首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of the enzyme (16-ene-C19-steroid synthesizing enzyme) responsible for the conversion of C21-steroids to 16-ene-C19-steroids, which was localized on pig testicular microsomes, was inhibited by some typical imidazole antifungal compounds such as clotrimazole, econazole, miconazole and ketoconazole which are known to be universal inhibitors of cytochrome P-450-dependent enzymes. The 50% inhibitory concentrations of clotrimazole, econazole and miconazole were 0.29, 0.36 and 1.25 microM, respectively for 16-ene-C19-steroid synthesizing enzyme activity. Clotrimazole was the most powerful inhibitor of all the compounds examined, which shows the competitive inhibition for 16-ene-C19-steroid synthesizing enzyme activity. The Ki-value was 0.26 microM for its activity. The degree of the inhibition by these imidazole compounds was very similar to the inhibition of 17 alpha-hydroxylase and C17,20-lyase activities on pig testicular microsomes.  相似文献   

2.
5 alpha-Dihydrotestosterone, the principal androgen mediating prostate growth and function in the rat, is formed from testosterone by steroid 5 alpha-reductase. The inactivation of 5 alpha-dihydrotestosterone involves reversible reduction to 5 alpha-androstane-3 beta,17 beta-diol by 3 beta-hydroxysteroid oxidoreductase followed by 6 alpha-, 7 alpha-, or 7 beta-hydroxylation. 5 alpha-Androstane-3 beta,17 beta-diol hydroxylation represents the ultimate inactivation step of dihydrotestosterone in rat prostate and is apparently catalyzed by a single, high-affinity (Km approximately 0.5 microM) microsomal cytochrome P450 enzyme. The present studies were designed to determine if 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes is inhibited by agents that are known inhibitors of androgen-metabolizing enzymes. Inhibitors of steroid 5 alpha-reductase (4-azasteroid analogs; 10 microM) or inhibitors of 3 beta-hydroxysteroid oxidoreductase (trilostane, azastene, and cyanoketone; 10 microM) had no appreciable effect on the 6 alpha-, 7 alpha-, or 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol (10 microM) by rat prostate microsomes. Imidazole-type antimycotic drugs (ketoconazole, clotrimazole, and miconazole; 0.1-10 microM) all markedly inhibited 5 alpha-androstane-3 beta,17 beta-diol hydroxylation in a concentration-dependent manner, whereas triazole-type antimycotic drugs (fluconazole and itraconazole; 0.1-10 microM) had no inhibitory effect. The rank order of inhibitory potency of the imidazole-type antimycotic drugs was miconazole greater than clotrimazole greater than ketoconazole. In the case of clotrimazole, the inhibition was shown to be competitive in nature, with a Ki of 0.03 microM. The imidazole-type antimycotic drugs inhibited all three pathways of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation to the same extent, which provides further evidence that, in rat prostate microsomes, a single cytochrome P450 enzyme catalyzes the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol. These studies demonstrate that certain imidazole-type compounds are potent, competitive inhibitors of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes, which is consistent with the effect of these antimycotic drugs on cytochrome P450 enzymes involved in the metabolism of other androgens and steroids.  相似文献   

