首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have studied the effects of adenosine 3':5'-monophosphate (cAMP)-dependent protein kinase on the phosphorylative and functional modification of bovine adrenal tyrosine hydroxylase. Incubation of partially purified tyrosine hydroxylase with cAMP-dependent protein kinase in the presence of [gamma32P]ATP and 5 micron cAMP led to a 3- to 5-fold activation of tyrosine hydroxylase and to incorporation of [32P]phosphate into protein. When tyrosine hydroxylase preparations activated by exposure to enzymatic phosphorylating conditions were analyzed by sucrose density gradient centrifugation, polyacrylamide gel electrophoresis, and gel electrofocusing, the radioactivity of 32P was coincident with the activity of tyrosine hydroxylase, suggesting incorporation of 32P from [gamma-32P]ATP into tyrosine hydroxylase. Polyacrylamide gel electrophoresis of the phosphorylated tyrosine hydroxylase preparation in the presence of 0.1% sodium dodecyl sulfate revealed that the 60,000-dalton polypeptide subunit of tyrosine hydroxylase served as the phosphate acceptor.  相似文献   

3.
The soluble androgen acceptor has been isolated from 0.35 M NaCl extract of rat prostatic chromatin by affinity chromatography on DNA-cellulose. The acceptor activity was assayed by interaction with 5α-dihydrotestosterone-receptor. Native DNA enhances this interaction. Polyacrylamide gel electrophoresis of the acceptor under denaturing conditions reveals a single polypeptide of molecular weight of 14,000. Amino acid analysis shows that the acceptor protein contains a higher content of acidic amino acid residues than basic amino acid residues. In an invitro RNA synthesizing system catalyzed by rat RNA polymerase II, addition of the acceptor stimulates RNA synthesis. Based on incorporation of [γ-32P]ATP and [γ-32P]GTP, the stimulation by the acceptor is mainly on the initiation of RNA chains.  相似文献   

4.
5.
More than 40 protein species including RNA polymerase were found to be phosphorylated in Escherichia coli on analyses of 32P-labeled cell lysates by single and two-dimensional gel electrophoresis and autoradiography. The protein species and the level of phosphorylation varied depending on the cell growth phase. With [gamma-32P]ATP as a substrate, cell lysates phosphorylated endogenous proteins in vitro which were predominantly phosphorylated in vivo. Both serine and threonine were the major phosphate acceptors in whole cell lysates. Starting from a partially purified RNA polymerase preparation with the protein phosphorylation activity and using an E. coli protein with an apparent Mr = 90K (K represents X 1000) as the substrate, we purified a protein kinase with a native Mr approximately 120K to apparent homogeneity. The protein kinase is either a heterodimer of 61K and 66K polypeptides or a homodimer of one of these polypeptides. We also isolated a 100K protein with self-phosphorylation activity.  相似文献   

6.
In order to determine whether microtubular proteins of flagellar axonemes were phosphorylated, cells of Chlamydomonas reinhardtii were grown in medium containing [32P]orthophosphate for several generations. Only one (alpha subunit) of the two tubulin polypeptides separated by Na dodecyl-SO4-polyacrylamide gel electrophoresis appeared labeled, as detected by autoradiography of the dried gel. 3H- and 32P-labeled alpha tubulin subunit purified by preparative Na dodecyl-SO4-polyacrylamide gel electrophoresis and Na dodecyl-SO4-hydroxyapatite chromatography contained about 0.2 mol of phosphate per mol of polypeptide. Upon partial acid hydrolysis, radioactivity could be accounted for as serine and threonine phosphate. By altering the conditions of the Na dodecyl-SO4-polyacrylamide gel electrophoresis is was possible to resolve the purified alpha-tubulin subunit into five or more components: a major band comprising approximately 65% of the total mass, not phosphorylated, and four or more minor bands comprising together 35% of the mass. Among the minor components at least two were phosphorylated.  相似文献   

7.
The phosphorylation invivo of RNA polymerase II after isoproterenol stimulation of confluent rat C6 glioma cell cultures has been investigated. Glioma cells were incubated in the presence of Na2H32PO4 and stimulated for 1 hour with the β-adrenergic agonist isoproterenol. The phosphorylation pattern was analyzed after purification of RNA polymerase II by immunoprecipitation, SDS-polyacrylamide gel electrophoresis and autoradiography. Isoproterenol markedly increased [32P]phosphate incorporation into the 214,000 dalton RNA polymerase subunit. Analysis of the phosphate acceptor amino acid revealed the presence of only [32P]phosphoserine. The data demonstrates an isoproterenol-induced structural modification of RNA polymerase II.  相似文献   

