首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methotrexate (MTX) is an anti-metabolite drug widely used in the treatment of neoplastic disorders, rheumatoid arthritis and psoriasis. Developed as an analogue of folic acid, it inhibits purine and pyrimidine synthesis that accounts for its therapeutic efficacy as well as for its toxicities. MTX has narrow therapeutic index and its toxicity has been reported in various organ systems including gastrointestinal, haematologic and central nervous system. The objective of the present study is to investigate the germ cell toxicity induced by MTX in male Swiss mice. MTX was administered intraperitoneally (ip) at the doses of 5, 10, 20 and 40mg/kg to mice (20-25g) weekly once (wk) for 5 and 10 weeks. The animals were sacrificed 1 week after receiving the last treatment of MTX. The germ cell toxicity was evaluated using testes weight (wt), sperm count, sperm head morphology, sperm comet assay, histology, TUNEL and halo assay in testis. MTX treatment significantly reduced the sperm count and increased the occurrence of sperm head abnormalities in a dose dependent manner. It induced the testicular toxicity as evident from the histology of testis. Sperm comet, TUNEL and halo assay in testis also revealed significant DNA damage after MTX treatment. On the basis of the present study, it can be concluded that MTX induced germ cell toxicity in mice.  相似文献   

2.
Oxygen free radicals are produced in the central nervous system (CNS) as a consequence of normal physiological metabolic reactions of neuronal cells, but there is evidence accumulating that they are also implicated in the processes leading to a number of pathological changes in the brain. A general mechanism whereby oxygen free radicals induce tissue damage is lipid peroxidation (LPO), which generates a large variety of water-soluble carbonyl compounds. Due to their high reactivity, we focused our investigations on 4-hydroxyalkenals, in particular on 4-hydroxynonenal (HNE), the major 4-hydroxyalkenal. Two phenotypes of cerebral endothelial cells (cECs) were treated with various concentrations of 4-hydroxynonenal and the cyto- and genotoxic effects studied. The cytogenetic endpoints determined were chromosomal aberrations and the induction of micronuclei. Three hours of incubation with HNE induced significantly elevated levels of chromosomal aberrations at concentrations ≥1 μM and micronuclei at concentrations ≥10 μM in both cEC phenotypes, compared to the controls. Cytotoxicity was observed at a concentration of 50 μM HNE and was significantly higher in the elongated and spindle-shaped cEC phenotype (type II) than in the epithelial cEC phenotype (type I). The results indicate that cECs are affected by HNE even at low concentrations with minor differences between the two cEC phenotypes.  相似文献   

3.
Chlorination is widely used method in the disinfection of drinking and utility water worldwide. In this study, cytotoxic and genotoxic effects of sodium hypochlorite were investigated by the cytokinesis-block micronucleus assay and chromosomal aberration analysis on human peripheral lymphocytes in vitro. A significant increase in chromosomal aberration frequency was observed in all treatments of NaOCl (0.030, 0.065, 0.100, 0.25, 0.5, 1, 2, 4 μg/mL) at 24 and 48 h compared with the negative control and mitomycin C (MMC, 0.3 μg/mL), which was used as a positive control. NaOCl significantly increased the frequency of micronuclei in a dose dependent manner. The results showed that there was a significant correlation between NaOCl concentration and chromosomal aberration, micronuclei frequency, necrotic cells, apoptotic cells and binucleated cells.  相似文献   

4.
The induction of sister-chromatid exchanges (SCE) together with the proliferation rate index (PRI) were studied in human lymphocytes in vitro after treatment with singlet oxygen. When produced outside the cells, singlet oxygen can increase the duration of the cellular cycle as measured by an enhancement of the differences between the proliferation rate indexes of the control and the treated cells. A dose-dependent increase in the SCE rate per chromosome was also detected after contact between the singlet oxygen and lymphocytes.  相似文献   