3.
Site-directed mutagenesis has been used to replace alanine 305 with phenylalanine (A305F) and serine (A305S) in the active site of cytochrome P450 3A4 (CYP3A4). Enzyme kinetics for diazepam, erythromycin, nifedipine, and testosterone metabolism have been determined for both mutants and wild-type CYP3A4. The A305F mutation abolished diazepam oxidase activity and reduced the S(50) and V(max) for erythromycin N-demethylase activity from 17 to 10 microM and from 3.2 to 1.2 pmol product/min/pmol P450, respectively. The V(max) for testosterone 6beta-hydroxylase activity was also significantly reduced, from 2.3 to 0.6 pmol product/min/pmol P450, whereas the S(50) increased from 33 to 125 microM. The nifedipine oxidase activity was diminished to a lesser extent, down from 6.5 to 4.9 pmol product/min/pmol P450, whereas the S(50) increased from 9 to 42 microM. The K(i) for ketoconazole, a CYP3A4 selective inhibitor, was increased more than 10-fold from 0.050 to 0.55 microM, from 0.052 to 0.73 microM, and from 0.043 to 2.2 microM by the A305F mutation when measured against erythromycin, nifedipine, and testosterone metabolism activities, respectively. Similarly, the inhibition constants of the broader specificity inhibitors; clotrimazole, econazole, and miconazole were increased 3- to 15-fold by the A305F mutation. In contrast, the A305S mutation increased testosterone 6beta-hydroxylase (V(max) = 2.9 pmol product/min/pmol P450) and erythromycin N-demethylase (V(max) = 5.1 pmol product/min/pmol P450) activities, but reduced nifedipine oxidase activity (V(max) = 4.6 pmol product/min/pmol P450). K(i) values for ketoconazole and other azole inhibitors were unchanged by the A305S mutation. It is proposed that in CYP3A4, the mutagenesis of alanine 305 to a phenylalanine increases the steric hindrance of the catalytic center, thereby greatly reducing azole inhibitor binding affinity, but maintaining monoogygenase activity.  相似文献   

4.
The antimalarial activities of some antifungal azole agents (ketoconazole, miconazole, and clotrimazole) have been known for several years, however, their antimalarial mechanism remains equivocal. Our recent study showed that clotrimazole has a relative high affinity for heme, inhibits reduced glutathione-dependent heme catabolism, and enhances heme-induced hemolysis. In the present study, we have found that clotrimazole can remove heme from histidine rich peptide-heme complex, which initiates heme-polymerization in malaria. In addition, we show that two other azoles (ketoconazole and miconazole) behave similarly to clotrimazole in binding to heme: they bind to heme with similar affinities, remove heme from the histidine rich peptide-heme complex and from the reduced glutathione-heme complex to form stable heme-azole complexes with two nitrogenous ligands derived from the imidazole moieties of two azole molecules. We have also revealed that clotrimazole and miconazole have stronger promoting activities for heme-induced hemolysis than ketoconazole, implying that the stronger antimalarial activities of clotrimazole and miconazole might arise from their stronger ability to promote heme-induced hemolysis of clotrimazole and clotrimazole than that of ketoconazole. These results also suggest that ketoconazole and miconazole, like clotrimazole, might possess an antimalarial mechanism relating to their inhibition of heme polymerization and the degradation of reduced glutathione-dependent heme.  相似文献   

5.
Cyclooxygenases catalyze the oxygenation of arachidonic acid to prostaglandin endoperoxides. Cyclooxygenase-2- and the xenobiotic-metabolizing cytochrome P450s 1A and 3A are all aberrantly expressed during colorectal carcinogenesis. To probe for a role of P450s in prostaglandin endoperoxide metabolism, we studied the 12-hydroxyheptadecatrienoate (HHT)/malondialdehyde (MDA) synthase activity of human liver microsomes and purified P450s. We found that human liver microsomes have HHT/MDA synthase activity that is concentration-dependent and inhibited by the P450 inhibitors, ketoconazole and clotrimazole with IC(50) values of 1 and 0.4 microM, respectively. This activity does not require P450 reductase. HHT/MDA synthase activity was present in purified P450s but not in heme alone or other heme proteins. The catalytic activities of various purified P450s were determined by measuring rates of MDA production from prostaglandin endoperoxide. At 50 microM substrate, the catalytic activities of purified human P450s varied from 10 +/- 1 to 0.62 +/- 0.02 min(-1), 3A4 > 2E1 > 1A2. Oxabicycloheptane analogs of prostaglandin endoperoxide, U-44069 and U-46619, induced spectral changes in human P450 3A4 with K(s) values of 240 +/- 20 and 130 +/- 10 microM, respectively. These results suggest that co-expression of cyclooxygenase-2 and P450s in developing cancers may contribute to genomic instability due to production of the endogenous mutagen, MDA.  相似文献   

