGF2R)], and of a binding protein IGFBP-5 in regenerating soleus muscles of FGF6(-/-) knockout mice vs. wild-type mice. In the mutant, both IGF-II and IGF2R, but not IGF-I and IGF1R, were strongly up-regulated, whereas IGFBP5 was down-regulated, strongly suggesting that, in the absence of FGF6, the mechanisms leading to myofibre hypertrophy were mediated specifically by an IGF-II/IGF2R signalling pathway distinct from the classic mechanism involving IGF-I and IGF1R previously described for skeletal muscle hypertrophy. The potential regulating role of IGFBP5 on IGF-II expression is also discussed. This report shows for the first time a specific role for FGF6 in the regulation of myofibre size during a process of in vivo myogenesis.  相似文献   

8.
IGF-II stimulates both mitogenesis and myogenesis through its binding and activation of the IGF-I receptor (IGF-IR). How this growth factor pathway promotes these two opposite cellular responses is not well understood. We investigate whether local IGF binding protein-5 (IGFBP-5) promotes the myogenic action of IGF-II. IGFBP-5 is induced before the elevation of IGF-II expression during myogenesis. Knockdown of IGFBP-5 impairs myogenesis and suppresses IGF-II gene expression. IGF-II up-regulates its own gene expression via the PI3K-Akt signaling pathway. Adding IGF-II or constitutively activating Akt rescues the IGFBP-5 knockdown-caused defects. However, an IGF analogue that binds to the IGF-IR but not IGFBP has only a limited effect. When added with low concentrations of IGF-II, IGFBP-5 restores IGF-II expression and myogenic differentiation, whereas an IGF binding–deficient IGFBP-5 mutant has no effect. These findings suggest that IGFBP-5 promotes muscle cell differentiation by binding to and switching on the IGF-II auto-regulation loop.  相似文献   

9.
Using affinity cross-linking techniques, we report the presence of type I IGF and type II IGF receptors in Madin-Darby canine kidney cells, a line of cells lacking insulin receptors. The IGF receptors were further characterized by competition binding studies and found to be similar to IGF receptors in other tissue types. In Madin-Darby canine kidney cells, the type I IGF receptor binds IGF-I greater than IGF-II greater than insulin and the type II IGF receptor binds IGF-II and IGF-I with approximately the same affinity, but does not bind insulin.  相似文献   

10.
Insulin-like growth factor (IGF) binding to the type 1 IGF receptor (IGF1R) elicits mitogenic effects, promotion of differentiation and protection from apoptosis. This study has systematically measured IGF1R binding affinities of IGF-I, IGF-II and 14 IGF analogues to a recombinant high-affinity form of the IGF1R using BIAcore technology. The analogues assessed could be divided into two groups: (a) those designed to investigate binding of IGF-binding protein, which exhibited IGF1R-binding affinities similar to those of IGF-I or IGF-II; (b) those generated to probe IGF1R interactions with greatly reduced IGF1R-binding affinities. The relative binding affinities of IGF-I analogues and IGF-I for the IGF1R determined by BIAcore analysis agreed closely with existing data from receptor-binding assays using cells or tissue membranes, demonstrating that BIAcore technology is a powerful tool for measuring affinities of IGFs for IGF1R. In parallel studies, IGF1R-binding affinities were related to ability to protect against serum withdrawal-induced apoptosis in three different assays including Hoechst 33258 staining, cell survival, and DNA fragmentation assays using the rat pheochromocytoma cell line, PC12. In this model system, IGF-I and IGF-II at low nanomolar concentrations are able to prevent apoptosis completely. We conclude that ability to protect against apoptosis is directly related to ability to bind the IGF1R.  相似文献   

11.
The insulin-like growth factor II/mannose-6-phosphate receptor (IGF2R) mediates trafficking of mannose-6-phosphate (M6P)-containing proteins and the mitogenic hormone IGF2. IGF2R also plays an important role as a tumor suppressor, as mutation is frequently associated with human carcinogenesis. IGF2 binds to domain 11, one of 15 extracellular domains on IGF2R. The crystal structure of domain 11 and the solution structure of IGF2 have been reported, but, to date, there has been limited success when using crystallography to study the interaction of IGFs with their binding partners. As an approach to investigate the interaction between IGF2 and IGF2R, we have used heteronuclear NMR in combination with existing mutagenesis data to derive models of the domain 11-IGF2 complex by using the program HADDOCK. The models reveal that the molecular interaction is driven by critical hydrophobic residues on IGF2 and IGF2R, while a ring of flexible, charged residues on IGF2R may modulate binding.  相似文献   

