首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the extent of backflow encountered with currently used prosthetic valves, four types of aortic valves with comparable orifice diameters were tested in a pulse duplicating system. These were a Hancock porcine valve, a Lillehei-Kaster pivoting disk valve, a St. Jude bileaflet valve and a Bj?rk-Shiley tilting disk valve. Mean aortic pressure was sequentially increased from 83 to 147 mmHg, keeping the pump rate essentially constant (69-73 strokes/min). The porcine valve produced the least amount of total backflow (backflow due to closure plus leakage backflow) (1.6 to 2.4 mL/stroke). Among the mechanical valves the Bj?rk-Shiley valve showed the least amount of total backflow (5.0 to 6.0 mL/stroke). At a mean aortic pressure of 100 mmHg and a low cardiac output of 2 L/min, the total backflow with the porcine valve was only 6 percent of forward flow; whereas it was 19 percent with the Lillehei-Kaster valve, 22 percent with the St. Jude valve and 18 percent with the Bj?rk-Shiley valve. Leakage backflow at a given level of mean aortic pressure was, as expected, directly related to the annular clearance area. It is concluded that the Hancock valve showed the least amount of backward flow, which would be particularly beneficial in low output states. In the presence of normal hemodynamics, the amount of backflow with the three mechanical valves appeared to be well below the level of backflow considered to be clinically significant.  相似文献   

2.
Limitations of currently available prosthetic valves, xenografts, and homografts have prompted a recent resurgence of developments in the area of tri-leaflet polymer valve prostheses. However, identification of a protocol for initial assessment of polymer valve hydrodynamic functionality is paramount during the early stages of the design process. Traditional in vitro pulse duplicator systems are not configured to accommodate flexible tri-leaflet materials; in addition, assessment of polymer valve functionality needs to be made in a relative context to native and prosthetic heart valves under identical test conditions so that variability in measurements from different instruments can be avoided. Accordingly, we conducted hydrodynamic assessment of i) native (n = 4, mean diameter, D = 20 mm), ii) bi-leaflet mechanical (n= 2, D = 23 mm) and iii) polymer valves (n = 5, D = 22 mm) via the use of a commercially available pulse duplicator system (ViVitro Labs Inc, Victoria, BC) that was modified to accommodate tri-leaflet valve geometries. Tri-leaflet silicone valves developed at the University of Florida comprised the polymer valve group. A mixture in the ratio of 35:65 glycerin to water was used to mimic blood physical properties. Instantaneous flow rate was measured at the interface of the left ventricle and aortic units while pressure was recorded at the ventricular and aortic positions. Bi-leaflet and native valve data from the literature was used to validate flow and pressure readings. The following hydrodynamic metrics were reported: forward flow pressure drop, aortic root mean square forward flow rate, aortic closing, leakage and regurgitant volume, transaortic closing, leakage, and total energy losses. Representative results indicated that hydrodynamic metrics from the three valve groups could be successfully obtained by incorporating a custom-built assembly into a commercially available pulse duplicator system and subsequently, objectively compared to provide insights on functional aspects of polymer valve design.  相似文献   

3.
A pair of finite element models has been employed to study the interaction of blood flow with the operation of the aortic valve. A three-dimensional model of the left ventricle with applied wall displacements has been used to generate data for the spatially and time-varying blood velocity profile across the aortic aperture. These data have been used as the inlet loading conditions in a three-dimensional model of the aortic valve and its surrounding structures. Both models involve fluid-structure interaction and simulate the cardiac cycle as a dynamic event. Confidence in the models was obtained by comparison with data obtained in a pulse duplicator. The results show a circulatory flow being generated in the ventricle which produces a substantially axial flow through the aortic aperture. The aortic valve behaves in an essentially symmetric way under the action of this flow, so that the pressure difference across the leaflets is approximately uniform. This work supports the use of spatially uniform but temporally variable pressure distributions across the leaflets in dry or structural models of aortic valves. The study is a major advance through its use of truly three-dimensional geometry, spatially non-uniform loading conditions for the valve leaflets and the successful modelling of progressive contact of the leaflets in a fluid environment.  相似文献   

