首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poulin R  Mouillot D 《Oecologia》2004,140(2):372-378
Positive relationships are commonly observed between the abundance of a species in a locality and the frequency of its occurrence among localities on a larger scale. This pattern may not hold for parasitic organisms when the average abundance of a parasite among its hosts is related to the number of host species in which it occurs, because of the additive investment in specific adaptations to counter host immune responses required for each host species in a parasites repertoire. For a rigorous test of the hypothesis that there is a trade-off between the number of host species that can be successfully exploited and the average abundance of parasites in those hosts, one needs to take into account the phylogenetic (or taxonomic) distances among the host species used by a parasite. Differences in immune responses are likely to increase with increasing phylogenetic distances. The trade-off hypothesis was tested in a comparative analysis of 393 species of trematodes, cestodes and nematodes parasitic in birds surveyed from the same geographical area, using an index of host specificity that measures the average taxonomic distances between a parasites known host species. After correcting for the influences of parasite phylogeny and other potential confounding variables, mean abundance was negatively correlated with the average taxonomic distance among host species for nematodes, and with the variance in taxonomic distances among hosts for cestodes. In the case of trematodes, these variables covaried positively. The trade-off between average infection success and how taxonomically distant a parasites host species are from each other was only found in two of the three groups of helminths investigated, possibly because of compensating features in trematodes, such as their ability to multiply asexually in intermediate hosts. These results provide empirical evidence consistent with the hypothesis that specialization allows greater local adaptation and therefore greater local population abundance, supporting key predictions regarding the evolution of ecological specialization.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

2.
Poulin 《Ecology letters》1998,1(2):118-128
Organisms that are abundant locally in a habitat patch are commonly observed to be frequent regionally, or among patches. In parasites, species present in high numbers in host individuals are also present in many individuals in the host population. On a larger scale, however, when host species are considered as patches, we may expect the opposite pattern because of the cost of producing mechanisms to evade the immune responses of several host species. Thus parasite species exploiting many host species may achieve lower average abundance in their hosts than parasite species exploiting fewer host species. This prediction was tested with data from 188 species of metazoan parasites of freshwater fish, using a comparative approach that controlled for study effort and phylogenetic influences. A negative correlation was found between the number of host species used by parasites and their average abundance in hosts, measured as either prevalence or intensity of infection. There was no evidence that parasite species fall into distinct categories based on abundance patterns, but rather that they fall along a continuum ranging from a generally low abundance in many host species, to a generally high abundance in few host species. These results applied to both ecto- and endoparasites. The pattern observed suggests the existence of a trade-off between how many host species a parasite can exploit and how well it does on average in those hosts.  相似文献   

3.
Robert Poulin 《Oecologia》1997,111(3):375-380
Parasite populations are highly fragmented in space and time, and consist of aggregates of genetically similar individuals sharing the same host. To avoid inbreeding, theory predicts that female-biased sex ratios should be strongly favoured when either or both prevalence and intensity of infection are low. Other models indicate that if sex ratios are selected to increase the probability of mating, they should be less biased at a high intensity of infection in polygamous parasites, since at high intensities all females are mated. To test these predictions, the relationship between sex ratio and both the prevalence and intensity of infection was examined in comparative studies across 193 populations of nematode and acanthocephalan parasites. Sex ratios in these two dioecious, polygamous taxa are usually female biased. Among natural populations, no significant relationship was observed once the confounding effects of phylogeny had been removed. However, among experimental populations of nematodes, a negative relationship was found between intensity of infection and sex ratio, even after controlling for phylogeny. In other words, at high intensities, populations of nematodes are less female biased. This result must be treated with caution because of the unusually high numbers of worms per host in experimental infections. Nevertheless, combined with information on the proximate mechanisms regulating sex ratios in these parasites, it suggests a link between the characteristics of parasite populations and their sex ratio. Received: 21 November 1996 / Accepted: 26 March 1997  相似文献   

4.
Abstract

A cross-referenced list is provided of 94 helminth taxa, at the generic or specific level, from 61 bird host species in the New Zealand subregion.  相似文献   