12.
13.
Insulin-like growth factors (IGFs) are key regulators of cell proliferation, differentiation, and transformation, and are thus pivotal in cancer, especially breast, prostate, and colon neoplasm. Their potent mitogenic and anti-apoptotic actions depend primarily on their availability to bind to the signaling IGF cell surface receptors. One mechanism by which IGF-II availability is thought to be modulated is by binding to the nonsignaling IGF-II receptor (IGF2R). This binding is essentially mediated by domain 11 in the multidomain IGF2R extracellular region. The crystal structure of domain 11 of the human IGF-II receptor (IGF2R-d11) has identified a putative IGF-II binding site, and a nuclear magnetic resonance (NMR) solution structure for the IGF-II ligand has also been characterized. These structures have now been used to model in silico the protein-protein interaction between IGF-II and IGF2R-d11 using the program 3D-Dock. Because the IGF-II data comprise an ensemble of 20 structures, all of which satisfy the NMR constraints, the docking procedure was applied to each member of the ensemble. Only those models in which residue Ile1572 of IGF2R-d11, known to be essential for the binding of IGF-II, was at the interface were considered further. These plausible complexes were then critically assessed using an array of analysis techniques including consideration of additional mutagenesis data. One model was strongly supported by these analyses and is discussed here in detail. Furthermore, we demonstrate in vitro experimental support for this model by studying the binding of chimeras of IGF-I and IGF-II to IGF2R fragments.  相似文献   

14.

Background

Insulin-like growth factor-II (IGF-II) promotes cell proliferation and survival and plays an important role in normal fetal development and placental function. IGF-II binds both the insulin-like growth factor receptor (IGF-1R) and insulin receptor isoform A (IR-A) with high affinity. Interestingly both IGF-II and the IR-A are often upregulated in cancer and IGF-II acts via both receptors to promote cancer proliferation. There is relatively little known about the mechanism of ligand induced activation of the insulin (IR) and IGF-1R. The recently solved IR structure reveals a folded over dimer with two potential ligand binding pockets arising from residues on each receptor half. Site-directed mutagenesis has mapped receptor residues important for ligand binding to two separate sites within the ligand binding pocket and we have recently shown that the IGFs have two separate binding surfaces which interact with the receptor sites 1 and 2.

Methodology/Principal Findings

In this study we describe a series of partial IGF-1R and IR agonists generated by mutating Glu12 of IGF-II. By comparing receptor binding affinities, abilities to induce negative cooperativity and potencies in receptor activation, we provide evidence that residue Glu12 bridges the two receptor halves leading to receptor activation.

Conclusions/Significance

This study provides novel insight into the mechanism of receptor binding and activation by IGF-II, which may be important for the future development of inhibitors of its action for the treatment of cancer.  相似文献   

15.
Insulin-like growth factor-II (IGF-II) is a key regulator of cell growth, survival, migration and differentiation, and is thus pivotal in many cancers. An individual with a high IGF-II level is at high risk of developing cancer, whereas IGF2R is implicated as being important in tumor suppression. Thus, uncovering the essence of the IGF-II/IGF2R interaction is very important to understanding the origin of the tumor-suppressing effect of IGF2R. In this study, in order to investigate the interaction of the IGF-II/IGF2R complex and to characterize the binding hot spots of this interaction, a 10 ns molecular dynamics simulation combined with MM-PBSA/MM-GBSA computations and computational alanine scanning was performed on the IGF-II/IGF2R complex. From the results of the free-energy decomposition and the computational alanine scanning calculation, we identified the key residues in the IGF-II/IGF-2R interaction. The results from the calculation were consistent with reported experimental mutagenesis studies. The information on the interaction of IGF-II and IGF2R obtained is vital for understanding how the structure of IGF2R influences the function of IGF-II in growth and development. This study will also lead to new opportunities to develop molecular probes that can assist in diagnostic screening, and even novel approaches to controlling tumor development.  相似文献   

16.
The chicken liver cation-independent mannose 6-phosphate receptor has been purified to apparent homogeneity by affinity chromatography on pentamannose phosphate-Sepharose and tested for its ability to bind iodinated human IGF-I, human IGF-II, and chicken IGF-II. In contrast to the bovine, rat, and human cation-independent mannose 6-phosphate receptors, which bind human IGF-II and IGF-I with nanomolar and micromolar affinities, respectively, the chicken receptor failed to bind either radioligand at receptor concentrations as high as 1 microM. The bovine receptor binds chicken IGF-II with high affinity while the chicken receptor binds this ligand with only low affinity, which we estimate to be in the micromolar range. These data demonstrate that the chicken cation-independent mannose 6-phosphate receptor lacks the high affinity binding site for IGF-II. These results provide an explanation for the failure of previous investigators to identify the type II IGF receptor by IGF-II cross-linking to chicken cells and indicate that the mitogenic activity of IGF-II in chick embryo fibroblasts is most likely mediated via the type I IGF receptor.  相似文献   