4.
The characterization of the bileaflet mechanical heart valves (BMHVs) hinge microflow fields is a crucial step in heart valve engineering. Earlier in vitro studies of BMHV hinge flow at the aorta position in idealized straight pipes have shown that the aortic sinus shapes and sizes may have a direct impact on hinge microflow fields. In this paper, we used a numerical study to look at how different aortic sinus shapes, the downstream aortic arch geometry, and the location of the hinge recess can influence the flow fields in the hinge regions. Two geometric models for sinus were investigated: a simplified axisymmetric sinus and an idealized three-sinus aortic root model, with two different downstream geometries: a straight pipe and a simplified curved aortic arch. The flow fields of a 29-mm St Jude Medical BMHV with its four hinges were investigated. The simulations were performed throughout the entire cardiac cycle. At peak systole, recirculating flows were observed in curved downsteam aortic arch unlike in straight downstream pipe. Highly complex three-dimensional leakage flow through the hinge gap was observed in the simulation results during early diastole with the highest velocity at 4.7 m/s, whose intensity decreased toward late diastole. Also, elevated wall shear stresses were observed in the ventricular regions of the hinge recess with the highest recorded at 1.65 kPa. Different flow patterns were observed between the hinge regions in straight pipe and curved aortic arch models. We compared the four hinge regions at peak systole in an aortic arch downstream model and found that each individual hinge did not vary much in terms of the leakage flow rate through the valves.  相似文献   

5.
A two dimensional laser Doppler anemometer system has been used to measure the turbulent shear fields in the immediate downstream vicinity of a variety of mechanical and bioprosthetic aortic heart valves. The measurements revealed that all the mechanical valves studied, created regions of elevated levels of turbulent shear stress during the major portion of systole. The tissue bioprostheses also created elevated levels of turbulence, but they were confined to narrow regions in the bulk of the flow field. The newer generation of bioprostheses create turbulent shear stresses which are considerably lower than those created by the older generation tissue valve designs. All the aortic valves studied (mechanical and tissue) create turbulent shear stress levels which are capable of causing sub-lethal and/or lethal damage to blood elements.  相似文献   

6.
Turbulence characteristics downstream of bileaflet aortic valve prostheses   总被引:6,自引:0,他引:6  
This study was focused on a series of in vitro tests on the turbulent flow characteristics of three bileaflet aortic valves: St. Jude Medical (SJM), CarboMedics (CM), and Edwards Tekna (modified Duromedics, DM). The flow fields of the valves were measured in a pulsatile flow model with a laser-Doppler anemometer (LDA) at the aortic sinus area downstream of the valves. The heart rate was set at 70 beats per minute, the cardiac output was maintained at 5 liters per minute, and the aortic pressure wave forms were kept within the physiological range. Cycle-resolved analysis was applied to obtain turbulence data, including mean velocity, Reynolds stresses, autocorrelation coefficients, energy spectral density functions, and turbulence scales. The Reynolds shear stresses of all three valves induced only minor damage to red blood cells, but directly damaged the platelets, increasing the possibility of thrombosis. The smallest turbulence length scale, which offers a more reliable estimate of the effects of turbulence on blood cell damage, was three times the size of red blood cells and five times the size of platelets. This suggests that there is more direct interaction with the blood cells, thus causing more damage.  相似文献   