8.
Evidence is presented that isoproterenol treatment of rat C6 glioma cells, under conditions that increase glioma cell cAMP levels, causes the phosphorylative modification of several RNA polymerase II subunits. RNA polymerase II in control and isoproterenol-stimulated 32Pi-labeled confluent glioma cells was immunoprecipitated from ribonuclease-treated nuclear extracts with hen anti-calf RNA polymerase II antiserum conjugated to Sepharose. The immunoprecipitated RNA polymerase II was analyzed for 32P-labeled subunits by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. Using this technique, we have shown that isoproterenol causes a time-dependent increase of phosphate incorporation into RNA polymerase II subunits of 214,000, 180,000, 140,000, 35,000, 28,000, and 16,500 daltons. Phosphate incorporation occurred exclusively on serine in all of the six subunits. About 0.5-2 mol of phosphate/mol of RNA polymerase II subunit were incorporated. Dibutyryl cAMP (10(-3)M) mimics the stimulatory action of isoproterenol and mediates increased phosphate incorporation into the six subunits. (RS)-propranolol (10(-4)M) prevents the isoproterenol-mediated phosphorylative changes. These data indicate that isoproterenol, via cAMP, mediates a transient structural modification of RNA polymerase II subunits in rat C6 glioma cells which may possibly lead to a modulation of RNA polymerase II function(s).  相似文献   

9.
RNA polymerase II subunit composition, stoichiometry, and phosphorylation were investigated in Saccharomyces cerevisiae by attaching an epitope coding sequence to a well-characterized RNA polymerase II subunit gene (RPB3) and by immunoprecipitating the product of this gene with its associated polypeptides. The immunopurified enzyme catalyzed alpha-amanitin-sensitive RNA synthesis in vitro. The 10 polypeptides that immunoprecipitated were identical in size and number to those previously described for RNA polymerase II purified by conventional column chromatography. The relative stoichiometry of the subunits was deduced from knowledge of the sequence of the subunits and from the extent of labeling with [35S]methionine. Immunoprecipitation from 32P-labeled cell extracts revealed that three of the subunits, RPB1, RPB2, and RPB6, are phosphorylated in vivo. Phosphorylated and unphosphorylated forms of RPB1 could be distinguished; approximately half of the RNA polymerase II molecules contained a phosphorylated RPB1 subunit. These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme.  相似文献   

10.
Phosphorylated NADP+-isocitrate dehydrogenase (EC 1.1.1.42) has been purified to electrophoretic homogeneity from in vivo 32P-labeled Escherichia coli. The cells used as the source of phosphorylated enzyme were harvested 1 h after the addition of 5 mCi of [32P]orthophosphoric acid and 25 mM sodium acetate to cultures grown to early stationary phase on a low phosphate medium with limiting glucose. Double immunodiffusion and autoradiography demonstrated immunological identity between the 32P-labeled NADP+-isocitrate dehydrogenase and the enzyme isolated from glucose-grown E. coli. The phosphoenzyme had an apparent subunit molecular weight of 51,000 as determined by denaturing acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and the radioactivity co-electrophoresed with NADP+-isocitrate dehydrogenase activity when purified enzyme was subjected to nondenaturing gel electrophoresis. [32P]Phosphoserine was identified following partial acid hydrolysis of the purified phosphoenzyme.  相似文献   

11.
DNA-dependent RNA polymerase II (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) from cauliflower inflorescence (Brassica oleracae, var. botrytis) was highly purified by polyethyleneimine treatment on a large scale. The solubilized enzyme was partially purified by polyethyleneimine fractionation and subjected to chromatography on DEAE-Sephadex and phosphocellulose, and subsequently to sedimentation in a glycerol gradient. The specific activity (231 nmol/mg per 10 min) of this enzyme was comparable to that reported for other purified eukaryotic RNA polymerases. Analysis of the purified RNA polymerase II by polyacrylamide gel electrophoresis under non-denaturing conditions revealed a single band. The subunit composition of the enzyme was analyzed by electrophoresis under denaturing conditions. The RNA polymerase II contained subunits with molecular weights and molar ratios (in parentheses) of 180 000(1), 130 000(2), 48 000(2), 25 000(4), and 19 500(4).  相似文献   

