首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We cultured rat mesenchymal stem cells (MSCs) in a medium containing beta-glycerophosphate, ascorbic acid, and dexamethasone to show in vitro osteogenic differentiation of the MSCs. The differentiation was enhanced by adding solubilized type I collagen to the medium as evidenced by higher alkaline phosphatase activity as well as more calcium deposition than that without collagen. The exogenous collagen integrated well with the mineralized bone matrix and maintained the native triple helical structure. These findings indicate that exogenously supplemented type I collagen acts as a component of the extracellular matrix of MSCs, and deposited type I collagen facilitates osteogenic differentiation followed by maturation of mineralized bone matrix.  相似文献   

3.
Cao T  Heng BC  Ye CP  Liu H  Toh WS  Robson P  Li P  Hong YH  Stanton LW 《Tissue & cell》2005,37(4):325-334
Osteogenic lineages derived from human embryonic stem cells hold much promise for clinical application in bone regeneration, in addition to providing a useful research model in developmental biology, and for pharmacological and cytotoxicity screening of bone-related biomaterials and drugs in vitro. Previously, osteogenic differentiation of human embryonic stem cells was achieved through dissociation of embryoid bodies by trypsinization, prior to culture with osteogenesis-promoting medium. This study therefore attempted a new approach: that is to achieve osteogenesis within intact human embryoid bodies. After 22 days of culture in osteogenesis-promoting medium comprising a cocktail of ascorbic acid, beta-glycerophosphate and dexamethasone, the attached embryoid bodies exhibited much cellular outgrowth and migration, and formed morphologically distinct nodule-like structures. These were somewhat similar to osteogenic nodules formed by mesenchymal stem cells, as reported by previous studies. Immunohistochemical staining and RT-PCR analysis confirmed the presence of osteogenic cells within these nodule-like structures. Additionally, the quantitative assay of osteocalcin secretion demonstrated a rapid sharp increase in osteocalcin expression on day 12 of in vitro culture, which could suggest the appearance of differentiated osteoblasts from day 12 onwards. Future work will attempt to investigate whether other cytokines, growth factors and chemical compounds could further enhance osteogenesis within intact human embryoid bodies.  相似文献   

4.
Human bone marrow contains a population of cells capable of differentiating along multiple mesenchymal cell lineages. Recently, techniques for the purification and culture-expansion of these human marrow-derived Mesenchymal Stem Cells (MSCs) have been developed. The goals of the current study were to establish a reproducible system for the in vitro osteogenic differentiation of human MSCs, and to characterize the effect of changes in the microenvironment upon the process. MSCs derived from 2nd or 3rd passage were cultured for 16 days in various base media containing 1 to 1000 nM dexamethasone (Dex), 0.01 to 4 mM L-ascorbic acid-2-phosphate (AsAP) or 0.25 mM ascorbic acid, and 1 to 10 mM β-glycerophosphate (βGP). Optimal osteogenic differentiation, as determined by osteoblastic morphology, expression of alkaline phosphatase (APase), reactivity with anti-osteogenic cell surface monoclonal antibodies, modulation of osteocalcin mRNA production, and the formation of a mineralized extracellular matrix containing hydroxyapatite was achieved with DMEM base medium plus 100 nM Dex, 0.05 mM AsAP, and 10 mM βGP. The formation of a continuously interconnected network of APase-positive cells and mineralized matrix supports the characterization of this progenitor population as homogeneous. While higher initial seeding densities did not affect cell number or APase activity, significantly more mineral was deposited in these cultures, suggesting that events which occur early in the differentiation process are linked to end-stage phenotypic expression. Furthermore, cultures allowed to concentrate their soluble products in the media produced more mineralized matrix, thereby implying a role for autocrine or paracrine factors synthesized by human MSCs undergoing osteoblastic lineage progression. This culture system is responsive to subtle manipulations including the basal nutrient medium, dose of physiologic supplements, cell seeding density, and volume of tissue culture medium. Cultured human MSCs provide a useful model for evaluating the multiple factors responsible for the step-wise progression of cells from undifferentiated precursors to secretory osteoblasts, and eventually terminally differentiated osteocytes. J. Cell. Biochem. 64:295–312. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Osteogenic differentiation of human dental papilla mesenchymal cells   总被引:6,自引:0,他引:6  
We isolated dental papilla from impacted human molar and proliferated adherent fibroblastic cells after collagenase treatment of the papilla. The cells were negative for hematopoietic markers but positive for CD29, CD44, CD90, CD105, and CD166. When the cells were further cultured in the presence of beta-glycerophosphate, ascorbic acid, and dexamethasone for 14 days, mineralized areas together with osteogenic differentiation evidenced by high alkaline phosphatase activity and osteocalcin contents were observed. The differentiation was confirmed at both protein and gene expression levels. The cells can also be cryopreserved and, after thawing, could show in vivo bone-forming capability. These results indicate that mesenchymal type cells localize in dental papilla and that the cells can be culture expanded/utilized for bone tissue engineering.  相似文献   

