首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DC) manipulated ex vivo can induce tumor immunity in experimental murine tumor models. To improve DC-based tumor vaccination, we studied whether DC maturation affects the T cell-activating potential in vitro and the induction of tumor immunity in vivo. Maturation of murine bone marrow-derived DC was induced by GM-CSF plus IL-4 alone or by further addition of TNF-alpha or a cytidine-phosphate-guanosine (CpG)-containing oligonucleotide (ODN-1826), which mimics the immunostimulatory effect of bacterial DNA. Flow cytometric analysis of costimulatory molecules and MHC class II showed that DC maturation was stimulated most by ODN-1826, whereas TNF-alpha had an intermediate effect. The extent of maturation correlated with the secretion of IL-12 and the induction of alloreactive T cell proliferation. In BALB/c mice, s.c. injection of colon carcinoma cells resulted in rapidly growing tumors. In this model, CpG-ODN-stimulated DC cocultured with irradiated tumor cells also induced prophylactic protection most effectively and were therapeutically effective when administered 3 days after tumor challenge. Thus, CpG-ODN-enhanced DC maturation may represent an efficient means to improve clinical tumor vaccination.  相似文献   

2.
Although low doses of tumor-derived stress protein gp96 elicit protective immunity to the tumor from which it is isolated, protection is lost at high doses because of the induction of immunoregulatory CD4+ T cells. This study evaluated the influence of gp96 on resting rat bone marrow-derived dendritic cells (BMDCs) and purified CD3+ T cells. In contrast to previous reports, gp96 had no effect on adhesion and costimulatory molecule expression by BMDCs, nor did it influence interleukin (IL)-10 and IL-12 secretion or their allostimulatory capacity. Gp96 did not bind to BMDCs but dose-dependently bound to CD4+ and CD8+ T cells. At low concentrations (1 and 25 microg/mL), gp96 acted as a costimulator of CD3+ T cells, inducing proliferation and the secretion of interferon (IFN)-gamma- and IL-10. Gp96 also increased the proliferation of CD28-costimulated CD3+ T cells and their secretion of IFN-gamma, IL-4, and IL-10. Gp96 had no effect at higher concentrations (50 and 100 microg/mL), despite the occurrence of cell surface binding at these concentrations. These findings indicate that gp96 can act as a costimulatory molecule for CD3+ T cells, and an observed increase in the IL-10: IFN-gamma secretion ratio induced by gp96 suggests that it might, at appropriate concentrations, promote a regulatory T-helper 2 (Th2)-like phenotype.  相似文献   

3.
4.
Activation of dendritic cells (DC) is crucial for priming of cytotoxic T lymphocytes (CTL), which have a critical role in tumor immunity, and it is considered that adjuvants are necessary for activation of DC and for enhancement of cellular immunity. In this study, we examined an adjuvant capacity of recombinant cholera toxin B subunit (rCTB), which is non-toxic subunit of cholera toxin, on maturation of murine splenic DC. After the in vitro incubation of DC with rCTB, the expression of MHC class II and B7-2 on DC was upregulated and the secretion of IL-12 from DC was enhanced. In addition, larger DC with longer dendrites were observed. These data suggest that rCTB induced DC maturation. Subsequently, we examined the induction of tumor immunity by rCTB-treated DC by employing Meth A tumor cells in mice. Pretreatment with subcutaneous injection of rCTB-treated DC pulsed with Meth A tumor lysate inhibited the growth of the tumor cells depending on the number of DC. Moreover, intratumoral injection of rCTB-treated DC pulsed with tumor lysate had therapeutic effect against established Meth A tumor. Immunization with DC activated by rCTB and the tumor lysate increased number of CTL precursor recognizing Meth A tumor. The antitumor immune response was significantly inhibited in CD8+ T cell-depleted mice, although substantial antitumor effect was observed in CD4+ T cell-depleted mice. These results indicated that rCTB acts as an adjuvant to enhance antitumor immunity through DC maturation and that CD8+ T cells play a dominant role in the tumor immunity. Being considered to be safe, rCTB may be useful as an effective adjuvant to raise immunity for a tumor in clinical application.  相似文献   