5.
1. We studied the effect of host abundance on parasite abundance and prevalence using data on 57 associations of fleas (Siphonaptera) and their mammalian hosts from Slovakia. 2. We assumed that flea-induced host mortality could be inferred from the relationship between flea aggregation and flea abundance, whereas host-induced flea mortality could be inferred from the relationship between flea abundance or aggregation and host abundance. 3. Relationships between flea abundance or prevalence and host abundance were either negative (in 23 flea-host associations) or absent (in 34 flea-host associations). Negative relationships between flea abundance and host abundance were always accompanied by negative relationships between flea prevalence and host abundance. 4. The link between flea abundance/prevalence and host abundance was evaluated as the coefficient of determination of the respective regressions. Across flea-host associations, this link decreased with an increase in the degree of flea aggregation (measured as a parameter b of Taylor's power law). 5. Mean crowding of fleas decreased with an increase of host abundance in eight flea-host associations, being asymptotic in four of them. On the other hand, mean crowding of fleas increased with an increase in flea abundance in 49 flea-host associations, being asymptotic in 15 of them. 6. Results of this study suggest that different flea-host associations are governed by different regulating mechanisms, but different regulation mechanisms may act simultaneously within the same flea-host associations.  相似文献   

6.
We consider the probability of parasite extinction due to anthropogenic fragmentation of host populations and in the absence of host extinction. We conclude that extinction at infrapopulation and infracommunity levels is both common and trivial. Extinction may occur in communities at higher levels but only if metapopulations or suprapopulations become extinct. Suprapopulations are highly complex and unlikely to become extinct in the face of simple host fragmentation. We acknowledge parasite metapopulations as being the most likely to become extinct, but only locally. Our reasoning for this is that, in the absence of complete host extinction, populations of the parasite in other fragments are likely to serve as sources for reinvasion (e.g. a rescue effect). We identify a number of features that may act as hedges against extinction for many parasites and conclude by attempting to identify what form an extinction might take.  相似文献   

7.
Aim To uncover and describe patterns of biogeography of helminth parasites in freshwater fishes of Mexico, and to understand processes that determine them. Three predictions about host‐specificity, faunal exchange in transitional areas, and the biogeographical ‘core’ fauna, are evaluated, all of which follow from a fundamental hypothesis: that parasites show characteristic associations with particular host clades. The parasite fauna of the southern Mexican cichlids and of the fishes of the Mesa Central are examined as case studies that reflect Neotropical and Nearctic historical influences. Location The region covered in this study includes most of Mexico, with emphasis on six biogeographical areas: the Yucatán Peninsula (area 1), the Grijalva‐Usumacinta drainage (area 2), the Papaloapan and Pánuco drainages (area 3), the Balsas drainage (area 4), the Lerma‐Santiago drainage (area 5), and the Bravo drainage (area 6). Methods A parasite data base containing all the records of helminth parasites of freshwater fishes of Mexico was filtered to extract records of adult helminth parasites in freshwater fishes from the six biogeographical areas designated in this study. Jaccard's similarity coefficients and cluster analyses (using upgma ) were used to analyse the extent of faunal similarity between the designated biogeographical areas and between host (fish) families. Taxonomic composition of parasite assemblages in different host groups was also qualitatively compared from summary data. These data were used to test the three main predictions. Results To date, 184 species of helminths (120 as adults) have been recorded from 127 freshwater fishes in Mexico (almost 33% of the total fish diversity of Mexico). Of these parasite species, 69 are digenetic flukes, 51 are nematodes, 33 are monogeneans, 25 are tapeworms, and only six are acanthocephalans. The data and analyses from the six biogeographical areas corroborate the predictions that: (1) the adult parasite fauna is largely circumscribed by higher levels of monophyletic host taxa (families, orders, etc.), and that this pattern is independent of areas; (2) areas within a certain biogeographical region, and consequently with similar fish composition (e.g. areas 1, 2 and 3) have more similar parasite faunas compared to areas with less similar fish faunal composition; and (3) ‘core’ parasite faunas persist to some extent in transitional areas with limited host‐sharing. Main conclusions Helminth biodiversity in Mexican freshwater fishes is determined by the historical and contemporary biogeography of their hosts. Host lineage specificity, mainly at the level of the host family, appears to be an important factor in the distribution of the parasites. Most fish families (Characidae, Cichlidae, Pimelodidae, Ictaluridae, Catsotomidae, Goodeidae, Atherinidae) possess their own characteristic ‘core’ helminth fauna, with limited host‐sharing in transitional areas (e.g. areas 3 and 4). A re‐evaluation of the helminth fauna of Mexican cichlids questions the hypothesis that cichlids lost parasites during the colonization of Mexico from South America. The evidence supports the idea that they acquired new parasites by host switching, possibly from marine or brackish‐water percomorphs. In contrast, the parasite fauna of the Mesa Central remains enigmatic and reflects the region's history of endemicity with historical marine and Nearctic connections.  相似文献   