6.
Compactin enhances osteogenesis in murine embryonic stem cells   总被引:12,自引:0,他引:12  
Embryonic stem (ES) cells have the capacity to differentiate into various cell types in vitro. In this study, we show that retinoic acid is important for the commitment of ES cells into osteoblasts. Culturing retinoic acid treated ES cells in the presence of the osteogenic supplements ascorbic acid and beta-glycerophosphate resulted in the expression of several osteoblast marker genes, osteocalcin, alkaline phosphatase, and osteopontin. However, there was only a slight amount of mineralized matrix secretion. Addition of bone morphogenic protein-2 or compactin, a drug of the statin family of HMG-CoA reductase inhibitors, resulted in a greatly enhanced formation of bone nodules. Compactin did not modify the expression of osteogenic markers, but at the late stage of differentiation promoted an increase in BMP-2 expression. These results establish ES-cell derived osteogenesis as an effective model system to study the molecular mechanisms by which the statin compactin promotes osteoblastic differentiation and bone nodule formation.  相似文献   

7.
8.
Osteogenic supplements are a requirement for osteoblastic cell differentiation during in vitro culture of human calvarial suture-derived cell populations. We investigated the ability of ascorbic acid and beta-glycerophosphate with and without the addition of dexamethasone to stimulate in vivo-like osteoblastic differentiation. Cells were isolated from unfused and prematurely fused suture tissue from patients with syndromic and non-syndromic craniosynostosis and cultured in each osteogenic medium for varying lengths of time. The effect of media supplementation was investigated with respect to the ability of cells to form mineralised bone nodules and the expression of five osteodifferentiation marker genes (COL1A1, ALP, BSP, OC and RUNX2), and five genes that are differentially expressed during human premature suture fusion (GPC3, RBP4, C1QTNF3, WIF1 and FGF2). Cells from unfused sutures responded more slowly to osteogenic media but formed comparable bone nodules to fused suture-derived cells after 16 days of culture in either osteogenic media. However, gene expression differed between unfused and fused suture-derived cells, as did expression in each osteogenic medium. When compared to expression in the explant tissue of origin, neither medium induced a level or profile of gene expression similar to that seen in vivo. Overall, our results demonstrate that cells from the same suture that are isolated during different stages of morphogenesis in vivo, despite being de-differentiated to a similar level in vitro, respond uniquely and differently to each osteogenic medium. Further, we suggest that neither cell culture medium recapitulates differentiation via activation of the same genetic cascades as occurs in vivo.  相似文献   

9.
This study attempted to characterize the ability of thermoreversible gelation polymer (TGP) to induce differentiation of human mesenchymal stem cells (hMSC) into osteoblasts. Using a long oligo microarray system consisting of 3760 genes, we compared the expression profiles of the cells in 2-dimensional (2D) culture, 3D culture in collagen gel, and 3D culture in TGP with or without osteogenic induction. Compared to 2D culture, the gene expression profile of hMSC showed almost the same pattern in TGP without osteogenic induction, but 72% of genes (2701/3760) were up-regulated in collagen gel. With osteogenic induction, hMSC showed higher ALP activity and osteocalcin production in TGP as compared to 2D culture. Moreover, up-regulation and down-regulation of osteogenic genes were augmented in 3D culture in TGP as compared to 2D culture. As TGP is chemically synthesized and completely free from pathogen such as prion in bovine spongiform encephalopathy, these results suggest that TGP could be applied clinically to induce osteogenic differentiation of hMSC.  相似文献   