5.
It has been known for some time that functional properties of dendritic cells (DC), and in particular their ability to process and present Ags to T cells, can be modulated by cytokine-induced maturation and by interactions with tumor cells. However, the molecular basis for these functional changes is unknown. We have investigated whether changes in expression of Ag-processing machinery (APM) components in DC are associated with alterations in their ability to present tumor-derived Ags to T cells. Using a panel of mAbs specific for individual APM components and a quantitative flow cytometry-based method, the level of APM components was measured in DC generated from peripheral blood monocytes of 12 normal donors and of 8 patients with cancer. Immature DC had significantly lower (p < 0.01) expression of MB1, LMP-7, LMP-10, TAP-1, and tapasin than mature DC. However, maturation in the presence of a cytokine mixture up-regulated expression of these components in DC obtained from normal donors and patients with cancer. Immature DC incubated with tumor cells had significantly lower (p < 0.001) expression of MB1, LMP-2, LMP-7, LMP-10, and endoplasmic reticulum p75 than controls. These changes were associated with a decreased ability of DC to present tumor-derived Ags to T cells, as measured in ELISPOT assays and with apoptosis of T cells in DC-T cell cultures. Thus, tumor cells have a significant suppressive effect on DC; however, ex vivo maturation of DC derived from patients with cancer in a polarizing cytokine mix restores normal expression of APM components and Ag-processing capabilities.  相似文献   

6.
Oncolytic viruses can exert their antitumor activity via direct oncolysis or activation of antitumor immunity. Although reovirus is currently under clinical investigation for the treatment of localized or disseminated cancer, any potential immune contribution to its efficacy has not been addressed. This is the first study to investigate the ability of reovirus to activate human dendritic cells (DC), key regulators of both innate and adaptive immune responses. Reovirus induced DC maturation and stimulated the production of the proinflammatory cytokines IFN-alpha, TNF-alpha, IL-12p70, and IL-6. Activation of DC by reovirus was not dependent on viral replication, while cytokine production (but not phenotypic maturation) was inhibited by blockade of PKR and NF-kappaB signaling. Upon coculture with autologous NK cells, reovirus-activated DC up-regulated IFN-gamma production and increased NK cytolytic activity. Moreover, short-term coculture of reovirus-activated DC with autologous T cells also enhanced T cell cytokine secretion (IL-2 and IFN-gamma) and induced non-Ag restricted tumor cell killing. These data demonstrate for the first time that reovirus directly activates human DC and that reovirus-activated DC stimulate innate killing by not only NK cells, but also T cells, suggesting a novel potential role for T cells in oncolytic virus-induced local tumor cell death. Hence reovirus recognition by DC may trigger innate effector mechanisms to complement the virus's direct cytotoxicity, potentially enhancing the efficacy of reovirus as a therapeutic agent.  相似文献   