8.
Links between the abundance and distribution of birds   总被引:1,自引:0,他引:1  
I. Newton 《Ecography》1997,20(2):137-145
The relationship between overall abundance, local abundance and distribution is examined for several taxonomic groups of birds in Britain Among closely-related species, all three measures were correlated those species with the highest overall numbers also had the highest local numbers and the widest distributions Within each group, the relationship between overall abundance and distribution was extremely tight (with all the species points close to the trend line) in plots of log distribution (numbers of 10 km squares occupied) against log numbers The pattern held in summer and winter, and in both resident and migratory species Moreover, species which, over a period of years, underwent marked change in status showed parallel changes in both breeding numbers and distribution, and followed the pattern found from comparisons between related species Conversely, species which changed little in numbers over a period of years also changed little in extent of distribution
An explanation of the findings is proposed, based on density-dependent growth of local numbers and dispersal The relevance of the findings to the limitation of geographical ranges is discussed The distributional extent of many species seems to depend primarily on their overall numbers, rather than vice versa  相似文献   

9.
黄果厚壳桂种内与种间竞争的数量关系   总被引:24,自引:0,他引:24  
采用Hegyi单木竞争指数模型对鼎湖山季风常绿阔叶林建群种黄果厚壳桂的种内、种间竞争强度进行定量分析.结果表明,黄果厚壳桂所受到的竞争强度随着林木径级的增大而逐渐减小.黄果厚壳桂种内竞争较与伴生树种云南银柴的种间竞争弱.黄果厚壳桂种内和种间竞争强度的顺序为:云南银柴>黄果厚壳桂种内>荷木>白颜树>肖蒲桃>锥栗>红车>臀形果>柏拉木>水石梓>窄叶半枫荷>厚壳桂.整个林分及黄果厚壳桂种内竞争木对对象木的竞争强度与对象木的胸径大小之间的关系近似服从幂函数关系,而伴生树种竞争木对对象木的竞争强度与对象木的胸径大小之间的关系近似服从对数函数关系.竞争强度和对象木的胸径大小呈显著负相关关系.  相似文献   

10.
In this study, we investigate patterns in the prevalence of dynamic range–abundance relationships of the Danish avifauna, using breeding bird atlases from 1971 to 1974 and from 1993 to 1996. We focus on differences between common and rare species by dividing the assemblage into range-size quartiles. The trend in total population size was determined using an index. Range was determined as grid cell occupancy and standardized to facilitate comparisons between common and rare species. While narrow-ranging species showed strong and consistent range–abundance relationships, the relationships for widespread species were weak and exhibited considerable variation. This may be due to differences in patterns of resource use, since widespread species generally have wider niches, and so may be less affected by resource-based factors linking range and abundance. Since a tight and dynamic relationship is upheld for rare species, monitoring strategies based on range size surveys seem viable.  相似文献   