10.
The two mesenchymal stem cell (MSC) populations that have gained most attention in relation to bone tissue engineering are adipose tissue (AT) MSCs and bone marrow (BM) MSCs. The purpose of this study was to investigate the ability of human BM-MSCs and AT-MSCs to survive, proliferate and deposit collagen type 1 when cultured on polycaprolactone nanofiber scaffolds and to ascertain the effect of medium composition on collagen type 1 formation and expression of osteogenic genes. The cells were seeded on polycaprolactone nanofiber scaffolds and cultured in three different types of media that differed by the presence of ascorbic acid, β-glycerophosphate and dexamethasone, that are typical components used for osteogenic differentiation of MSCs in vitro.In summary, AT-MSCs were proliferating significantly faster than BM-MSCs. AT-MSCs also showed better ability to deposit collagen type 1 and had a higher expression of early osteogenic markers, whereas BM-MSCs had higher expression of late osteogenic markers. This suggests that MSCs from diverse sources have different attributes and with respect to osteogenic differentiation, AT-MSCs are more immature compared to BM-MSCs. Collagen formation was depending on medium composition and the organization of collagen type 1 appeared to be influenced by the presence of dexamethasone.  相似文献   

11.
Osteoblast lineage-specific differentiation of mesenchymal stem cells is a well regulated but poorly understood process. Both bone morphogenetic proteins (BMPs) and Wnt signaling are implicated in regulating osteoblast differentiation and bone formation. Here we analyzed the expression profiles of mesenchymal stem cells stimulated with Wnt3A and osteogenic BMPs, and we identified connective tissue growth factor (CTGF) as a potential target of Wnt and BMP signaling. We confirmed the microarray results, and we demonstrated that CTGF was up-regulated at the early stage of BMP-9 and Wnt3A stimulations and that Wnt3A-regulated CTGF expression was beta-catenin-dependent. RNA interference-mediated knockdown of CTGF expression significantly diminished BMP-9-induced, but not Wnt3A-induced, osteogenic differentiation, suggesting that Wnt3A may also regulate osteoblast differentiation in a CTGF-independent fashion. However, constitutive expression of CTGF was shown to inhibit both BMP-9- and Wnt3A-induced osteogenic differentiation. Exogenous expression of CTGF was shown to promote cell migration and recruitment of mesenchymal stem cells. Our findings demonstrate that CTGF is up-regulated by Wnt3A and BMP-9 at the early stage of osteogenic differentiation, which may regulate the proliferation and recruitment of osteoprogenitor cells; however, CTGF is down-regulated as the differentiation potential of committed pre-osteoblasts increases, strongly suggesting that tight regulation of CTGF expression may be essential for normal osteoblast differentiation of mesenchymal stem cells.  相似文献   