7.
Dendritic cell (DC)-based antitumor immunotherapy is a promising cancer therapy. We have previously shown that tumor-derived TGF-beta limits the efficacy of the DC/tumor fusion vaccine in mice. In the current study we investigated the effect of neutralizing tumor-derived TGF-beta on the efficacy of the DC/tumor fusion vaccine. An adenovirus encoding human TGF-beta receptor type II fused to the Fc region of human IgM (Adv-TGF-beta-R) or a control adenovirus encoding LacZ (Adv-LacZ) was used to express a soluble form of the neutralizing TGF-beta receptor (TGF-beta-R). Murine breast carcinoma cells, 4T1, but not bone marrow-derived DCs, were successfully transfected with Adv-TGF-beta-R (4T1+Adv-TGF-beta-R) using a multiplicity of infection of 300. Immunization with irradiated 4T1+Adv-TGF-beta-R tumor cells conferred enhanced antitumor immunity compared with immunization with irradiated 4T1+Adv-LacZ tumor cells. The DC/4T1+Adv-TGF-beta-R fusion vaccine offered enhanced protective and therapeutic efficacy compared with the DC/4T1-Adv-LacZ fusion vaccine. Because TGF-beta is known to induce regulatory T cells (Tregs), we further showed that the DC/4T1+Adv-TGF-beta-R fusion vaccine induced fewer CD4(+)CD25(+)Foxp3(+) Tregs than the DC/4T1+Adv-LacZ fusion vaccine in vitro and in vivo. The suppressive role of splenic CD4(+)CD25(+) Tregs isolated from mice immunized with DC/4T1+Adv-LacZ was demonstrated using a CTL killing assay. Similar enhanced therapeutic efficacy was observed in murine renal cell carcinoma, RenCa, which expresses a high level of TGF-beta. We conclude that the blockade of tumor-derived TGF-beta reduces Treg induction by the DC/tumor fusion vaccine and enhances antitumor immunity. This may be an effective strategy to enhance human DC-based antitumor vaccines.  相似文献   

8.
It has previously been reported that cholera toxin (CT) is a potent mucosal adjuvant that enhances Th2 or mixed Th1/Th2 type responses to coadministered foreign Ag. Here we demonstrate that CT also promotes the generation of regulatory T (Tr) cells against bystander Ag. Parenteral immunization of mice with Ag in the presence of CT induced T cells that secreted high levels of IL-4 and IL-10 and lower levels of IL-5 and IFN-gamma. Ag-specific CD4(+) T cell lines and clones generated from these mice had cytokine profiles characteristic of Th2 or type 1 Tr cells, and these T cells suppressed IFN-gamma production by Th1 cells. Furthermore, adoptive transfer of bone marrow-derived dendritic cells (DC) incubated with Ag and CT induced T cells that secreted IL-4 and IL-10 and low concentrations of IL-5. It has previously been shown that IL-10 promotes the differentiation or expansion of type 1 Tr cells. Here we found that CT synergized with low doses of LPS to induce IL-10 production by immature DC. CT also enhanced the expression of CD80, CD86, and OX40 (CD134) on DC and induced the secretion of the chemokine, macrophage inflammatory protein-2 (MIP-2), but inhibited LPS-driven induction of CD40 and ICAM-I expression and production of the inflammatory cytokines/chemokines IL-12, TNF-alpha, MIP-1alpha, MIP-1beta, and monocyte chemoattractant protein-1. Our findings suggest that CT induces maturation of DC, but, by inducing IL-10, inhibiting IL-12, and selectively affecting surface marker expression, suppresses the generation of Th1 cells and promotes the induction of T cells with regulatory activity.  相似文献   

9.
Freshly isolated hepatic dendritic cells (DC) are comparatively immature, relatively resistant to maturation, and can downmodulate effector T cell responses. Molecular mechanisms that underlie these properties are ill defined. DNAX-activating protein of 12 kDa (DAP12) is an ITAM-bearing transmembrane adaptor protein that integrates signals through several receptors, including triggering receptor expressed on myeloid cells-1, -2, and CD200R. Notably, DC propagated from DAP12-deficient mice exhibit enhanced maturation in response to TLR ligation. Given the constitutive exposure of liver DC to endotoxin draining from the gut, we hypothesized that DAP12 might regulate liver DC maturation. We show that DAP12 is expressed by freshly isolated liver, spleen, kidney, and lung myeloid DC. Moreover, inhibition of DAP12 expression by liver DC using small interfering RNA promotes their phenotypic and functional maturation, resulting in enhanced TNF-α, IL-6, and IL-12p70 production, reduced secretion of IL-10, and enhanced CD4(+) and CD8(+) T cell proliferation. Furthermore, DAP12 silencing correlates with decreased STAT3 phosphorylation in mature liver DC and with diminished expression of the IL-1R-associated kinase-M, a negative regulator of TLR signaling. These findings highlight a regulatory role for DAP12 in hepatic DC maturation, and suggest a mechanism whereby this function may be induced/maintained.  相似文献   