5.
6.
The organic hydroperoxide, tert-butyl hydroperoxide (t-BHP), is a useful model compound to study mechanisms of oxidative cell injury. In the present work, we examined the features of the interactions of this oxidant with Chinese hamster B14 cells. The aim of our study was to reveal a possible role of structural modifications in membranes and loss of DNA integrity in t-BHP-induced cell injury and death. The tert-butyl hydroperoxide treatment (100-1000 microM, 37 degrees C for 1h) did not decrease cell viability (as measured by cell-specific functional activity with an MTT test), but completely prevented cell growth. We observed intracellular reduced glutathione (GSH) oxidation and total glutathione (GSH+GSSG) depletion, a slight increase in the level of lipid-peroxidation products, an enhancement of membrane fluidity, intracellular potassium leakage and a significant decrease of membrane potential. At oxidant concentrations of 100-1500 microM, a significant damage to DNA integrity was observed as revealed by the Comet assay. The inhibition of cell proliferation (cell-growth arrest) may be explained by genotoxicity of t-BHP, by disturbance of the cellular redox-equilibrium (GSH oxidation) and by structural membrane modifications, which result in ion-non-selective pore formation. The disturbance in passive membrane permeability and the DNA damage may be the most dramatic cell impairments induced by t-BHP treatment. The presence of another oxidant, hypochlorous acid (HOCl), completely prevented t-BHP-induced DNA strand breaks, perhaps due to extracellular oxidation of t-BHP by HOCl.  相似文献   

7.
The mutagenicity and toxicity of energetic compounds such as 2,4, 6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), hexahydro-1,3, 5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3, 5,7-tetrazocine (HMX), and of amino/nitro derivatives of toluene were investigated in vitro. Mutagenicity was evaluated with the Salmonella fluctuation test (FT) and the V79 Chinese hamster lung cell mutagenicity assay. Cytotoxicity was evaluated using V79 and TK6 human lymphoblastic cells. For the TK6 and V79 assays, TNB and 2, 4,6-triaminotoluene were more toxic than TNT, whereas RDX and HMX were without effect at their maximal aqueous solubility limits. The primary TNT metabolites (2-amino-4,6-dinitrotoluene, 4-amino-2, 6-dinitrotoluene, 2,4-diamino-6-nitrotoluene and 2, 6-diamino-4-nitrotoluene) were generally less cytotoxic than the parent compound. The FT results indicated that TNB, TNT and all the tested primary TNT metabolites were mutagenic. Except for the cases of 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene in the TA98 strain, addition of rat liver S9 resulted in either no effect, or decreased activity. None of the tested compounds were mutagenic for the V79 mammalian cells with or without S9 metabolic activation. Thus, the FT assay was more sensitive to the genotoxic effects of energetic compounds than was the V79 test, suggesting that the FT might be a better screening tool for the presence of these explosives. The lack of mutagenicity of pure substances for V79 cells under the conditions used in this study does not preclude that genotoxicity could actually exist in other mammalian cells. In view of earlier reports and this study, mutagenicity testing of environmental samples should be considered as part of the hazard assessment of sites contaminated by TNT and related products.  相似文献   

8.
Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds, and may increase the risk of human exposure to this chemical at the workplace. In a previous study, we demonstrated the pro-oxidant action and the mutagenic properties of this compound on bacteria and yeast. In the present study, we evaluated the putative cytotoxic, pro-oxidant, genotoxic, and mutagenic properties of this molecule in V79 Chinese lung fibroblast cells. When cells were treated with increasing concentrations of DPDS, its cytotoxic activity, as determined using four cell viability endpoints, occurs in doses up to 50 microM. The MTT reduction was stimulated, which may indicate reactive oxygen species (ROS) generation. Accordingly, the treatment of cells for 3h with cytotoxic doses of DPDS increased TBARS levels, and sensitized cells to oxidative challenge, indicating a pro-oxidant effect. The measurement of total, reduced, and oxidized glutathione showed that DPDS can lead to lower intracellular glutathione depletion, with no increase in the oxidation rate in a dose- and time-dependent manner. At the higher doses, DPDS generates DNA strand breaks, as observed using the comet assay. The treatment also induced an increase in the number of binucleated cells in the micronucleus test, showing mutagenic risk by this molecule at high concentrations. Finally, pre-incubation with N-acetylcysteine, which restored GSH to normal levels, annulled DPDS pro-oxidant and genotoxic effects. These findings show that DPDS-induced oxidative stress and toxicity are closely related to intracellular level of reduced glutathione. Moreover, at lower doses, this molecule has antioxidant properties, protecting the cell against oxidative damage induced by hydrogen peroxide.  相似文献   