7.
The Gorlin equation for the hemodynamic assessment of valve area is commonly used in cardiac catheterization laboratories. A study was performed to test the prediction capabilities of the Gorlin formula as well as the Aaslid and Gabbay formula for the effective orifice area of prosthetic heart valves. Pressure gradient, flow, and valve opening area measurements were performed on four 27 mm valve prostheses (two mechanical bileaflet designs, St. Jude and Edwards-Duromedics, an Edwards pericardial tissue valve, and a trileaflet polyurethane valve) each mounted in the aortic position of an in vitro pulse duplicator. With the known valve orifice area, a different discharge coefficient was computed for each of the four valves and three orifice area formulas. After some theoretical considerations, it was proposed that the discharge coefficient would be a function of the flow rate through the valve. All discharge coefficients were observed to increase with increasing systolic flow rate. An empirical relationship of discharge coefficient as a linear function of systolic flow rate was determined through a regression analysis, with a different relationship for each valve and each orifice area formula. Using this relationship in the orifice area formulas improved the accuracy of the prediction of the effective orifice area with all three formulas performing equally well.  相似文献   

8.
摘要 目的:分析Stanford A型主动脉夹层患者术后血流感染病原菌分布及其影响因素。方法:选取2020年6月-2023年1月新疆医科大学第一附属医院收治的102例Stanford A型主动脉夹层患者为研究对象。患者均接受手术治疗,统计术后血流感染的发生率、病原菌分布情况。根据患者术后血流感染的发生情况将患者分为感染组(n=17)和未感染组(n=85)。收集患者的临床资料,以单因素和多因素Logistic回归分析Stanford A型主动脉夹层患者术后血流感染的危险因素。结果:102例Stanford A型主动脉夹层患者术后出现血流感染17例,感染发生率为16.67%。17例血流感染患者分离病原菌45株,其中革兰氏阴性菌29株(64.44%)、革兰氏阳性菌13株(28.89%)、真菌3株(6.67%)。感染组患者的年龄、糖尿病史、抗生素疗程、手术时长、植入人工瓣膜比例、二次气管插管比例、机械通气比例、深静脉置管时长均高于未感染组(P<0.05)。多因素Logistic回归分析发现,高龄、二次气管插管、机械通气、深静脉置管时间长、手术时长、植入人工瓣膜比例高是患者术后血流感染的独立危险因素(P<0.05)。结论:Stanford A型主动脉夹层患者术后有较高的血流感染发生率,且主要感染致病菌以革兰氏阴性菌为主,其中高龄、二次气管插管、机械通气、深静脉置管时间长、手术时长、植入人工瓣膜比例高是患者术后血流感染的危险因素。  相似文献   

9.
10.
Pulsatile flow past aortic valve bioprostheses in a model human aorta   总被引:1,自引:0,他引:1  
Pulsatile flow development past tissue valve prostheses in a model human aorta has been studied using qualitative flow visualization and quantitative laser-Doppler techniques. Experiments were conducted both in steady and physiological pulsatile flow situations and the measurements included the pressure drop across the valve, the instantaneous flow rate as well as the velocity profiles and turbulent stresses downstream to the valves. Our study shows that the velocity profiles with pericardial valves are closer to those measured past natural aortic valves. The porcine valves with a smaller valve opening area produce a narrower and stronger jet downstream from the valve with relatively larger turbulent axial stresses in the boundary of the jet. Our study suggests that the pericardial valves with turbulent stresses comparable to those of caged ball and tilting disc valves are preferable from a hemodynamic point of view.  相似文献   

11.
Early detection and accurate estimation of COA severity are the most important predictors of successful long-term outcome. However, current clinical parameters used for the evaluation of the severity of COA have several limitations and are flow dependent. The objectives of this study are to evaluate the limitations of current existing parameters for the evaluation of the severity of coarctation of the aorta (COA) and suggest two new parameters: COA Doppler velocity index and COA effective orifice area. Three different severities of COAs were tested in a mock flow circulation model under various flow conditions and in the presence of normal and stenotic aortic valves. Catheter trans-COA pressure gradients and Doppler echocardiographic trans-COA pressure gradients were evaluated. COA Doppler velocity index was defined as the ratio of pre-COA to post-COA peak velocities measured by Doppler echocardiography. COA Doppler effective orifice area was determined using continuity equation. The results show that peak-to-peak trans-COA pressure gradient significantly increased with flow rate (from 83% to 85%). Peak Doppler pressure gradient also significantly increased with flow rate (80-85%). A stenotic or bicuspid aortic valve increased peak Doppler pressure gradient by 20-50% for a COA severity of 75%. Both COA Doppler velocity index and COA effective orifice area did not demonstrate significant flow dependence or dependence upon aortic valve condition. As a conclusion, COA Doppler velocity index and COA effective orifice area are flow independent and do not depend on aortic valve conditions. They can, then, more accurately predict the severity of COA.  相似文献   