10.
Dendritic cells (DC) loaded with tumor associated antigens (TAA) are often used for the vaccination of cancer patients; however methodologies for the vaccine preparation have not yet been standardized. The purpose of this work was to optimize the ex-vivo production of functional TAA-loaded DC that would produce interleukin-2 (IL-12) and enhance the T cell response. We generated ex-vivo DC from human monocytes with granulocyte macrophage-colony stimulating factor (GM-CSF) and IL-4, and whole necrotic tumor cells (cell lysates) of cancer cell lines were used as model TAA. DC were loaded with lysates without or with additional tumor necrosis factor-alpha (TNF-alpha), or cytokine combination treatments and tested for functional ability in vitro. Tumor cell lysates alone did not fully mature DC either phenotypically or functionally. After antigen uptake additional maturation signals were necessary. TNF-alpha matured DC phenotypically, but additional interferon-gamma (IFN-gamma) treatment was necessary to achieve functional maturation, the production of significant amounts of IL-12. Since IL-12 production by DC increased during the first 24 h of maturation and declined by 48 h, proper timing of the ex-vivo DC treatment was crucial for the generation of functionally mature antigen-loaded DC. Our results suggest that after allowing 4 h of tumor lysate uptake by immature DC, further treatment with TNF-alpha and IFN-gamma for 24 h provides the optimal conditions to obtain functional TAA-loaded DC. These TAA-loaded cytokine pretreated DC then prime na?ve T cells, and enhance both T helper 1 (Th1), Th2 and cytotoxic T lymphocyte (CTL) responses, that are necessary to achieve an effective, specific anti-tumor response.  相似文献   

11.
Immature monocyte-derived dendritic cells (DC) strongly express the endocytic mannose receptor (MR). Addition of a specific anti-MR mAb (clone PAM-1) for 24 h to cultures of immature DC induced phenotypical and functional maturation of the cells, assessed as up-regulation of costimulatory molecules and CD83, and chemotactic response to CCL19. A different isotype-matched anti-MR mAb (clone 19.2) had no significant effect. Engagement of MR with mAb PAM-1 induced the production of the anti-inflammatory cytokines IL-10, IL-1R antagonist, and of the nonsignaling IL-1R type II. In contrast IL-1beta, TNF, and IL-12 were not produced. PAM-1-treated DC were unable to polarize Th1 effector cells and did not secrete the chemokines CXCL10 and CCL19; in turn, they produced large amounts of CCL22 and CCL17, thus favoring the amplification of Th2 circuits. T cells cocultured with PAM-1-matured DC initially proliferated but later became anergic and behaved as suppressor/regulatory cells. Natural ligands binding to MR had differential effects. MUC III (a partially purified mucin), biglycan (a purified complex proteoglycan), and mannosylated lipoarabinomannan from Mycobacterium tuberculosis affected cytokine production with high IL-10, IL-1R antagonist, IL-1R type II, and inhibition of IL-12. In contrast, mannan, dextran, and thyroglobulin had no significant effect. In conclusion, the appropriate engagement of the MR by mAb PAM-1 and selected natural ligands elicit a secretory program in mono-derived DC characterized by a distinct profile of cytokines/chemokines with the ability to dampen inflammation and to inhibit the generation of Th1-polarized immune responses.  相似文献   