6.
Ketoconazole, an orally active antifungal drug, is known to inhibit testicular androgen production both in vitro and in vivo. The aim of the present study was to examine the effect of ketoconazole and 13 other imidazole drugs on rat testicular microsomal 17 alpha-hydroxylase, 17,20-lyase, 3 beta-hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-I) and 17 beta-hydroxysteroid oxidoreductase (17 beta-HSOR). The order of decreasing inhibitory effect (determined from Ki values) on 17 alpha-hydroxylase (substrate [3H]progesterone; Km = 89 +/- 0.65 nmol/l; SEM, n = 8) was bifonazole (Ki = 86 +/- 3.3 nmol/l; SEM, n = 4) greater than ketoconazole (160 +/- 4.92) greater than clotrimazole (170 +/- 5.81) greater than miconazole (599 +/- 7.22) greater than econazole (688 +/- 6.98) greater than tioconazole (901 +/- 1.71) greater than isoconazole (1090 +/- 6.96) and on 17,20-lyase (substrate, [3H]17 alpha-hydroxyprogesterone; Km = 250 +/- 0.75 nmol/l; SEM, n = 8) was bifonazole (56.5 +/- 3.4) greater than clotrimazole (81.5 +/- 3.1) greater than ketoconazole (84 +/- 3.5) greater than miconazole (243 +/- 6.3) greater than econazole (325 +/- 5.1) greater than tioconazole (505 +/- 5.2) greater than isoconazole (610 +/- 6.34). However, these imidazole drugs did not inhibit the 3 beta-HSD-I or 17 beta-HSOR activities. A common structural feature of the imidazole drugs having an inhibitory effect was the presence of one or more aromatic rings on the imidazole side chain. In contrast, the imidazole drugs having the imidazole ring fused to a benezene ring, i.e. benzimidazoles (astemizole, mebendazole, thiabendazole) and those having an aliphatic side chain on the N-1 of the imidazole ring (carbimazole, metronidazole, nimorazole, tinidazole) did not inhibit 17 alpha-hydroxylase, 3 beta-HSD-I or 17 beta-HSOR enzyme activities. However some did inhibit 17,20-lyase activity but only at high concentrations. The results of the present study suggest that some imidazole drugs may be useful in clinical situations requiring the suppression of androgen production, for example in the treatment of hormone-dependent prostatic cancer.  相似文献   

7.
Beauvericin is a secondary metabolite natural product from microorganisms and has been shown to have a new potential antifungal activity. In this study, the metabolism and inhibition of beauvericin in human liver microsomes (HLM) and rat liver microsomes (RLM) were investigated. The apparent K(m) and V(max) of beauvericin in HLM were determined by substrate depletion approach and its inhibitory effects on cytochromes P450 (CYP) activities were evaluated using probe substrates, with IC(50) and the (K(i)) values were 1.2 microM (0.5 microM) and 1.3 microM (1.9 microM), respectively for CYP3A4/5 (midazolam) and CYP2C19 (mephenytoin). Similarly, beauvericin was also a potent inhibitor for CYP3A1/2 (IC(50): 1.3 microM) in RLM. Furthermore, the pharmacokinetics of beauvericin in the rat were studied after p.o administration alone and co-administration with ketoconazole, which indicated a pharmacodynamic function may play a role in the synergistic effect on antifungal activity.  相似文献   