9.
Dioxacarb (Elecron, Famid) is a phenyl methylcarbamate insecticide and in vitro cytotoxic and genotoxic effects of this pesticide on human peripheral blood lymphocytes and Allium root meristematic cells were investigated by chromosomal aberrations (CAs) and Allium test. Human lymphocytes were treated with 62.5, 125, 250 and 500 ppm doses of dioxacarb for CAs. CA/cell, abnormal cell % and mitotic index % (MI %) data were obtained from these concentrations in 24 and 48 h treatment periods. Dioxacarb did not increase the CA/cell frequency significantly, so this insecticide was not identified as genotoxic. But it was found cytotoxic especially at 250 and 500 ppm concentrations because of the reduced the MI % and increased the abnormal cell %. In Allium test, 25 ppm (EC50/2), 50 ppm (EC50) and 100 ppm (EC50 × 2) concentrations were used for root growth inhibition (EC50 determination) and Allium mitotic index (MI) determination tests. The used concentrations of dioxacarb induced dose-dependent inhibition of MI and root growth on root meristems. Mitotic inhibition of dioxacarb was found significantly higher than for the positive control. These Allium results indicated the high cytotoxicity of dioxacarb. The present study is the first research on cytotoxicity and genotoxicity of dioxacarb by human lymphocyte CAs and Allium test.  相似文献   

10.
Guo YY  Zhang J  Zheng YF  Yang J  Zhu XQ 《Mutation research》2011,721(2):184-191
Carbon nanomaterials have multiple applications in various areas. However, it has been suggested that exposure to nanoparticles may be a risk for the development of vascular diseases due to injury and dysfunction of the vascular endothelium. Therefore, in the present study, the cytotoxic and genotoxic effects of multi-wall carbon nanotubes (MWCNTs) on human umbilical vein endothelial cells (HUVECs) were evaluated. Optical and transmission electronic microscopy (TEM) study showed that MWCNTs were able to enter cells rapidly, distribute in the cytoplasm and intracellular vesicles and induce morphological changes. Exposure to MWCNTs reduced the viability of HUVECs, and induced apoptosis in HUVECs. Furthermore, MWCNTs could cause DNA damage as indicated by the formation of γH2AX foci. MWCNTs also affected cellular redox status, e.g., increasing intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, as well as altering superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) levels. On the other hand, the free radical scavenger N-acetyl-l-cysteine (NAC) preincubation can inhibit the cytotoxic and genotoxic effects of MWCNTs. Taken together, these results demonstrated that MWCNTs could induce cytotoxic and genotoxic effects in HUVECs, probably through oxidative damage pathways.  相似文献   

11.
It is important to evaluate the health effects of low-dose-rate or low-dose radiation in combination with chemicals as humans are exposed to a variety of chemical agents. Here, we examined combined genotoxic effects of low-dose-rate radiation and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the most carcinogenic tobacco-specific nitrosamine, in the lung of gpt delta transgenic mice. In this mouse model, base substitutions and deletions can be separately analyzed by gpt and Spi- selections, respectively. Female gpt delta mice were either treated with gamma-irradiation alone at a dose rate of 0.5, 1.0 or 1.5 mGy/h for 22 h/day for 31 days or combined with NNK treatments at a dose of 2 mg/mouse/day, i.p. for four consecutive days in the middle course of irradiation. In the gpt selection, the NNK treatments enhanced the mutation frequencies (MFs) significantly, but no obvious combined effects of gamma-irradiation were observable at any given radiation dose. In contrast, NNK treatments appeared to suppress the Spi- large deletions. In the Spi- selection, the MFs of deletions more than 1 kb in size increased in a dose-dependent manner. When NNK treatments were combined, the dose-response curve became bell-shaped where the MF at the highest radiation dose decreased substantially. These results suggest that NNK treatments may elicit an adaptive response that eliminates cells bearing radiation-induced double-strand breaks in DNA. Possible mechanisms underlying the combined genotoxicity of radiation and NNK are discussed, and the importance of evaluation of combined genotoxicity of more than one agent is emphasized.  相似文献   