12.
We developed and used real-time RT-PCR assays to investigate how the expression of typical osteoblast-related genes by human bone marrow stromal cells (BMSC) is regulated by (i) the culture time in medium inducing osteogenic differentiation and (ii) the previous expansion in medium enhancing cell osteogenic commitment. BMSC from six healthy donors were expanded in medium without (CTR) or with fibroblast growth factor-2 and dexamethasone (FGF/Dex; these factors are known to increase BMSC osteogenic commitment) and further cultivated for up to 20 days with ascorbic acid, beta-glycerophosphate and dexamethasone (these factors are typically used to induce BMSC osteogenic differentiation). Despite a high variability in the gene expression levels among different individuals, we identified the following statistically significant patterns. The mRNA levels of bone morphogenetic protein-2 (BMP-2), bone sialo protein-II (BSP), osteopontin (OP) and to a lower extent cbfa-1 increased with culture time in osteogenic medium (OM), both in CTR- and FGF/Dex-expanded BMSC, unlike levels of alkaline phosphatase, collagen type I, osteocalcin, and osteonectin. After 20 days culture in OM, BMP-2, BSP, and OP were more expressed in FGF/Dex than in CTR-expanded BMSC (mRNA levels were, respectively, 9.5-, 14.9-, and 5.8-fold higher), unlike all the other investigated genes. Analysis of single-colony-derived strains of BMSC further revealed that after 20 days culture in OM, only a subset of FGF/Dex-expanded clones expressed higher mRNA levels of BMP-2, BSP, and OP than CTR-expanded clones. In conclusion, we provide evidence that mRNA levels of BMP-2, BSP, and OP, quantified using real-time RT-PCR, can be used as markers to monitor the extent of BMSC osteogenic differentiation in vitro; using those markers, we further demonstrated that only a few subpopulations of BMSC display enhanced osteogenic differentiation following FGF/Dex expansion.  相似文献   

13.
Marrow mesenchymal stem cells are pluripotent progenitors that can differentiate into bone, cartilage, muscle, and fat cells. Wnt signaling has been implicated in regulating osteogenic differentiation of mesenchymal stem cells. Here, we analyzed the gene expression profile of mesenchymal stem cells that were stimulated with Wnt3A. Among the 220 genes whose expression was significantly changed by 2.5-fold, we found that three members of the CCN family, CCN1/Cyr61, CCN2/connective tissue growth factor (CTGF), and CCN5/WISP2, were among the most significantly up-regulated genes. We further investigated the role of CCN1/Cyr61 in Wnt3A-regulated osteogenic differentiation. We confirmed that CCN1/Cyr61 was up-regulated at the early stage of Wnt3A stimulation. Chromatin immunoprecipitation analysis indicates that CCN1/Cyr61 is a direct target of canonical Wnt/beta-catenin signaling. RNA interference-mediated knockdown of CCN1/Cyr61 expression diminished Wnt3A-induced osteogenic differentiation. Furthermore, exogenously expressed CCN1/Cyr61 was shown to effectively promote mesenchymal stem cell migration. These findings suggest that tightly regulated CCN1/Cyr61 expression may play an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells.  相似文献   

14.
Min JH  Ko SY  Cho YB  Ryu CJ  Jang YJ 《Human cell》2011,24(1):43-50
Despite the frequent use of primary dental pulp cells in dental regenerative research, few systematic studies of stemness for osteogenic and dentinogenic differentiation of human adult pulp cells have been reported. To investigate the stemness of human adult dental pulp cells, pulp tissues were obtained from extracted third molars and used as a source of pulp cells. In FACS analysis and immunophenotyping, the general mesenchymal stem cell markers CD44, CD90, and CD146 were highly expressed in early passages of the pulp cell culture. The stem cell population was dramatically decreased in an expansion culture of human dental pulp cells. When pulp cells were treated with additives such as β-glycerophosphate, ascorbic acid, and dexamethasone, nodule formation was facilitated and mineralization occurred within 2 weeks. Expression of osteogenic markers such as alkaline phosphatase, osteocalcin, and osteonectin was relatively low in undifferentiated cells, but increased significantly under differentiation conditions in whole passages. Dentinogenic markers such as dentin sialophosphoprotein and dentin matrix protein-1 appeared to decrease in their expression with increasing passage number; however, peak levels of expression occurred at around passage 5. These data suggested that stem cells with differentiation potential might exist in the dental pulp primary culture, and that their phenotypes were changed during expansion culture over 8-9 passages. Under these conditions, a dentinogenic population of pulp cells occurred in limited early passages, whereas osteogenic cells occurred throughout the whole passage range.  相似文献   