8.
Over the past two decades a number of antifungal imidazole derivatives have been approved for use in agricultural. The purpose of this study was to characterize the interaction of a model antifungal imidazole compound with a cytochrome P450 isozyme in a species of fish. Clotrimazole inhibited rainbow trout (Oncorhyncus mykiss) hepatic CYP1A-catalyzed ethoxyresorufin O-deethylase (EROD) activity in vivo and in vitro. Although clotrimazole inhibited EROD activity in vivo, it did not effect CYP1A mRNA levels. Addition of clotrimazole to microsomes produced a type II binding spectrum and clotrimazole was determined to be a noncompetitive mixed-type inhibitor of EROD activity with an IC50 of 190 nM. Since antifungal imidazole compounds may be co-applied with other pesticides, inhibition of cytochrome P450 activity by antifungal imidazole compounds may lead to unexpected toxicological interactions.  相似文献   

9.
J I Mason  B R Carr  B A Murry 《Steroids》1987,50(1-3):179-189
Econazole, imazalil, and prochloraz, which have broad spectrum antimycotic activity, are shown to be potent inhibitors of steroid aromatase activity of human placental microsomes. The IC50 values for the inhibition of aromatase activity by econazole, imazalil, miconazole, prochloraz, clotrimazole, ketoconazole, and aminoglutethimide are 0.03, 0.15, 0.6, 0.7, 1.8, 60, and 45 microM, respectively. Econazole and 4-hydroxyandrostenedione also inhibit the steroid aromatase activity of human fetal liver, a finding which suggests that extraplacental aromatase may have many similarities to the placental enzyme. Econazole is a more effective inhibitor of placental aromatization of 19-hydroxyandrostenedione than of androstenedione. This observation is consistent with the competitive nature of the inhibition of aromatase by imidazole antimycotic agents and the reduced affinity of the placental aromatase enzyme for 19-hydroxyandrostenedione compared to androstenedione. The effectiveness of these imidazole antimycotic agents to inhibit the multiple hydroxylations of progesterone which are catalyzed by human fetal adrenal microsomes is also defined. While all of the imidazole antimycotic agents are potent inhibitors of the 16 alpha-, 17 alpha-, and 21-hydroxylations of progesterone, selective inhibitory profiles are apparent. Ketoconazole is a most potent inhibitor of human fetal adrenal progesterone 16 alpha- and 17 alpha-hydroxylases while clotrimazole and imazalil are the most potent inhibitors of progesterone 21-hydroxylase. These results are strongly supportive that imidazole drugs are selective inhibitors not only of steroid aromatase but also of other microsomal steroid hydroxylases.  相似文献   

10.
The human liver cytochrome P-450 (P-450) proteins responsible for catalyzing the oxidation of mephenytoin, tolbutamide, and hexobarbital are encoded by a multigene family (CYP2C). Although several cDNA clones and proteins related to this "P-450MP" family have been isolated, assignment of specific catalytic activities remains uncertain. Sulfaphenazole was found to inhibit tolbutamide hydroxylation to a greater extent than mephenytoin or hexobarbital hydroxylation. The inhibition by sulfaphenazole was competitive for tolbutamide and hexobarbital hydroxylation but with much different Ki values (5 vs 480 microM, respectively). Inhibition of mephenytoin hydroxylase was not competitive. The results suggest that different P-450 proteins in the P450MP family may be involved in the metabolism of these compounds. A cDNA clone (MP-8) related to the P-450MP family, isolated from a bacteriophage lambda gt11 human liver library, was expressed in Saccharomyces cerevisiae by using the pAAH5 expression vector. Yeast transformed with pAAH5 containing the MP-8 sequence (pAAH5/MP-8) showed a ferrous-CO spectrum typical of the P-450 proteins. Immunoblotting with anti-P450MP revealed that pAAH5/MP-8 microsomes contained a protein with an Mr similar to that of P-450MP-1 (approximately 48,000) that was not present in microsomes from yeast transformed with pAAH5 alone (1.7 X 10(4) molecules of the expressed P-450 per cell). Microsomes from pAAH5/MP-8 contained no detectable mephenytoin 4'-hydroxylase activity but were more active in tolbutamide hydroxylation, on a nanomoles of P-450 basis, than human liver microsomes. The pAAH5/MP-8 microsomes also contained hexobarbital 3'-hydroxylase activity, although the enrichment compared to liver microsomes was not great with respect to the tolbutamide hydroxylase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A dematiaceous fungus, Phialophora richardsiae (Nannf.) Conant, was isolated from human bone. In culture the fungus produced no yeast forms and was less pigmented than two other P. richardsiae isolates. While growth rates were similar, colonial forms differed. Phialides were of two kinds. While both had broad bases and tapered at the tips, only one terminated with a cupulate or rarely a saucer-shaped collarette. Most phialides were hyaline with a few lightly pigmented ones in older cultures. Broth dilution susceptibility testing of the isolates against amphotericin B, miconazole, ketoconazole, clotrimazole, and 5-fluorocytosine showed the fungus was susceptible to miconazole, ketoconazole and amphotericin B at achievable serum levels and resistant to 5-fluorocytosine and clotrimazole. The other isolates were reported to differ in their resistance to miconazole and amphotericin B. Enzyme and salinity studies showed minor difference among the isolates.  相似文献   