12.
13.
Tumors produce a number of immunosuppressive factors that block the maturation of CD34+ stem cells into dendritic cells (DC). We hypothesized that tumors might also interfere with the maturation and/or function of human monocyte-derived DC. In contrast to stem cells, we found that CD14+ cells responded to tumor culture supernatant (TSN) by increasing expression of APC surface markers, up-regulating nuclear translocation of RelB, and developing allostimulatory activity. Although displaying these characteristics of mature DC, TSN-exposed DC lacked the capacity to produce IL-12, did not acquire full allostimulatory activity, and rapidly underwent apoptosis. The effects of TSN appeared to be specific for maturing DC, and were not reversed by Abs against known DC regulatory factors including IL-10, vascular endothelial growth factor, TGF-beta, or PGE2. Supernatants collected from nonmalignant cell sources had no effect on DC maturation. The altered maturation and early apoptosis of monocyte-derived DC may represent another mechanism by which tumors evade immune detection.  相似文献   

14.
15.
Dendritic cells (DC) have important functions in T cell immunity and T cell tolerance. Previously, it was believed that T cell unresponsiveness induced by immature DC (iDC) is caused by the absence of inflammatory signals in steady-state in vivo conditions and by the low expression levels of costimulatory molecules on iDC. However, a growing body of evidence now indicates that iDC can also actively maintain peripheral T cell tolerance by the induction and/or stimulation of regulatory T cell populations. In this study, we investigated the in vitro T cell stimulatory capacity of iDC and mature DC (mDC) and found that both DC types induced a significant increase in the number of transforming growth factor (TGF)-beta and interleukin (IL)-10 double-positive CD4(+) T cells within 1 week of autologous DC/T cell co-cultures. In iDC/T cell cultures, where antigen-specific T cell priming was significantly reduced as compared to mDC/T cell cultures, we demonstrated that the tolerogenic effect of iDC was mediated by soluble TGF-beta and IL-10 secreted by CD4(+)CD25(-)FOXP3(-) T cells. In addition, the suppressive capacity of CD4(+) T cells conditioned by iDC was transferable to already primed antigen-specific CD8(+) T cell cultures. In contrast, addition of CD4(+) T cells conditioned by mDC to primed antigen-specific CD8(+) T cells resulted in enhanced CD8(+) T cell responses, notwithstanding the presence of TGF-beta(+)/IL-10(+) T cells in the transferred fraction. In summary, we hypothesize that DC have an active role in inducing immunosuppressive cytokine-secreting regulatory T cells. We show that iDC-conditioned CD4(+) T cells are globally immunosuppressive, while mDC induce globally immunostimulatory CD4(+) T cells. Furthermore, TGF-beta(+)/IL-10(+) T cells are expanded by DC independent of their maturation status, but their suppressive function is dependent on immaturity of DC.  相似文献   

16.
Vγ9Vδ2 T cells respond to pyrophosphate antigens and display potent antitumour activity in vitro. We have investigated the potential of the most potent phosphoantigen known to activate Vγ9Vδ2 T cells, (E)-4-hydroxy-3-methyl-but-2 enyl pyrophosphate (HMB-PP), as an adjuvant for dendritic cell (DC)-based vaccines. A single stimulation of peripheral blood mononuclear cells with HMB-PP and IL-2 was sufficient to generate lines of effector memory Vγ9Vδ2 T cells that retained their cytolytic and cytokine secretion activities. These cells induced differentiation of DC into semi-mature antigen-presenting cells expressing CD86, CD11c, CD54, HLA-DR, CD83 and CD40, which secreted low levels of bioactive IL-12 but no IL-10. Vγ9Vδ2 T cells also strongly costimulated IL-12 release but inhibited IL-10 production by lipopolysaccharide (LPS)-stimulated DC. When substituted for Vγ9Vδ2 T cells, IFN-γ did not induce full DC maturation but it augmented IL-12 and inhibited IL-10 release by LPS-stimulated DC, in a manner similar to HMB-PP-activated Vγ9Vδ2 T cells. Our findings indicate that Vγ9Vδ2 T cells, stimulated with nanomolar concentrations of HMB-PP, strongly promote T helper type 1 (Th1) responses through their ability to induce DC maturation and IL-12 secretion. This adjuvant activity may prove useful in DC-based cancer therapies.  相似文献   