17.
Cell surface binding, internalization, and biological effects of insulin-like growth factors (IGFs) I and II have been studied in primary neuronal cultures from developing rat brain (embryonic day 15). Two types of IGF binding sites are present on the cell surface. The IGF-I receptor alpha-subunit (Mr 125,000) binds IGF-I with a KD of 1 nM and IGF-II with 10 times lower affinity. The mannose-6-phosphate (Man-6-P)/IGF-II receptor (Mr 250,000) binds IGF-II with a KD of 0.5 nM and IGF-I with 100 times lower affinity. Surface-bound IGF-I and IGF-II are internalized by their respective receptors binding and internalization of IGF-II but not those of IGF-I. Neuronal synthesis of RNA and DNA is increased twofold by IGF-I with 10 times higher potency than IGF-II. Antibody 3637, which blocks receptor binding of IGF-II, has no effect on the DNA response to IGF-I or IGF-II. Double immunocytochemical staining with antibodies to bromodeoxyuridine and neurofilament shows that greater than 80% of the bromodeoxyuridine-positive cells become neurofilament positive. It is concluded that IGF-I and IGF-II bind to two receptors on the surface of neuronal precursor cells that mediate endocytosis and degradation of IGF-I and IGF-II. Proliferation of neuronal precursor cells is stimulated by IGF-I and IGF-II via activation of the IGF-I receptor.  相似文献   

18.
Magee BA  Shooter GK  Wallace JC  Francis GL 《Biochemistry》1999,38(48):15863-15870
The biological activity of the insulin-like growth factors (IGF-I and IGF-II) is regulated by six IGF binding proteins (IGFBPs 1-6). To examine the surface of IGF-I that associates with the IGFBPs, we created a series of six IGF-I analogues, [His(4)]-, [Gln(9)]-, [Lys(9)]-, [Ser(16)]-, [Gln(9),Ser(16)]-, and [Lys(9),Ser(16)]IGF-I, that contained substitutions for residues Thr(4), Glu(9), or Phe(16). Substitution of Ser for Phe(16) did not affect secondary structure but significantly decreased the affinity for all IGFBPs by between 14-fold and >330-fold, indicating that Phe(16) is functionally important for IGFBP association. While His(4) or Gln(9) substitutions had little effect on IGFBP affinity, changing the negative charge of Glu(9) to a positive Lys(9) selectively decreased the affinities of IGFBP-2 and -6 by 140- and 30-fold, respectively. Furthermore, the effects of mutations to both residues 9 and 16 appear to be additive. The analogues are biologically active in rat L6 myoblasts and they retain native structure as assessed by their far-UV circular dichroism (CD) profiles. We propose that Phe(16) and adjacent hydrophobic residues (Leu(5) and Leu(54)) form a functional binding pocket for IGFBP association.  相似文献   

19.
To investigate the interaction of the insulin-like growth factor (IGF) ligands with the insulin-like growth factor type 1 receptor (IGF-1R), we have generated two soluble variants of the IGF-1R. We have recombinantly expressed the ectodomain of IGF-1R or fused this domain to the constant domain from the Fc fragment of mouse immunoglobulin. The ligand binding properties of these soluble IGF-1Rs for IGF-I and IGF-II were investigated using conventional ligand competition assays and BIAcore biosensor technology. In ligand competition assays, the soluble IGF-1Rs both bound IGF-I with similar affinities and a 5-fold lower affinity than that seen for the wild type receptor. In addition, both soluble receptors bound IGF-II with similar affinities to the wild type receptor. BIAcore analyses showed that both soluble IGF-1Rs exhibited similar ligand-specific association and dissociation rates for IGF-I and for IGF-II. The soluble IGF-1R proteins both exhibited negative cooperativity for IGF-I, IGF-II, and the 24-60 antibody, which binds to the IGF-1R cysteine-rich domain. We conclude that the addition of the self-associating Fc domain to the IGF-1R ectodomain does not affect ligand binding affinity, which is in contrast to the soluble ectodomain of the IR. This study highlights some significant differences in ligand binding modes between the IGF-1R and the insulin receptor, which may ultimately contribute to the different biological activities conferred by the two receptors.  相似文献   

20.
To examine a possible role for IGF-II in the regulation of IGF-I receptors we measured 125I-IGF-I binding on IM-9 cells following pre-incubation with IGF-II/IGF-I mixtures, purified MSA (a rat IGF-II-like peptide), pure IGF-I, or insulin. Whereas all preparations tested induced down-regulation of IGF-I binding after 20 hours, distinct differences were noted after six hour pre-incubation: IGF-I (100 ng/ml) and insulin (1 microgram/ml) both induced down-regulation of IGF-I binding (15 +/- 2% and 19 +/- 2% respectively). However, a mixture of IGF-II and IGF-I (100 ng/ml each) induced consistent up-regulation of IGF-I binding (16 +/- 2%) (mean +/- SE, n = 14), and a preparation enriched in IGF-II (250 ng/ml IGF-II and 75 ng/ml IGF-I) induced 20 +/- 5% (n = 3) up-regulation at six hours. Purified MSA (200 ng/ml) induced 15% up-regulation of IGF-I binding at six hours. Scatchard analysis of displacement curves showed that increased binding was due to loss of low affinity binding, with enhancement of high affinity sites. The up-regulation of IGF-I binding was unaffected by treatment with 0.1 mM cycloheximide, but was blunted by 5 microM colchicine. It is concluded that 1. IGF-II induces up-regulation of IGF-I receptors on IM-9 cells following 6 hour pre-incubation; 2. This phenomenon is not mimicked by the structurally-related peptides IGF-I or insulin; The up-regulation is due to enhanced high affinity binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号