12.
J Zhao  T Leemann  P Dayer 《Life sciences》1992,51(8):575-581
The nature of the enzyme(s) catalyzing the major metabolic pathway (5'-hydroxylation) of oxicam NSAIDs was investigated in subcellular preparations of human liver tissue. Microsomal, but not cytosolic, fractions catalyzed the 5'-hydroxylation of tenoxicam. This reaction required NADPH and was inhibited by various nonselective P450 inhibitors (CO, SKF-525A, ketoconazole), but not by the peroxidase inhibitor NaN3. Tenoxicam 5'-hydroxylation exhibited simple Michaelis-menten kinetics compatible with catalysis by a single enzyme, but it strongly inhibited its own oxidation at concentrations higher than 100-150 microM. Piroxicam competitively inhibited tenoxicam 5'-hydroxylation and, conversely, tenoxicam competitively inhibited piroxicam 5'-hydroxylation. Tenoxicam 5'-hydroxylation kinetics were similar in microsomes from one poor and five extensive metabolizers of debrisoquin (CYP2D6). Dextromethorphan (CYP2D6 prototype substrate) and midazolam (CYP3A prototype substrate) had no influence on tenoxicam 5'-hydroxylation, whereas mephenytoin, tolbutamide and sulfaphenazole (Ki = 0.1 microM) inhibited it. This indicates that the 5'-hydroxylation of both piroxicam and tenoxicam is predominantly catalyzed by at least one cytochrome P450 isozyme of the CYP2C subfamily.  相似文献   

13.
The induction of liver microsomal monooxygenase activities elicited by pyrazole, ethanol, and acetone, all shown to be inducers of rat P450j and rabbit P450LM3a, has been compared in inbred strains of DBA/2N, AKR/J, and Balb/c mouse. Pyrazole strongly increases coumarin 7-hydroxylase (COH) activity in DBA/2N but much less in other strains. The effect of pyrazole on aniline p-hydroxylase and ethanol oxidase activities is also strain dependent: an increase was seen only in the DBA/2N strain. Ethanol and acetone were unable to induce COH, whereas aniline p-hydroxylase and ethanol oxidase were elevated about 1.4- to 3.3-fold in all strains. No strain difference could be detected in aniline p-hydroxylase or ethanol oxidase inducibility. There was a strong correlation between aniline p-hydroxylase and ethanol oxidase activities in every strain, whereas no positive correlation could be found between COH and aniline p-hydroxylase activities. Immunoinhibition experiments showed that a polyclonal antibody against purified pyrazole-inducible COH (P450Coh) blocked about 90% of COH activity, but only about 10% of aniline p-hydroxylase or ethanol oxidase in mouse liver microsomes. Monoclonal antibody 1-91-3 (raised against rat acetone-inducible P450ac) did not inhibit COH, whereas aniline p-hydroxylase was blocked 46-76% and ethanol oxidase 25-70%, depending on the source of microsomes. In immunoblots, anti-P450Coh recognized only its own antigen but not the P450ac, whereas monoclonal antibody 1-98-1 against P450ac detected P450ac and a corresponding form in the D2 mouse liver, but not the P450Coh. The purified P450ac and P450Coh had molecular masses of 52 and 50 kDa, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These antigens were expressed differentially in response to pyrazole, ethanol, and acetone: P450Coh was increased only after pyrazole treatment, but 1-98-1-detectable protein was elevated in D2 mouse liver microsomes by ethanol and acetone, but not by pyrazole. We conclude that mouse P450Coh and rat P450ac are not corresponding forms of the same isozyme, and that a P450ac-like protein, responsible for most of aniline p-hydroxylation and ethanol oxidation, is present in the D2 mouse liver. These two P450 isozymes are also dissimilarly expressed in the mouse liver in response to inducer administration.  相似文献   