12.
Exposure of preimplantation mouse embryos in culture to bromodeoxyuridine (BrdU) in the concentration range of 10(-9) to 2 x 10(-6) M allows sister-chromatid differentiation at the morula and blastocyst stage. The same BrdU concentrations induced no chromosomal aberrations, but a prolongation of the cell cycle and an increase of the SCE frequency. Even at the lowest BrdU concentration for sister-chromatid differentiation (10(-9) M the background level for SCE was found to be significantly higher in early embryos than in fetal or adult tissues of the mouse. Therefore, the high SCE frequency seems to be characteristic of undifferentiated embryonic cells. Methodological recommendations are also given for SCE assay in preimplantation mouse embryos.  相似文献   

13.
(R)-ricinoleic acid is the main component of castor oil from Ricinus communis L. Due to the presence of the hydroxyl group in homoallylic position and asymmetrically substituted carbon atom, it may undergo a number of chemical and biochemical transformations resulting in the products with some specific bioactivities. Conversion of (R)-ricinoleic acid into its (S)-enantiomer enables synthesis of both (R)- and (S)-ricinoleic acid derivatives and comparison of their biological activities. In the present research, (R)- and (S)-ricinoleic acid amides synthesized from methyl ricinoleates and ethanolamine or pyrrolidine as well as acetate derivatives of ethanolamine amides were studied to demonstrate their biological activities using HT29 cancer cells. Double staining of cells with fluorochromes (Hoechst 33258/propidium iodide) as well as 2,′7′-dichlorodihydrofluorescein (DCF) and comet assays were performed. Both the tested amides and acetates caused DNA damage and induced apoptotic and necrotic cell death. In the case of (R)- and (S)-enantiomers of one of the tested acetates, significant difference in the ability to induce DNA damage was observed, which showed the impact of the stereogenic center on the activities of these compounds.  相似文献   

14.
To establish the time-sequence relationship between ferritin accumulation and uroporphyrin crystal formation in livers of C57BL/10 mice, a biochemical, morphological and morphometrical study was performed. Uroporphyria was induced by the intraperitoneal administration of hexachlorobenzene plus iron dextran and of iron dextran alone. Uroporphyrin crystal formation started in hepatocytes of mice treated with hexachlorobenzene plus iron dextran at 2 weeks and in mice treated with iron dextran alone at 9 weeks. In the course of time, uroporphyrin crystals gradually increased in size. Uroporphyrin crystals were initially formed in hepatocytes in the periportal areas of the liver, in which also ferric iron staining was first detected. The amount and the distribution of the main storage form of iron in hepatocytes, ferritin, did not differ between the two treatment groups. Ferritin accumulation preceded the formation of uroporphyrin crystals in hepatocytes in both treatment groups. Moreover, uroporphyrin crystals were nearly always found close to ferritin iron. We conclude that uroporphyrin crystals are only formed in hepatocytes in which also iron (ferritin) accumulates. Hexachlorobenzene accelerates the effects of iron in porphyrin metabolism, but does not influence the accumulation of iron into the liver.  相似文献   

15.
DNA damage and repair in kidney and liver of mouse fetuses exposed to selected doses of N-nitrosodimethylamine (NDMA) (CAS No. 62.75.9) were studied using the alkaline elution technique. CD1 female mice (15 days pregnant) were treated i.p. with 2 and 10 mg/kg b.w. of NDMA; a slight increase in DNA damage was observed in their fetuses compared to untreated controls. A 2-fold higher extent of DNA damage was induced when mice were treated by intrafetal injections of a rat S9 activating fraction (S9) immediately before exposure to the same dose of NDMA by transplacental means. The DNA-strand breaks disappeared as a function of time in animals treated with NDMA alone. In contrast, a significant persistence of DNA damage was detected in the liver and lung of fetuses which were treated with S9 and NDMA in sequence. These experiments demonstrate the metabolic immaturity of unborn mice as far as the carcinogenic activation of NDMA is concerned and show the high susceptibility of fetal tissues to DNA-damaging agents. The alkaline elution applied in vivo by the transplacental route combined with the intrafetal injection of an exogenous activating microsomal fraction allow to extend our knowledge on the interaction of metabolism-dependent chemicals with fetal tissues.  相似文献   