12.
Dual camera stereo photogrammetry (DCSP) was applied to investigate the leaflet motion of bioprosthetic heart valves (BHVs) in a physiologic pulse flow loop (PFL). A 25-mm bovine pericardial valve was installed in the aortic valve position of the PFL, which was operated at a pulse rate of 70 beats/min and a cardiac output of 5 l/min. The systolic/diastolic aortic pressure was maintained at 120/80 mmHg to mimic the physiologic load experienced by the aortic valve. The leaflet of the test valve was marked with 80 India ink dots to form a fan-shaped matrix. From the acquired image sequences, 3-D coordinates of the marker matrix were derived and hence the surface contour, local mean and Gaussian curvatures at each opening and closing phase during one cardiac cycle were reconstructed. It is generally believed that the long-term failure rate of BHV is related to the uneven distribution of mechanical stresses occurring in the leaflet material during opening and closing. Unfortunately, a quantitative analysis of the leaflet motion under physiological conditions has not been reported. The newly developed technique permits frame-by-frame mapping of the leaflet surface, which is essential for dynamic analysis of stress-strain behavior in BHV.  相似文献   

13.
Detailed comparisons of aortic valvular flow using saline, with that using a glycerin-based blood analog in a pulse duplicator are reported. The experiments were carried out to determine whether exposure to glycerin caused stiffening of bioprosthetic valve leaflets. For two pericardial bioprostheses and for a mechanical valve we observed a fluid-dependent systolic volume flow, a fluid-dependent regurgitation volume, and fluid-dependent systolic pressure differences. Volume flow changes, both forward and reverse, are independent of valve type. The observed pressure differences, while proportional to fluid density for the mechanical valve, are fluid dependent in a more complicated way for the pericardial valves. However, no trend of changing valvular performance was observed over as much as 80 days of glycerin exposure, indicating that it is unlikely that the fluid-dependent performance was caused by glycerin absorption by the valve leaflets. We conclude that valid performance comparisons between mechanical and bioprosthetic valves may be made using a glycerin-based fluid. Furthermore, it appears that any detailed analysis of the physical mechanisms of valvular flow dissipation will require a properly matched blood analog.  相似文献   

14.
To optimize the mechanical properties and integrity of tissue-engineered aortic heart valves, it is necessary to gain insight into the effects of mechanical stimuli on the mechanical behavior of the tissue using mathematical models. In this study, a finite-element (FE) model is presented to relate changes in collagen fiber content and orientation to the mechanical loading condition within the engineered construct. We hypothesized that collagen fibers aligned with principal strain directions and that collagen content increased with the fiber stretch. The results indicate that the computed preferred fiber directions run from commissure to commissure and show a strong resemblance to experimental data from native aortic heart valves.  相似文献   

15.
Functional analysis of bioprosthetic heart valves   总被引:2,自引:0,他引:2  
Glutaraldehyde-treated bovine pericardium is used successfully as bioprosthetic material in the manufacturing of heart valves leaflets. The mechanical properties of bovine pericardial aortic valve leaflets seem to influence its mechanical behaviour and the failure mechanisms. In this study the effect of orthotropy on tricuspid bioprosthetic aortic valve was analysed, using a three-dimensional finite element model, during the entire cardiac cycle. Multiaxial tensile tests were also performed to determine the anisotropy of pericardium. Seven different models of the same valve were analysed using different values of mechanical characteristics from one leaflet to another, considering pericardium as an orthotropic material. The results showed that even a small difference between values along the two axes of orthotropy can negatively influence leaflets performance as regard both displacement and stress distribution. Leaflets of bovine pericardium bioprostheses could be manufactured to be similar to natural human heart valves reproducing their well-known anisotropy. In this way it could be possible to improve the manufacturing process, durability and function of pericardial bioprosthetic valves.  相似文献   