11.
Abstract. 1. Ceratobaeus spp. enter the nest of their host spider and oviposit into eggs through the thin silk eggsac.
2. Temperatures below 15° C limit oviposition by slowing parasites down.
3. Males emerge prior to females and mate with their sibs. Sex ratios of 6.6–6.0:1 in favour of females were observed in the field and laboratory for two species.
4. Even though females can oviposit almost immediately after emergence their full complement of eggs (= 65) is not reached until several days later.
5. Superparasitism is low and appears to occur from subsequent accidental ovipositions. No marking of the external surface of hosts was observed.
6. Parasites overwinter as adults under bark. They do not feed as adults nor do they reabsorb their eggs, but rather oviposit as soon as host eggs become available in spring.
7. Successful oviposition occurs in later stages of host eggs reared at 15° C and 20° C than it does at 25°C. Different rates of development between host and parasite is proposed as an explanation for this phenomenon.
8. The species studied show varying degrees of specificity but each has a dominant host. Location of hosts involves cues from the habitat (bark), silk nests of spiders, and some factor associated with host eggs.  相似文献   

12.
Comparative ecology uses interspecific relationships among traits, while accounting for the phylogenetic non-independence of species, to uncover general evolutionary processes. Applied to biogeographic questions, it can be a powerful tool to explain the spatial distribution of organisms. Here, we review how comparative methods can elucidate biogeographic patterns and processes, using analyses of distributional data on parasites (fleas and helminths) as case studies. Methods exist to detect phylogenetic signals, i.e. the degree of phylogenetic dependence of a given character, and either to control for these signals in statistical analyses of interspecific data, or to measure their contribution to variance. Parasite–host interactions present a special case, as a given trait may be a parasite trait, a host trait or a property of the coevolved association rather than of one participant only. For some analyses, it is therefore necessary to correct simultaneously for both parasite phylogeny and host phylogeny, or to evaluate which has the greatest influence on trait expression. Using comparative approaches, we show that two fundamental properties of parasites, their niche breadth, i.e. host specificity, and the nature of their life cycle, can explain interspecific and latitudinal variation in the sizes of their geographical ranges, or rates of distance decay in the similarity of parasite communities. These findings illustrate the ways in which phylogenetically based comparative methods can contribute to biogeographic research.  相似文献   

13.
In some taxa of Hymenoptera, fungi, red algae and mistletoe, parasites and their hosts are either sibling species or at least closely related (Emery's rule). Three evolutionary mechanisms have been proposed for this phenomenon: (i) intraspecific parasitism is followed by sympatric speciation; (ii) allopatric speciation is followed by secondary sympatry and the subsequent parasitism of one sibling species by the other; and (iii) allopatric speciation of a species with intraspecific parasitism is followed by secondary sympatry, in which one species becomes an obligate parasite of the other. Mechanisms (i) and (ii) are problematic, while mechanism (iii) has not, to our knowledge, been analysed quantitatively. In this paper, we develop a model for single- and two-species evolutionary stable strategies (ESSs) to examine the basis for Emery's rule and to determine whether mechanism (iii) is consistent with ESS reasoning. In secondary sympatry after allopatric speciation, the system's evolution depends on the relative abundances of the two sibling species and on the proportional damage wrought by parasites of each species on non-parasitic members of the other. Depending on these interspecific effects, either the rarer or the commoner species may become the parasite and the levels of within-species parasitism need not determine which evolves to obligate parasitism.  相似文献   

14.
Studies of host-parasite interactions in birds have contributed greatly to our understanding of the evolution and ecology of disease. Here we employ molecular techniques to determine the incidence and study the host-specificity of parasitic trypanosomes in the African avifauna. We developed a polymerase chain reaction (PCR)-based diagnostic test that amplified the small subunit ribosomal RNA gene (SSU rRNA) of Trypanosoma from avian blood samples. This nested PCR assay complements and corroborates information obtained by the traditional method of blood smear analysis. The test was used to describe the incidence of trypanosomes in 479 host individuals representing 71 rainforest bird species from Cameroon, the Ivory Coast and Equatorial Guinea. Forty-two (59%) of these potential host species harboured trypanosomes and 189 individuals (35%) were infected. To examine host and geographical specificity, we examined the morphology and sequenced a portion of the SSU rRNA gene from representative trypanosomes drawn from different hosts and collecting locations. In traditional blood smear analyses we identified two trypanosome morphospecies, T. avium and T. everetti. Our molecular and morphological results were congruent in that these two morphospecies had highly divergent SSU rRNA sequences, but the molecular assay also identified cryptic variation in T. avium, in which we found seven closely allied haplotypes. The pattern of sequence diversity within T. avium provides evidence for widespread trypanosome mixing across avian host taxa and across geographical locations. For example, T. avium lineages with identical haplotypes infected birds from different families, whereas single host species were infected by T. avium lineages with different haplotypes. Furthermore, some conspecific hosts from geographically distant sampling locations were infected with the same trypanosome lineage, but other individuals from those locations harboured different trypanosome lineages. This apparent lack of host or geographical specificity may have important consequences for the evolutionary and ecological interactions between parasitic trypanosomes and their avian hosts.  相似文献   