14.
p-Nitrophenol hydroxylation is widely used as a probe for microsomal CYP2E1. Several drugs are known as CYP2E1 inhibitors because of their capability to inhibit p-nitrophenol hydroxylation. Our results suggest further participation of CYP2A6 and CYP2C19 enzymes in p-nitrophenol hydroxylation. Moreover, CYP2A6 and CYP2C19 may be considered as the primary catalysts, whereas CYP2E1 can also contribute to the hydroxylation of p-nitrophenol. Further aim of our study was to evaluate the selectivity of p-nitrophenol hydroxylase inhibitors towards cytochrome P450 enzymes. The effects of antifungals: bifonazole, econazole, clotrimazole, ketoconazole, miconazole; CNS-active drugs: chlorpromazine, desipramine, fluphenazine, thioridazine; and the non-steroidal anti-inflammatory drug: diclofenac were investigated on the enzyme activities selective for CYP2A6, CYP2C9, CYP2C19, CYP2E1 and CYP3A4. None of the drugs could be considered as a potent inhibitor of CYP2E1. Strong inhibition was observed for CYP3A4 by antifungals with IC(50) values in submicromolar range. However, ketoconazole was the only imidazole derivative that could be considered as a selective inhibitor of CYP3A4. The CNS-active drugs investigated were found to be weak inhibitors of CYP2A6, CYP2C9, CYP2C19, CYP2E1 and CYP3A4. Diclofenac efficiently inhibited CYP2C9 and to a less extent CYP3A4 enzyme.  相似文献   

15.
We have studied the effects of cytochrome P450 inhibitors on the entry of Ca2+ and Mn2+, used here as a Ca2+ surrogate for Ca2+ channels, in fura-2-loaded GH3 pituitary cells and bovine chromaffin cells depolarized with high-K+ solutions. Imidazole antimycotics were potent inhibitors (econazole greater than miconazole greater than clotrimazole greater than ketoconazole). alpha-Naphtoflavone and isosafrole, but not metyrapone, also inhibited the entry of Ca2+ and Mn2+ induced by depolarization. This inhibitory profile most resembles that reported for IA-type cytochrome P450. However, carbon monoxide (CO), a well-known cytochrome P450 antagonist, had no effect on Ca2+ (Mn2+) entry. Given the high selectivity of the imidazole antimycotics for the heme moiety, our results suggest that a hemoprotein closely related to cytochrome P450 (but insensitive to CO) might be involved in the regulation of voltage-gated Ca2+ channels. The inhibitory pattern was also similar to that previously reported for agonist-induced Ca2+ (Mn2+) influx in neutrophils and platelets, although CO was an efficient inhibitor in this case. These results pose the question of whether similarities in the sensitivity to cytochrome P450 inhibitors exhibited by receptor-operated and voltage-gated channels reflect unknown similarities either in structural features or regulation mechanisms.  相似文献   