16.
A numerical method is developed for simulating unsteady, 3-D, laminar flow through a bileaflet mechanical heart valve with the leaflets fixed. The method employs a dual-time-stepping artificial-compressibility approach together with overset (Chimera) grids and is second-order accurate in space and time. Calculations are carried out for the full 3-D valve geometry under steady inflow conditions on meshes with a total number of nodes ranging from 4 x 10(5) to 1.6 x 10(6). The computed results show that downstream of the leaflets the flow is dominated by two pairs of counter-rotating vortices, which originate on either side of the central orifice in the aortic sinus and rotate such that the common flow of each pair is directed away from the aortic wall. These vortices intensify with Reynolds number, and at a Reynolds number of approximately 1200 their complex interaction leads to the onset of unsteady flow and the break of symmetry with respect to both geometric planes of symmetry. Our results show the highly 3-D structure of the flow; question the validity of computationally expedient assumptions of flow symmetry; and demonstrate the need for highly resolved, fully 3-D simulations if computational fluid dynamics is to accurately predict the flow in prosthetic mechanical heart valves.  相似文献   

17.

Cardiac valves simulation is one of the most complex tasks in cardiovascular modeling. Fluid–structure interaction is not only highly computationally demanding but also requires knowledge of the mechanical properties of the tissue. Therefore, an alternative is to include valves as resistive flow obstacles, prescribing the geometry (and its possible changes) in a simple way, but, at the same time, with a geometry complex enough to reproduce both healthy and pathological configurations. In this work, we present a generalized parametric model of the aortic valve to obtain patient-specific geometries that can be included into blood flow simulations using a resistive immersed implicit surface (RIIS) approach. Numerical tests are presented for geometry generation and flow simulations in aortic stenosis patients whose parameters are extracted from ECG-gated CT images.

  相似文献   

18.
There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years) were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation–but more pronounced in aortic valves–the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age.  相似文献   

19.
The velocity fields downstream of four prosthetic heart valves were mapped in vitro over the entire cross-section of a model aortic root using laser Doppler anemometry. THe Bj?rk-Shiley 60 degrees convexo-concave tilting disc valve, the Smeloff-Cutter caged ball valve, the St. Jude Medical bileaflet valve, and the Ionescu-Shiley standard bioprosthesis were examined under both steady and pulsatile flows. Velocity profiles under steady flow conditions were a good approximation for pulsatile profiles only during midsystole. The pulsatile flow characteristics of the four valves showed variation in large scale flow structures. Comparison of the valves according to pressure drop, shear stress and maximum velocities are also provided.  相似文献   

20.
Graded erythrocythemia was induced by isovolemic loading of packed red blood cells in the toad, Bufo marinus. Blood viscosity, hematocrit, hemoglobin concentration, maximal aortic blood flow rate and maximal rates of oxygen consumption were determined after each load. Blood viscosity was related to hematocrit in the expected exponential manner; ln eta = 0.43 + 0.035 Hct. Maximal blood flow rates in the dorsal aorta were inversely proportional to blood viscosity and fit predictions of the Poiseuille-Hagen flow formula. The effect of increased blood viscosity was to reduce aortic pulse volume, but not maximal heart rate. Maximal systemic oxygen transport capacity (aortic blood flow rate X hemoglobin concentration X O2 binding capacity of hemoglobin) was linearly correlated with the maximal rate of oxygen consumption. These date indicate that optimal hematocrit theory is applicable for maximal blood flow rates in vivo, and that systemic oxygen transport is the primary limitation to aerial VO2 max in amphibians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号