首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
p53 plays a pivotal role in the prevention of human tumor formation. p73 and p63 are new members of the p53 tumor suppressor family, which are becoming increasingly recognized as important players in human tumorigenesis. However, the roles of these proteins are not well elucidated in extrahepatic bile duct (EBD) carcinoma. We examined expressions of the p63 and p73 genes and proteins in normal biliary epithelia, biliary dysplasias, and EBD carcinomas using immunohistochemistry and RT-PCR analysis. p63 and p73 proteins were overexpressed in 26.3 and 41.0% of EBD carcinomas, respectively. p63 protein expression was more frequent in tumors with vascular invasion (P = 0.002) and distal location (P = 0.04), while p73 expression was more common in cancers with deeper tumor invasion (P = 0.04). Patients with tumors co-expressing both p63 and p73 were found to have a significantly worse overall survival rate compared to those with either p63 or p73 expression (P < 0.05) as determined in univariate and multivariate analyses. Our results strongly imply that the p53 family members have different functions in EBD carcinomas. Our data also indicate that interactions between p63 and p73 play an important role in tumorigenesis of EBD carcinoma.  相似文献   

3.
Photodynamic therapy (PDT) of cancer is an alternative treatment for tumors resistant to chemo- and radiotherapy. It induces cancer cell death mainly through generation of reactive oxygen species by a laser light-activated photosensitizer. It has been suggested that the p53 tumor suppressor protein sensitizes some human cancer cells to PDT. However, there is still no direct evidence for this. We have demonstrated here for the first time that the photosensitizer protoporphyrin IX (PpIX) binds to p53 and disrupts the interaction between p53 tumor suppressor protein and its negative regulator HDM2 in vitro and in cells. Moreover, HCT116 colon cancer cells exhibited a p53-dependent sensitivity to PpIX in a dose-dependent manner, as was demonstrated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and fluorescence-activated cell sorter (FACS) analysis of cell cycle profiles. We have also observed induction of p53 target pro-apoptotic genes, e.g. puma (p53-up-regulated modulator of apoptosis), and bak in PpIX-treated cells. In addition, p53-independent growth suppression by PpIX was detected in p53-negative cells. PDT treatment (2 J/cm2) of HCT116 cells induced p53-dependent activation of pro-apoptotic gene expression followed by growth suppression and induction of apoptosis.  相似文献   

4.
Among the hundreds of oncogenes and tumor suppressors that have been identified in the past 50 years, p53 is probably the best characterized; nevertheless, new functions are constantly being discovered. As a tumor suppressor, p53 regulates cellular responses to different stress stimuli by inducing reversible cell cycle arrest and DNA repair, or triggering senescence or apoptosis. Recent findings on the regulation of stem cell (SC) division and reprogramming suggest the intriguing possibility that p53 also carries out its tumor suppression function by regulating SC homeostasis. Specifically, p53 activation may counteract SC expansion by several emerging mechanisms including restriction of self-renewing divisions, inhibition of symmetric division and block of reprogramming of somatic/progenitor cells into SCs.  相似文献   

5.
6.
Defects in vital genes occur in a high percentage of human diseases, including cancer. Defects could be due to the accumulation of mutations in the genes leading to the production of faulty proteins. Although the biological significance of such mutant proteins still remains in question, recent experiments have demonstrated that genes overproducing faulty proteins are often associated with tumor cell growth. Thep53tumor suppressor gene is the most frequently mutated gene yet identified in human cancer. It is mutated in wide variety of human cancers. Missense mutations are common for thep53gene and are essential for the transforming ability of the oncogene. The wild-typep53gene may directly suppress cell growth or indirectly activate genes that are involved in growth suppression. Thus inactivation of wild-typep53by point mutation may contribute to transformation. Therefore, identification of such mutations have potential clinical implications. Recently, polymerase chain reaction-based advanced molecular techniques had a profound impact on the detection and identification of such mutations. These techniques are sensitive and quantitative tools for the study of the pathogenesis of neoplastic diseases at the single-cell level.  相似文献   

7.
8.
9.
10.
11.
12.
The importance of the DNA damage response (DDR) pathway in development, genomic stability, and tumor suppression is well recognized. Although 53BP1 and MDC1 have been recently identified as critical upstream mediators in the cellular response to DNA double-strand breaks, their relative hierarchy in the ataxia telangiectasia mutated (ATM) signaling cascade remains controversial. To investigate the divergent and potentially overlapping functions of MDC1 and 53BP1 in the ATM response pathway, we generated mice deficient for both genes. Unexpectedly, the loss of both MDC1 and 53BP1 neither significantly increases the severity of defects in DDR nor increases tumor incidence compared with the loss of MDC1 alone. We additionally show that MDC1 regulates 53BP1 foci formation and phosphorylation in response to DNA damage. These results suggest that MDC1 functions as an upstream regulator of 53BP1 in the DDR pathway and in tumor suppression.  相似文献   