17.
Interleukin-12 (IL-12) is a heterodimeric pro-inflammatory cytokine that induces the production of interferon-gamma (IFN-gamma), favours the differentiation of T helper 1 (T(H)1) cells and forms a link between innate resistance and adaptive immunity. Dendritic cells (DCs) and phagocytes produce IL-12 in response to pathogens during infection. Production of IL-12 is dependent on differential mechanisms of regulation of expression of the genes encoding IL-12, patterns of Toll-like receptor (TLR) expression and cross-regulation between the different DC subsets, involving cytokines such as IL-10 and type I IFN. Recent data, however, argue against an absolute requirement for IL-12 for T(H)1 responses. Our understanding of the relative roles of IL-12 and other factors in T(H)1-type maturation of both CD4+ and CD8+ T cells is discussed here, including the participation in this process of IL-23 and IL-27, two recently discovered members of the new family of heterodimeric cytokines.  相似文献   

18.
Sustained intratumoral delivery of IL-12 and GM-CSF can overcome tumor immune suppression and promote T cell-dependent eradication of established disease in murine tumor models. However, the antitumor effector response is transient and rapidly followed by a T suppressor cell rebound. The mechanisms that control the switch from an effector to a regulatory response in this model have not been defined. Because dendritic cells (DC) can mediate both effector and suppressor T cell priming, DC activity was monitored in the tumors and the tumor-draining lymph nodes (TDLN) of IL-12/GM-CSF-treated mice. The studies demonstrated that therapy promoted the recruitment of immunogenic DC (iDC) to tumors with subsequent migration to the TDLN within 24-48 h of treatment. Longer-term monitoring revealed that iDC converted to an IDO-positive tolerogenic phenotype in the TDLN between days 2 and 7. Specifically, day 7 DC lost the ability to prime CD8(+) T cells but preferentially induced CD4(+)Foxp3(+) T cells. The functional switch was reversible, as inhibition of IDO with 1-methyl tryptophan restored immunogenic function to tolerogenic DC. All posttherapy immunological activity was strictly associated with conventional myeloid DC, and no functional changes were observed in the plasmacytoid DC subset throughout treatment. Importantly, the initial recruitment and activation of iDC as well as the subsequent switch to tolerogenic activity were both driven by IFN-γ, revealing the dichotomous role of this cytokine in regulating IL-12-mediated antitumor T cell immunity.  相似文献   

19.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

20.
A key factor in dendritic cell (DC)-based tumor immunotherapy is the identification of an immunoadjuvant capable of inducing DC maturation to enhance cellular immunity. The efficacy of a 50S ribosomal protein L7/L12 (rplL) from Mycobacterium tuberculosis Rv0652, as an immunoadjuvant for DC-based tumor immunotherapy, and its capacity for inducing DC maturation was investigated. In this study, we showed that Rv0652 is recognized by Toll-like receptor 4 (TLR4) to induce DC maturation, and pro-inflammatory cytokine production (TNF-alpha, IL-1beta, and IL-6) that is partially modulated by both MyD88 and TRIF signaling pathways. Rv0652-activated DCs could activate naïve T cells, effectively polarize CD4+ and CD8+ T cells to secrete IFN-gamma, and induce T cell-mediated-cytotoxicity. Immunization of mice with Rv0652-stimulated ovalbumin (OVA)-pulsed DCs resulted in induction of a potent OVA-specific CD8+ T cell response, slowed tumor growth, and promoted long-term survival in a murine OVA-expressing E.G7 thymoma model. These findings suggest that Rv0652 enhances the polarization of T effector cells toward a Th1 phenotype through DC maturation, and that Rv0652 may be an effective adjuvant for enhancing the therapeutic response to DC-based tumor immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号