首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The halophilic archaea Halococcus (Hc.) saccharolyticus, Haloferax (Hf.) volcanii, and Halorubrum (Hr.) saccharovorum were found to generate acetate during growth on glucose and to utilize acetate as a growth substrate. The mechanisms of acetate formation from acetyl-CoA and of acetate activation to acetyl-CoA were studied. Hc. saccharolyticus, exponentially growing on complex medium with glucose, formed acetate and contained ADP-forming acetyl-CoA synthetase (ADP-ACS) rather than acetate kinase and phosphate acetyltransferase or AMP-forming acetyl-CoA synthetase. In the stationary phase, the excreted acetate was completely consumed, and cells contained AMP-forming acetyl-CoA synthetase (AMP-ACS) and a significantly reduced ADP-ACS activity. Hc. saccharolyticus, grown on acetate as carbon and energy source, contained only AMP-ACS rather than ADP-ACS or acetate kinase. Cell suspensions of Hc. saccharolyticus metabolized acetate only when they contained AMP-ACS activity, i.e., when they were obtained after growth on acetate or from the stationary phase after growth on glucose. Suspensions of exponential glucose-grown cells, containing only ADP-ACS but not AMP-ACS, did not consume acetate. Similar results were obtained for the phylogenetic distantly related halophilic archaea Hf. volcanii and Hf. saccharovorum. We conclude that, in halophilic archaea, the formation of acetate from acetyl-CoA is catalyzed by ADP-ACS, whereas the activation of acetate to acetyl-CoA is mediated by an inducible AMP-ACS.Abbreviations. Hc. Halococcus - Hf. Haloferax - Hr. Halorubrum - Hb. Halobacterium An erratum to this article can be found at  相似文献   

2.
Phosphorylation of Escherichia coli enolase   总被引:1,自引:0,他引:1  
H K Dannelly  B Duclos  A J Cozzone  H C Reeves 《Biochimie》1989,71(9-10):1095-1100
In vivo labeling of Escherichia coli JA200 pLC 11-8 resulted in 32P incorporation into enolase as demonstrated by immunoaffinity chromatography and electrophoresis followed by autoradiography. Complete acid hydrolysis, followed by thin layer chromatography was employed for determination of the phosphoamino acid residue. Comparison with phosphoamino acid standards resulted in the identification of a labeled residue corresponding to phosphoserine. In vitro labeling of cell extracts from glucose and acetate grown cells resulted in differential labeling of enolase. When specific radioactivities of in vivo labeled enolase were compared, 7 times more label was incorporated at late log phase in glucose grown cells than in late log acetate grown cells. At stationary phase, only 2.5 times more label was incorporated into glucose compared to acetate. When 32P-labeled enolase from glucose grown cells was subjected to treatment with potato acid phosphatase, dephosphorylation of the enzyme could be observed. Monitoring enzyme activity during the acid phosphatase treatment revealed a 70% decrease for the forward enzyme reaction, and a 3-fold increase, followed by a gradual decrease to almost zero, for the reverse enzyme reaction. Complete reversal of the changes in activity was possible by adding an aliquot of partially purified enolase kinase plus ATP.  相似文献   

3.
Chemotaxis toward amino acids in Escherichia coli   总被引:30,自引:34,他引:30       下载免费PDF全文
Escherichia coli cells are shown to be attracted to the l-amino acids alanine, asparagine, aspartate, cysteine, glutamate, glycine, methionine, serine, and threonine, but not to arginine, cystine, glutamine, histidine, isoleucine, leucine, lysine, phenylalanine, tryptophan, tyrosine, or valine. Bacteria grown in a proline-containing medium were, in addition, attracted to proline. Chemotaxis toward amino acids is shown to be mediated by at least two detection systems, the aspartate and serine chemoreceptors. The aspartate chemoreceptor was nonfunctional in the aspartate taxis mutant, which showed virtually no chemotaxis toward aspartate, glutamate, or methionine, and reduced taxis toward alanine, asparagine, cysteine, glycine, and serine. The serine chemoreceptor was nonfunctional in the serine taxis mutant, which was defective in taxis toward alanine, asparagine, cysteine, glycine, and serine, and which showed no chemotaxis toward threonine. Additional data concerning the specificities of the amino acid chemoreceptors with regard to amino acid analogues are also presented. Finally, two essentially nonoxidizable amino acid analogues, alpha-aminoisobutyrate and alpha-methylaspartate, are shown to be attractants for E. coli, demonstrating that extensive metabolism of attractants is not required for amino acid taxis.  相似文献   