15.
1. This article compares generalist (parasite species found on two or more host species) and specialist (found on only one host species) monogenean parasite species of fish. The reduction of the host range – that is an increase in host specificity – may correspond with a better adaptation of the parasite to a more predictable host environment. A more predictable environment may allow the parasite species to develop specific adaptations.
2. We assume that the more predictable host environment can be evaluated by host body size, since numerous life-traits, such as longevity, are positively correlated with size.
3. We found that specialist parasites parasitize larger hosts species than generalist parasites. We also found a good relationship between host body size and parasite body size for specialist parasite species.
4. An adaptation to the mechanical problems encountered in the host's gill chamber may lead to an increase in parasite body size. The infection of a larger part of the host population in order to decrease the chances of local extinction due to fluctuations of host abundance may be another adaptive mechanism.
5. We found a negative correlation between parasite body size and prevalence for generalist parasite species. This relationship disappeared when using the comparative method controlling for phylogeny, which proved that it was a phylogenetic effect.  相似文献   

16.
Sehgal RN  Jones HI  Smith TB 《Molecular ecology》2005,14(13):3977-3988
Here we describe, determine the prevalence, and examine the host-specificity of some parasitic nematode microfilariae in selected bird species from West and Central Africa. We used microscopy to determine the prevalence of microfilariae in 969 host individuals representing 121 rainforest bird species from Cameroon, Côte d’Ivoire and Equatorial Guinea. Thirteen (11%) of these potential host species harboured microfilariae, and 35 individuals (3.6%) were infected. From the 35 infected individuals, we identified eight distinct morphological microfilarial forms. Sixteen of the 35 infected individuals were of one host species, the Fire-crested Alethe (Alethe diademata), at a prevalence rate of 62%. To examine host and geographical specificity, we sequenced a portion of the LSU rDNA gene from representative microfilariae drawn from different hosts and collecting locations. Identical sequences of the nematode LSU rDNA gene were found in A. diademata collected from locations in Côte d’Ivoire and Equatorial Guinea, locations separated by the Dahomey Gap and associated with different hypothesized refugial areas. In contrast, several other bird species collected at the same sites harboured different microfilaria lineages. We sequenced the mitochondrial ATP synthase genes of the host species A. diademata, and found a 5.4% sequence divergence between the birds sampled in Côte d’Ivoire, and those from Cameroon. Thus, despite this split between the two populations, they harbour microfilariae with identical lineages. These data provide evidence that the microfilariae found in A. diademata may be highly host specific. This apparent specificity may have important implications for the evolutionary and ecological interactions between parasitic nematodes and their avian hosts.  相似文献   

17.
Dissous C  Khayath N  Vicogne J  Capron M 《FEBS letters》2006,580(12):2968-2975
Parasitic helminths remain major pathogens of both humans and animals throughout the world. The success of helminth infections depends on the capacity of the parasite to counteract host immune responses but also to exploit host-derived signal molecules for its development. Recent progress has been made in the characterization of growth factor receptors of various nematode and flatworm parasites with the demonstration that transforming growth factor beta (TGF-beta), epidermal growth factor (EGF) and insulin receptor signalling pathways are conserved in helminth parasites and potentially implicated in the host-parasite molecular dialogue and parasite development.  相似文献   