16.
A cytochrome P450 called PBD-1 isolated from liver microsomes of an adult male Beagle dog treated with phenobarbital (PB) is structurally and functionally similar to members of the P450IIIA gene subfamily in rat and human liver microsomes. The sequence of the first 28 amino-terminal residues of PBD-1 is identical in 15 and 20 positions, respectively, to the P450IIIA forms P450p from rat and P450NF (and HLp) from human. Upon immunoblot analysis, anti-PBD-1 IgG recognizes PCNa (P450p) and PCNb (PB/PCN-E) from rat, P450NF from human, and two proteins in liver microsomes from both untreated and PB-treated dogs. Similarly, anti-PCNb IgG cross-reacts with PBD-1 and with at least one protein in microsomes from untreated dogs and two proteins in microsomes from PB-treated dogs. P450IIIA-form marker steroid 6 beta-hydroxylase activities increase 2.5-fold upon PB-treatment of dogs and are selectively inhibited by anti-PBD-1 IgG. NADPH-dependent triacetyloleandomycin (TAO) complex formation and erythromycin demethylase, also marker activities for P450IIIA forms from rats and humans, increase 4- and 5-fold in dog liver microsomes upon PB treatment, whereas immunochemically reactive PBD-1 is induced 3-fold. In microsomes from PB-treated dogs, 5 mg anti-PBD-1 IgG/nmol P450 inhibits greater than 75 and 50% of TAO complex formation and erythromycin demethylase activity, respectively. TAO complex formation is not inhibited by chloramphenicol, a selective inhibitor of the major PB-inducible dog liver cytochrome P450, PBD-2. These data suggest that PBD-1 or another immunochemically related form is responsible for a major portion of macrolide antibiotic metabolism by microsomes from PB-treated dogs and for steroid 6 beta-hydroxylation by microsomes from both untreated and PB-treated dogs. Major species differences were noted, however, in the apparent Km for 6 beta-hydroxylation of androstenedione by liver microsomes from untreated rats (24 microM), humans (380 microM), and untreated dogs (4700 microM).  相似文献   

17.
Several antifungal agents, at concentrations of 10 micrograms/ml, were shown to suppress ATP concentrations very rapidly in intact cells and spheroplasts of Candida albicans. The highest ATP-suppressing activity was shown by the highly lipophilic imidazole derivatives difonazole, clotrimazole, econazole, isoconazole, miconazole, oxiconazole and tioconazole, which all caused a reduction of cellular ATP content of more than 50% in 10 min. Relatively hydrophilic imidazole derivatives such as ketoconazole were essentially inactive in the test, as were the triazole derivatives fluconazole, ICI 153066, itraconazole and terconazole, and 5-fluorocytosine. Amphotericin B and terbinafine possessed intermediate ATP-suppressing activity, and the dose-response and pH-response curves for these compounds suggested their mechanism of ATP suppression differed from that of the active imidazole derivatives. ATP suppression by azole antifungals did not involve leakage of ATP from the cells and the effect was entirely abrogated by the presence of serum. Intact cells and spheroplasts of yeast-form and hyphal-form C. albicans were generally equally sensitive to ATP suppression, but stationary-phase cells of both morphological forms were less sensitive than exponential-phase cells. The extent of ATP suppression was significantly reduced in stationary-phase yeast cells of a C. albicans strain with known resistance to azole antifungals, but exponential-phase cells of resistant and susceptible strains were equally sensitive. The effect is tentatively ascribed to membrane damage caused directly by the antifungals.  相似文献   