4.
Chinese hamster ovary (CHO) cells represent a group of predominantly used mammalian hosts for producing recombinant therapeutic proteins. Known for their rapid proliferation rates, CHO cells undergo aerobic glycolysis that is characterized by fast glucose consumption, that ultimately gives rise to a group of small-molecule organic acids. However, only the function of lactate has been extensively studied in CHO cell culture. In this study, we observed the accumulation of acetate from the late exponential phase to harvest day, potentially contributing to the pH decline in late culture stage regardless of lactate consumption. In addition, we evaluated the acidification of the fresh media and the cell culture suspension, and the data revealed that acetate presented a lower acidification capacity compared to lactate and exhibited limited inhibitory effect on cells with less than 20 mM supplemented in the media. This study also explored the ways to control acetate accumulation in CHO cell culture by manipulating the process parameters such as temperature, glucose, and pH control. The positive correlation between the specific glucose consumption rate and acetate generation rate provides evidence of the endogenous acetate generation from overflow metabolism. Reducing these parameters (temperature, glucose consumption) and HCl-controlled low pH ultimately suppress acetate build-up. In addition, the specific acetate generation rate and relevant glucose consumption rate are found to be a metabolic trait associated with specific cell lines. Taken together, the results presented in these experiments provide a means to advance industrial CHO cell culture process control and development.  相似文献   

5.
The chemotactic behavior of the nematode Caenorhabditis elegans to chemical attractants, water-soluble sodium acetate and odorant diacetyl, was investigated using nematodes at various developmental stages to examine the effects of postembryonic development on chemotactic response and spontaneous locomotion. The chemotactic responses to attractants increased as development progressed, and the largest responses to either 1.0 M sodium acetate or 0.1% diacetyl were seen at the young adult (YA) or day adult (A1) stage, respectively. Responses to the chemicals declined thereafter in-line with increasing age. The chemotaxis indices for attractants correlated with activity of spontaneous locomotion (p<0.01), suggesting that a change in spontaneous locomotion is one of the factors involved with the change in chemotactic responses during development. We also investigated the effect of aging on attractant choice by the simultaneous presentation of 0.6 M sodium acetate and 0.1% diacetyl. In the presence of both attractants, the fraction of larval animals at the sodium acetate location was greater than that at the diacetyl location (p<0.05). The fractions of YA animals that gathered at either location were almost identical, whereas the fraction of adult animals at the diacetyl location was greater than that at the sodium acetate location (p<0.05). The patterns of attractant choice of the long-lived daf-2 mutants and short lifespan mev-1 mutants showed the same tendency as those of wild type nematodes in the presence of both attractants. These results suggest that a change in the neuronal mechanisms controlling attractant choice and preference occurs during developmental progression.  相似文献   

6.
7.
Chemotaxis of a motile Streptococcus toward sugars and amino acids.   总被引:6,自引:6,他引:0       下载免费PDF全文
A motile Streptococcus was isolated and its chemotactic behavior toward sugars and amino acids was studied. Motility was optimal in the presence of an exogenous energy source and a nonionic detergent, e.g., Tween 80 or Brij-36. Both glucose and pyruvate could serve as energy source. Chemotaxis toward leucine was optimal at pH 7 to 8.5 and a temperature between 30 and 37 C. The Streptococcus showed a chemotactic response toward a variety of sugars. All commonly occurring L-amino acids, except alanine, asparagine, aspartate, glutamate, arginine, and lysine, were attractants. From concentration response curves the thresholds, peak concentrations, and optimal responses were determined.  相似文献   

8.
Effect of temperature on Pseudomonas fluorescens chemotaxis.   总被引:2,自引:0,他引:2       下载免费PDF全文
The effects of temperature and attractants on chemotaxis in psychrotrophic Pseudomonas fluorescens were examined using the Adler capillary assay technique. Several organic acids, amino acids, and uronic acids were shown to be attractants, whereas glucose and its oxidation products, gluconate and 2-ketogluconate, elicited no detectable response. Chemotaxis toward many attractants was dependent on prior growth of the microorganism with these compounds. However, the organic acids, malate and succinate, caused strong chemotactic responses regardless of the carbon source used for growth of the bacteria. The temperature at which the cells were grown (30 or 5 degrees C) had no significant detectable effect on chemotaxis to the above attractants. The temperature at which the cells were assayed appeared to affect the rate but the extent of the chemotactic response, nor the concentration response curves. The ratios of the rate of accumulation of cells to the attractant malate were approximately 2, 4, and 1 at 30, 17, and 5 degrees C, respectively. Strong chemotactic responses were observed with cells assayed at temperatures approaching 0 degree C and appeared to be functional over a broad temperature range of 3 to 35 degrees C.  相似文献   

9.
K Tauchert  A Jahn    J Oelze 《Journal of bacteriology》1990,172(11):6447-6451
Batch cultures of Azotobacter vinelandii were inoculated with cells pregrown on either acetate or glucose. When they were subsequently grown on a mixture of acetate and glucose, typical diauxic growth was observed, with preferential uptake of acetate in the first and glucose in the second phase of growth. Extracts from acetate-pregrown cells exhibited high acetate kinase activity in the first phase of growth. This activity decreased and activities of the two glucose enzymes glucose 6-phosphate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase increased in the second phase. Extracts from glucose-pregrown cells exhibited high initial activities of the two glucose enzymes, which decreased while acetate kinase activity increased in the first phase of growth. Again, in the second phase, activities of the two glucose enzymes increased and acetate kinase activity decreased. In any case, isocitrate dehydrogenase activity varied only slightly and unspecifically. The differences in enzyme activity and the constancy of isocitrate dehydrogenase were confirmed by experiments with either acetate- or glucose-limited chemostats. In chemostats in which both of the substrates were limiting, all of the enzymes displayed significant activities. Glucose 6-phosphate dehydrogenase activity was inhibited by acetyl coenzyme A and acetyl phosphate but not by acetate. It is proposed that diauxic growth is based on the control of enzymes involved in acetate or glucose dissimilation by which acetate or its metabolites control the expression and activity of glucose enzymes.  相似文献   