18.
Parasite–host specialization is frequently considered to be a derived state such that it represents an 'evolutionary dead end' that strongly limits further evolution. In this study, it was tested whether this theory is applicable to the relationship of malaria parasites and their vertebrate hosts. For this, we revisited Perkins and Schall (2002) analysis of the phylogenetic relationships of the malaria parasites (belonging to the genera Plasmodium , Haemoproteus and Hepatocystis ) based on the mitochondrial Cytochrome b gene sequence, and inferred, using a maximum likelihood (ML) approach, the putative ancestral vertebrate hosts. As the topology in this study presents several unresolved branches and is slightly different from that of Perkins and Schall, a Shimodaira and Hasegawa (SH; 1999) test has been performed in order to properly consider several alternative topologies. The results of this study suggest that the common ancestor of all these malaria parasites was a reptile (more specific of the order Squamata), and that the host switches from Squamata to Aves and vice versa were quite frequent along the evolution of these parasites. On the contrary, a strong evidence that the host shift from Squamata to Mammalia had occurred only once during the evolution of these organisms was found. This evidence (added to the current knowledge about the association of the malaria parasites with their vertebrate hosts) allows us to suggest, at least considering the species included in this study, that the adaptation in mammals had required a high level of specialization. Hence, the acquisition of this host class had culminated in an evolutionary dead end for the mammalian malaria parasites.  相似文献   

19.
Abstract The existence of latitudinal gradients in species richness and their abundance is known for many free living organisms but few cases have been reported for parasitic diseases. In addition, asymmetries between the Northern and Southern Hemispheres in several characteristics may affect the distribution and diversity of species at all ecological levels. In this respect, we study the distribution of several genera of blood parasites infecting birds along a latitudinal gradient that includes the world's southernmost forests ecosystems. Birds were mist‐netted and sampled for blood in localities across Chile ranging from 33°S to 55°S during the years 2003–06. Overall, 26 bird species were sampled and 27 parasite lineages were identified. The latter belonged to three genera: Plasmodium (8), Haemoproteus (8) and Leucocytozoon (11). We found a positive significant relationship between prevalence and latitude for Leucocytozoon lineages and a negative relationship for Haemoproteus, Plasmodium and mixed infections. However, we did not find a significant relationship between parasite diversity and latitude. We found 18 lineages infecting only one species of host, and 19 lineages appear in only one of the localities of sampling. This pattern implies that some parasite lineages may evolve in isolation in some species/localities. In addition, specificity at the host‐family level was only found for Haemoproteus lineages infecting birds in the family Emberizidae. Individuals of the long distance migrant bird white‐crested elaenia (Elaenia albiceps), were found infected by the same parasite lineages in localities separated by 20° of latitude. Infections by these lineages were detected in other sedentary birds including juveniles and nestlings of different bird species. Therefore, long distance migrants are able to distort the presence of latitudinal gradients of diseases due to the potential role of migrants in spreading infections. Geographical gradients in prevalence of avian haematozoa differ between parasite genera and hemispheres, probably in relation to the existence of appropriate vector–parasite–host interactions.  相似文献   

20.
Secure attachment to host tissues is essential for survival and reproduction in parasitic organisms. The production of elaborate attachment structures must be costly, however, and investments in attachment should be approximately proportional to the likelihood that a parasite will be dislodged. In the present study, relative investments in attachment as a function of body size and the type of host used were examined across 138 species of acanthocephalans. These worms live anchored to the intestinal wall of a vertebrate host by inserting their hooked proboscis into host tissues. Taking proboscis volume into account, there is a negative interspecific relationship between the number of hooks borne on the proboscis and their mean length, reflecting a trade‐off between hook number and hook length. This supports the assumption that hooks are costly to produce, because any given species cannot simultaneously maximize both the relative number and relative length of the hooks it produces. There is a positive relationship between total worm size and total hook length, but it is weak, with a slope indicating that, as total body volume increases, total hook length also increases but at a slower rate. Indeed, relative investments in attachment, measured as hook length per unit body volume, decrease as worm size increases. Independently of total body size, investments in hook production are higher in species exploiting endothermic hosts, especially birds, than in those living in ectothermic hosts. Given the greater amounts of food passing through the gut of endotherms, and the richer and denser communities of intestinal parasites that they harbour, they are likely to select for greater investments in attachment. These results support the prediction that investments in attachment are influenced by the probability of being dislodged, and allow comparisons with other groups of intestinal parasites such as cestodes or trematodes. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 637–645.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号