16.
Superoxide dismutase activity in the BB rat: a dynamic time-course study   总被引:1,自引:0,他引:1  
Diabetes produced spontaneously in the BB rat is similar to that observed in multiple low dose streptozocin-induced diabetes, both being characterized histologically by a lympho-monocytic infiltrate in the pancreatic islets (insulitis). Recent studies indicated that streptozocin acts through peroxidative patterns sensitive to superoxide dismutase (SOD) activity. We therefore conducted a time-course study to evaluate if SOD activity in the islets of Langerhans is related to the onset of diabetes in BB rats with varying degree of diabetes. It was found that SOD activity does not change with age nor with the onset of diabetes. However SOD activity in the islets of BB rats was significantly lower than in the control Wistars. This lower SOD activity may be a proneness factor that favors the development of the diabetic syndrome.  相似文献   

17.
Two organophosphorus (OP) pesticides (chloropyriphos and acephate) and cyclophosphamide (CP) (positive control) were tested for their ability to induce in vivo genotoxic effect in leucocytes of Swiss albino mice using the single cell gel electrophoresis assay or comet assay. The mice were administered orally with doses ranging from 0.28 to 8.96 mg/kg body weight (b. wt.) of chloropyriphos and 12.25 to 392.00 mg/kg b.wt. of acephate. The assay was performed on whole blood at 24, 48, 72 and 96 h. A significant increase in mean comet tail length indicating DNA damage was observed at 24h post-treatment (P<0.05) with both pesticides in comparison to control. The damage was dose related. The mean comet tail length revealed a clear dose dependent increase. From 48 h post-treatment, a gradual decrease in mean tail length was noted. By 96 h of post-treatment the mean comet tail length reached control levels indicating repair of the damaged DNA. From the study it can be concluded that the comet assay is a sensitive assay for the detection of genotoxicity caused by pesticides.  相似文献   

18.
N Gurnani  A Sharma  G Talukder 《Cytobios》1992,70(281):131-136
Clastogenic effects of antimony trichloride, used in small industries, were monitored in laboratory bred white Swiss mice in vivo, following oral administration by gavaging, after 6, 12, 18 and 24 h. Chromosomal aberrations were principally breaks and damaged cells observed from bone marrow preparations. The frequencies of chromosomal aberrations were directly related to the dose used and were significantly higher than the control. The chemical did not alter the frequency of dividing cells to any significant level.  相似文献   

19.
Mutagenicity of N-cyclohexylthiophthalimide (Duslin P) was tested first by the Ames test in the bacteria, Salmonella typhimurium. The negative results of the Ames test suggested that this compound does not induce mutations in the genome of S. typhimurium under the conditions used. To estimate the cytotoxicity of Duslin P to human cells, we measured cellular DNA and protein as well as cell proliferation, i.e., the mitotic index of treated and control cells. The genotoxic effects were assayed by two biochemical methods developed for detection of single-strand breaks of DNA in mammalian cells, i.e., by the alkaline single cell gel electrophoresis (comet assay) and by the DNA unwinding method, respectively. The DNA unwinding method showed that this compound did not induce DNA damage at concentrations < 7 micrograms/ml. Alkaline single cell gel electrophoresis revealed approximately double the level of DNA damage (in comparison to untreated control DNA) at a concentration of 2 micrograms/ml, which reduced proliferation to approximately 30%, and triple the level of DNA damage at higher concentrations (6 and 7 micrograms/ml), which inhibited completely both DNA synthesis and proteosynthesis. Cells with moderately damaged DNA were more common than cells with heavily damaged DNA. Parallel experiments with the strong mutagen and carcinogen MNNG showed that MNNG induced in cells a high level of DNA damage at concentrations which did not reduce the mitotic index or proteosynthesis, while DNA synthesis inhibited only partially. After treatment with MNNG, cells with heavily damaged DNA were more common than cells with moderately damaged DNA. Duslin P-treated VH10 cells were also tested cytogenetically, confirming that Duslin P induced neither chromosomal aberrations nor aneuploidy. We conclude that Duslin P has no mutagenic effect on bacteria, does not induce chromosomal aberrations and CREST positive or CREST negative micronuclei in human cells and induces only a small increase of DNA damage in human cells which is consistent with DNA fragmentation due to cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号