13.
14.
BACKGROUND: p51 (p73L/p63/p40/KET), a recently isolated novel p53 homologue, binds to p53-responsive elements to upregulate some p53 target genes and has been suggested to share partially overlapping functions with p53. p51 may be a promising candidate target molecule for anti-cancer therapy. METHODS: In this study, we adenovirally transduced p51A cDNA into human lung, gastric and pancreatic cancer cells and analyzed the intracellular function of p51 in anti-oncogenesis in vitro and in vivo. RESULTS: Overexpression of p51A revealed an anti-proliferative effect in vitro in all the cancer cells examined in this study. The anchorage-dependent and -independent cell growth of EBC1 cells carrying mutations in both p51 and p53 was suppressed and significant apoptosis following adenoviral transduction with p51 and/or p53 was seen. This growth suppression was cooperatively enhanced by the combined infection with adenoviral vectors encoding both p51 and p53. Furthermore, p51 activated several, but not all, p53-inducible genes, indicating that the mechanisms controlling p51- and p53-mediated tumor suppression differed. CONCLUSIONS: Our observations indicate that, although p51 exhibited reduced anti-oncogenetic effects compared with p53, it cooperatively enhanced the anti-tumor effects of p53. Our results suggest that p51 functions as a tumor suppressor in human cancer cells in vitro and in vivo and may be useful as a potential tool for cancer gene therapy.  相似文献   

15.
The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical ‘acute’ p53 binding profile, ‘chronic’ p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory ‘p53 hubs’ where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the ‘lipogenic phenotype’, a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.  相似文献   

16.
The BCL-2 gene was first discovered because of its involvement in the t(14;18) chromosomal translocations commonly found in lymphomas, which result in deregulation of BCL-2 gene expression and cause inappropriately high levels of Bcl-2 protein production. Expression of the BCL-2 gene can also become altered in human cancers through other mechanisms, including loss of the p53 tumor suppressor which normally functions as a repressor of BCL-2 gene expression in some tissues. Bcl-2 is a blocker of programmed cell death and apoptosis that contributes to neoplastic cell expansion by preventing cell turnover caused by physiological cell death mechanisms, as opposed to accelerating rates of cell division. Overproduction of the Bcl-2 protein also prevents cell death induced by nearly all cytotoxic anticancer drugs and radiation, thus contributing to treatment failures in patients with some types of cancer. Several homologs of Bcl-2 have recently been discovered, some of which function as inhibitors of cell death and others as promoters of apoptosis that oppose the actions of the Bcl-2 protein. Many of these Bcl-2 family proteins can interact through formation of homo- and heterotypic dimers. In addition, several nonhomologous proteins have been identified that bind to Bcl-2 and that can modulate apoptosis. These protein-protein interactions may eventual serve as targets for pharmacologically manipulating the physiological cell death pathway for treatment of cancer and several other diseases. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
19.
20.
In response to various stress signals, which introduce infidelity into the processes of cell growth and division, p53 initiates cell-cycle arrest, apoptosis, or senescence to maintain fidelity throughout the cell cycle. Although these functions are traditionally thought of as the major functions of the p53 protein for tumor suppression, recent studies have revealed some additional novel functions of the p53 pathway. These include the down-regulation of two central cell-growth pathways, the IGF/AKT-1 and mTOR pathways, and the up-regulation of the activities of the endosomal compartment. The IGF-1/AKT and mTOR pathways are two evolutionarily conserved pathways that play critical roles in regulation of cell proliferation, survival, and energy metabolism. In response to stress, p53 transcribes a group of critical negative regulators in these two pathways, including IGF-BP3, PTEN, TSC2, AMPK β1, and Sestrin1/2, which leads to the reduction in the activities of these two pathways. Furthermore, p53 transcribes several critical genes regulating the endosomal compartment, including TSAP6, Chmp4C, Caveolin-1, and DRAM, and increases exosome secretion, the rate of endosomal removal of growth factor receptors (e.g., EGFR) from cell surface, and enhances autophagy. These activities all function to slow down cell growth and division, conserve and recycle cellular resources, communicate with adjacent cells and dendritic cells of the immune system, and inform other tissues of the stress signals. This coordinated regulation of IGF-1/AKT/mTOR pathways and the endosomal compartment by the p53 pathway integrates the molecular, cellular, and systemic levels of activities and prevents the accumulations of errors in response to stress and restores cellular homeostasis after stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号