15.
Recent studies suggest that human adipose tissue contains pluripotent stem cells similar to bone marrow-derived stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have previously demonstrated that bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. In the present study, we extend this approach to characterize adipose tissue-derived stromal cells, sometimes called processed lipoaspirate (PLA) cells. Adipose-derived stromal cells (ASCs) were isolated from inguinal fat pads of GFP transgenic mice after extensive washing with phosphate-buffered saline and treatment with collagenase. After primary culture in a control medium (Dulbecco's modified Eagle's medium+10% fetal bovine serum) and expansion to two passages, the cells were incubated in either an osteogenic medium (Dulbecco's modified Eagle's medium+10% fetal bovine serum+dexamethasone+ascorbate-2-phosphate+beta-glycerophosphate) or a chondrogenic medium (Dulbecco's modified Eagle's medium+1% fetal bovine serum+insulin+ascorbate-2-phosphate+transforming growth factor-beta1) for 2-4 weeks to induce osteogenesis and chondrogenesis, respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining, while chondrogenic differentiation was assessed by Alcian blue staining. Expression of osteocyte specific osteopontin, osteocalcin, and alkaline phosphatase, and chondrocyte specific aggrecan and type II/X collagen was confirmed by RT-PCR. ASCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes, except osteocalcin, was also detected. Incubation with chondrogenic medium induced Alcian blue positive cells and expression of aggrecan and type II/X collagen genes. No osteochondrogenic differentiation was observed in cells incubated in the control medium. ASCs from GFP transgenic mice have both osteogenic and chondrogenic potential in vitro. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ASCs for further experiments on stem cell biology and tissue engineering.  相似文献   

16.
Osteoblastic differentiation of monkey embryonic stem cells in vitro   总被引:2,自引:0,他引:2  
Monkey embryonic stem (ES) cell is a useful tool for preclinical studies of regenerative medicine. In this paper, we investigated whether monkey ES cells can be differentiated into osteoblasts in vitro using factors known to promote osteogenesis. We prepared embryoid bodies (EB) in the presence of retinoic acid (RA) and subsequently differentiated in the medium containing either dexamethasone (DEX) or bone morphogenetic protein (BMP)-2 in addition to osteogenic supplements (OS), specifically ascorbic acid and beta-glycerophosphate. RA treatment during EB formation induced osteoblastic marker genes, such as collagen type 1, osteopontin, and Cbfa1. For the expression of osteocalcin, however, cultivation with medium containing either DEX or BMP-2 in addition to OS was required. These results showed that osteoblasts could be derived from monkey ES cells in vitro and BMP-2 + OS was effective to induce calcification.  相似文献   

17.
18.
19.
ObjectivesDelivery systems that provide time and space control have a good application prospect in tissue regeneration applications, as they can effectively improve the process of wound healing and tissue repair. In our experiments, we constructed a novel micro‐RNA delivery system by linking framework nucleic acid nanomaterials to micro‐RNAs to promote osteogenic differentiation of mesenchymal stem cells.Materials and MethodsTo verify the successful preparation of tFNAs–miR‐26a, the size of tFNAs–miR‐26a were observed by non‐denaturing polyacrylamide gel electrophoresis and dynamic light scattering techniques. The expression of osteogenic differentiation‐related genes and proteins was investigated by confocal microscope, PCR and western blot to detect the impact of tFNAs–miR‐26a on ADSCs. And finally, Wnt/β‐catenin signaling pathway related proteins and genes were detected by confocal microscope, PCR and western blot to study the relevant mechanism.ResultsBy adding this novel complex, the osteogenic differentiation ability of mesenchymal stem cells was significantly improved, and the expression of alkaline phosphatase (ALP) on the surface of the cell membrane and the formation of calcium nodules in mesenchymal stem cells were significantly increased on days 7 and 14 of induction of osteogenic differentiation, respectively. Gene and protein expression levels of ALP (an early marker associated with osteogenic differentiation), RUNX2 (a metaphase marker), and OPN (a late marker) were significantly increased. We also studied the relevant mechanism of action and found that the novel nucleic acid complex promoted osteogenic differentiation of mesenchymal stem cells by activating the canonical Wnt signaling pathway.ConclusionsThis study may provide a new research direction for the application of novel nucleic acid nanomaterials in bone tissue regeneration.

MiR‐26a‐tetrahedral framework nucleic acids mediated osteogenesis of adipose‐derived mesenchymal stem cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号