12.
Glycogen synthase I, purified from bovine heart, had a specific activity of 33 units/mg and gave a single band on sodium dodecyl sulfate gel electrophoresis with a subunit molecular weight of 86,000. The enzyme was phosphorylated with cAMP-dependent protein kinase catalytic subunit, also isolated from heart. With 10 microM ATP, only one phosphate group was incorporated per subunit of glycogen synthase. The phosphorylation decreased the per cent of glycogen synthase I from 0.95 to 0.50 when activity was determined by assays with Na2SO4 and glucose 6-phosphate. Glycogen synthase containing one phosphate per subunit was designated GS-1. One additional phosphate was incorporated per synthase subunit when ATP was increased to 0.5 mM and the percent glycogen synthase I decreased from 0.50 to < 0.05. This enzyme form was designated GS-1,2. Conversion of GS-1 to Gs-1,2 gave cooperative kinetics with ATP concentration and a half-maximal stimulation at approximately 40 microM. Phosphorylation of GS-1 could also be achieved by adding other non-substrate nucleotide triphosphates such as ITP and UTP along with 10 microM ATP. Glucose-6-P and Na2SO4 were without effect on this phosphorylation reaction. Two separate peptides were obtained after CNBr cleavage of 32P-labeled GS-1,2 and only one from GS-1. Both enzyme forms contained a single phosphorylated peptide in common. Thus, heart glycogen synthase may be phosphorylated specifically in either of two different sites using appropriate concentrations of ATP. ATP acts as a substrate for the protein kinase and also affects the availability of a second site to phosphorylation by cAMP-dependent protein kinase.  相似文献   

13.
14.
15.
16.
A soluble rat liver nuclear extract containing total RNA polymerase activities also exhibits appreciable amounts of protein kinase activity. This unfractionated protein kinase catalyzes the phosphorylation of both endogenous proteins and exogenous lysine-rich histone in the presence of [γ-32P]ATP and Mg2+. The optimal concentration of Mg2+ is 5 mm for histone phosphorylation and 25 mm for the phosphorylation of endogenous proteins. Cyclic AMP has no effect on the phosphorylation of lysine-rich histone by this unfractionated nuclear protein kinase. However, addition of cyclic AMP causes a reduction in the 32P-labeling of an endogenous protein (CAI) which can be characterized by its mobility during SDS-acrylamide gel electrophoresis and elution in the unbound fraction of a DEAESephadex column. If CAI is first labeled with 32P and then incubated with 10?6m cyclic AMP under conditions where protein kinase activity is inhibited, the presence of the cyclic nucleotide causes a loss of the 32P-labeling of this protein, implying the activation of a substrate-specific protein phosphatase. When rat liver RNA polymerases are purified by DEAE-Sephadex chromatography, protein kinase activity is found in the unbound fraction and in those column fractions containing RNA polymerase I and II. The fractionated protein kinases exhibit different responses to cyclic AMP, the unbound protein kinase being stimulated and the RNA polymerase-associated protein kinases being dramatically inhibited. A second protein (CAII) whose phosphorylated state is modified by cyclic AMP is found within the DEAE-Sephadex column fractions containing RNA polymerase II. The cyclic nucleotide in this case appears to reduce labeling of CAII by inhibition of the protein kinase activity which co-chromatographs with both CAII and RNA polymerase II. Based on molecular weight estimates, neither CAI nor CAII appears to be an RNA polymerase subunit. The identity of CAI as a protein factor whose phosphorylated state influences nuclear RNA synthesis is suggested by the fact that addition of fractions containing CAI to purified RNA polymerase II inhibits the activity of this enzyme, but only if CAI has been previously incubated in the presence of cyclic AMP.  相似文献   