18.
The 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by rat prostate microsomes appears to be catalyzed by a single, high-affinity cytochrome P450 enzyme. In the present study we have examined the hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by prostate microsomes from cynomolgus monkeys and from normal subjects and patients with benign prostatic hyperplasia. Our results suggest that although rat, monkey, and human prostate microsomes catalyze the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol, these pathways of oxidation in monkeys and humans are not catalyzed by a single cytochrome P450 enzyme. The ratio of the three metabolites was not uniform among prostate microsomal samples from individual humans or monkeys. The 6 alpha-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol varied independently of both the 7 alpha- and 7 beta-hydroxylation, which varied in unison. The 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by monkey prostate microsomes appeared to be differentially affected by in vivo treatment of monkeys with beta-naphthoflavone or dexamethasone. Treatment of a monkey with dexamethasone appeared to cause a 2.5-fold increase in both the 7 alpha- and the 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol without increasing the 6 alpha-hydroxylation. The 7 alpha- and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by human and monkey prostate microsomes, but not the 6 alpha-hydroxylation, was inhibited by antibody against rat liver NADPH-cytochrome P450 reductase. Similarly, the 7 alpha- and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by human prostate microsomes, but not the 6 alpha-hydroxylation, was markedly inhibited (greater than 85%) by equimolar concentrations of the imidazole-containing antimycotic drugs ketoconazole, clotrimazole, and miconazole. These results suggest that the 7 alpha- and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by monkey and human prostate microsomes is catalyzed by a cytochrome P450 enzyme, whereas the 6 alpha-hydroxylation is catalyzed by a different enzyme which may or may not be a cytochrome P450 monooxygenase. The hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by prostate microsomes from normal human subjects was quantitatively and qualitatively similar to its hydroxylation by prostate microsomes from patients with benign prostatic hyperplasia.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The azole antifungal drug ketoconazole was found to inhibit Fe(III)-ascorbate dependent lipid peroxidation using either rat liver microsomes or ox-brain phospholipid liposomes as the substrate. It also inhibited microsomal peroxidation induced by the Fe(III)-ADP/NADPH system. The related azoles, miconazole and clotrimazole, were much weaker inhibitors than ketoconazole. Ketoconazole was approximately equipotent with the triphenylethylene anticancer drug tamoxifen in the microsomal system and was almost as effective as 4-hydroxytamoxifen in the liposomal system. Ketoconazole introduced into phospholipid liposomes during their preparation inhibited Fe(III)-ascorbate induced lipid peroxidation to a greater extent than similarly introduced cholesterol, ergosterol or tamoxifen. Miconazole and clotrimazole were again poor inhibitors of lipid peroxidation in this system. These antioxidant effects of ketoconazole may be due to membrane stabilization in the systems used. The implications of our findings for the clinical applications of these drugs are discussed.  相似文献   

20.
Previous work suggested that the oxidation of uroporphyrinogen to uroporphyrin is catalyzed by cytochrome P450IA2. Here we determined whether purified reconstituted mouse P450IA1 and IA2 oxidize uroporphyrinogen. Cytochromes P450IA1 and IA2 were purified from hepatic microsomes from 3-methylcholanthrene (MC)-treated C57BL/6 mice, using a combination of affinity chromatography and high performance liquid chromatography. Reconstituted P450IA1 was more active than P450IA2 in catalyzing ethoxyresorufin-O-deethylase (EROD) activity, whereas P450IA2 was more active than P450IA1 in catalyzing uroporphyrinogen oxidation (UROX). Both reactions required NADPH, NADPH-cytochrome P450 reductase, and either P450IA1 or IA2. Ketoconazole competitively inhibited both EROD and UROX activities, in microsomes from MC-treated mice. Ketoconazole also inhibited UROX catalyzed by reconstituted P450IA2. In contrast, ketoconazole did not inhibit UROX catalyzed by xanthine oxidase in the presence of iron-EDTA. Superoxide dismutase, catalase, and mannitol inhibited UROX catalyzed by xanthine oxidase/iron-EDTA, but did not affect UROX catalyzed by either microsomes or reconstituted P450IA2. These results suggest that UROX catalyzed by P450IA2 in microsomes and reconstituted systems does not involve free reactive oxygen species. Two known substrates of cytochrome P450IA2, 2-amino-3,4-dimethylimidazole[4,5-f]quinoline and phenacetin, were shown to inhibit the microsomal UROX reaction, suggesting that uroporphyrinogen binds to a substrate-binding site on the cytochrome P450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号