17.
Jan Szopa  Karl G. Wagner 《Planta》1984,162(2):132-138
From isolated nuclei of suspension cultured cells of Nicotiana tabacum. DNA-dependent RNA polymerase II (E.C. 2.7.76) has been purified to homogeneity as evidenced by polyacrylamidegel electrophoresis under non-denaturing conditions. The purified enzyme had a specific activity of more than 15 nmol min-1·mg-1 with denatured calf thymus DNA as template. Sodium-dodecyl-sulfate gel electrophoresis and protein highperformance liquid chromatography revealed a subunit composition of four proteins with molecular weights of 165 000, 135 000, 35 000 and 25 000 and with a stoichiometry of 1:1:2:2. The RNA polymerase did not exhibit any detectable proteinkinase activity. The 25 000 subunit binds ADP in a molar ratio of 1:1; it could not be decided whether this subunit has an ATPase activity or is merely an acceptor of ADP.Abbreviations HPLC high-performance liquid chromatography - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate This contribution is dedicated to Professor Fritz Cramer on the occasion of his 60th birthday  相似文献   

18.
Hepatic ATP-citrate lyase prepared with a fluoride-free step to allow endogenous phosphatases to dephosphorylate the enzyme was phosphorylated in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase and [γ-32P]ATP. After electrophoresis the radioactive phosphate was located predominantly in the gel slice containing the Coomassie blue stained protein corresponding to ATP-citrate lyase. The Stoichiometry of phosphorylation of hepatic ATP-citrate lyase in vitro by the catalytic subunit was such that 0.53 ± 0.02 molecules of phosphate were incorporated per subunit. The degree of phosphorylation was independent of the amount of ATP-citrate lyase present as substrate in the concentration range 1.2–6.4 μm. In the absence of catalytic subunit there was very little labeled phosphate incorporated into ATP-citrate lyase. Phosphorylation of ATP-citrate lyase by catalytic subunit was abolished by the specific protein inhibitor of cyclic AMP-dependent protein kinase. When ATP-citrate lyase was subjected to electrophoresis under nondenaturing conditions, lyase activity was recovered from the gel slice corresponding to the Coomassie blue staining phosphoprotein of a stained gel run in parallel.  相似文献   

19.
The phosphorylation of two purified vaccinia virus proteins (Acceptors I and II) by a protein kinase isolated from vaccinia virus cores has been studied. Phosphorylation of viral acceptor proteins by the purified enzyme was dependent on the presence of ATP, Mg2+, and protamine or other basic proteins, and was maximal at alkaline pH values. Cyclic mononucleotides did not stimulate the vaccinia protein kinase under a variety of conditions. Protamine, however, was shown to function as an enzyme activator. In its presence, the purified vaccinia protein kinase phosphorylated mainly serine residues in Acceptor I, and predominantly threonine residues in Acceptor II. Phosphorylation of protamine accounted for less than 1% of the total 23P incorporation. Tryptic peptide maps prepared from 32P-labeled Acceptors I and II demonstrated that they contained different labeled peptide sequences and were, therefore, distinct protein species. From additional studies on both purified and virus-associated protein kinase it was concluded that various proteins affected the protein kinase reaction in one of three ways. One class of proteins served as phosphate acceptors, but only when another activator protein was present. A second class consisted of proteins that were strong activators but poor phosphate acceptors. The third class contained proteins that were fair phosphate acceptors, but which also activated the phosphorylation of other acceptor proteins.  相似文献   

20.
M E Dahmus  J Natzle 《Biochemistry》1977,16(9):1901-1908
A protein kinase, designed KII, has been purified 5000-fold from Novikoff ascites tumor cells. The purification procedure also allows for the purification of a second major protein kinase, designated KI, as well as RNA polymerase I and II. Purified KII has a sedimentation constant of 7.6 S and a Stokes radius of 39 A, suggesting a molecular weight of about 122000. Polyacrylamide gel electrophoresis of the enzyme in the presence of sodium dodecyl sulfate suggests the enzyme is composed of subunits of molecular weights 44 000, 40 000, and 26 000 present in a molar ratio of 1:1:2. Incubation of the enzyme alone in the presence of [gamma-32P]ATP results in the phosphorylation of the 26 000-dalton subunit. Protein kinase II actively phosphorylates phosvitin, casein, and nonhistone chromosomal proteins but does not phosphorylate basic proteins such as histones or protamine to an appreciable extent. Km values of 3.6 micron for ATP and 6.5 micronM for GTP were determined in the presence of 4mM Mg2+. The enzyme is neither stimulated by cyclic adenosine 3',5'-monophosphate or cyclic guanosine 3', 5'-monophosphate nor inhibited by the regulatory subunit of rabbit muscle protein kinase. Its activity is stimulated by KCl at concentrations below 0.2 M and inhibited by higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号