10.
We describe a chemotactic-like response of Escherichia coli strains lacking most of the known chemotaxis machinery but containing high levels of the response regulator CheY. The bacteria accumulated in aspartate-containing capillaries, they formed rings on tryptone-containing semisolid agar, and the probability of counterclockwise flagellar rotation transiently increased in response to stimulation with aspartate (10(-10)-10(-5) M; the response was inverted at > 10(-4) M). The temporal response was partial and delayed, as was the response of a control wild-type strain having a high CheY level. alpha-Methyl-DL-aspartate, a non-metabolizable analogue of aspartate as well as other known attractants of E. Coli, glucose and, to a lesser extent, galactose, maltose and serine caused a similar response. So did low concentrations of acetate and benzoate (which, at higher concentrations, act as repellents for wild-type E. coli). Other tested repellents such as indole, Ni2+ and CO2+ increased the clockwise bias. These observations raise the possibility that, at least when the conventional signal transduction components are missing, a non-conventional chemotactic signal transduction pathway might be functional in E. coli. Potential molecular mechanisms are discussed.  相似文献   

11.
Gametophytic pollen tube guidance   总被引:1,自引:0,他引:1  
The concept of a pollen tube attractant was proposed in the late nineteenth century when pollen tubes were found to grow toward excised pistil tissues on medium. Since then, for about 140 years, plant biologists have tried to identify the pollen tube attractants. However, no molecule has been convincingly demonstrated to be the true attractant that actually controls the navigation of pollen tubes in the pistil. The past decade has seen substantial progress in this field in terms of our understanding of the various mechanisms of pollen tube guidance. It was suggested that diffusible pollen tube attractants might provide localized signals that affect the directional growth of the pollen tube, especially in the last phase of guidance by the target female gametophyte. Here, we review the mechanisms of pollen tube guidance, with special focus on the gametophytic guidance and the attractant. The necessary and appropriate conditions required by the true attractant will be discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
In Halobacterium halobium tactic responses towards light and chemoeffectors are accompanied by changes in the methylation level of methyl-accepting chemotaxis proteins (MCP). Taxis towards green light absorbed by the bacteriorhodopsin proton pump appears to be governed by ΔμH+-sensing. The addition of CCCP, an uncoupler, prevented the increase of MCP methylation in response to green light illumination, but had no effect on CH3-incorporation followed by the addition of the attractants glucose, leucine and histidine. Similarly, CCCP did not change MCP demethylation in response to blue light illumination, a repelling stimuli.The sensitivity to an uncoupler of methylation linked to ΔμH+-mediated green light taxis is to be expected, while the independence of demethylation caused by the blue light of CCCP is an indication that in the latter case a specific photoreceptor governs phototaxis. Informed processing from the blue light receptor to MCP does not involve a change in the membrane potential.  相似文献   

13.
Bacteria migrate away from an acid pH and from a number of chemicals, including organic acids such as acetate; the basis for detection of these environmental cues has not been demonstrated. Membrane-permeant weak acids caused prolonged tumbling when added to Salmonella sp. or Escherichia coli cells at pH 5.5. Tethered Salmonella cells went from a prestimulus behavior of 14% clockwise rotation to 80% clockwise rotation when 40 mM acetate was added and remained this way for more than 30 min. A low external pH in the absence of weak acid did not markedly affect steady-state tumbling frequency. Among the weak acids tested, the rank for acidity (salicylate greater than benzoate greater than acetate greater than 5,5-dimethyl-2,4-oxazolidinedione) was the same as the rank for the ability to collapse the transmembrane pH gradient and to cause tumbling. At pH 7.0, the tumbling responses caused by the weak acids were much briefer. Indole, a non-weak-acid repellent, did not cause prolonged tumbling at low pH. Two chemotaxis mutants (a Salmonella mutant defective in the chemotaxis methylesterase and an E. coli mutant defective in the methyl-accepting protein in MCP I) showed inverse responses of enhanced counterclockwise rotation in the first 1 min after acetate addition. The latter mutant had been found previously to be defective in the sensing of gradients of extracellular pH and (at neutral pH) of acetate. We conclude (i) that taxes away from acid pH and membrane-permeant weak acids are both mediated by a pH-sensitive component located either in the cytoplasm or on the cytoplasmic side of the membrane, rather than by an external receptor (as in the case of the attractants), and (ii) that both of these taxes involve components of the chemotaxis methylation system, at least in the early phase of the response.  相似文献   

14.
The influence of temperature on glucose metabolism of a psychotrophic strain of Bacillus cereus was investigated. The pH of the growth medium and spore-forming frequencies of B. cereus varied when grown at 32, 20, or 7 C. Radiorespirometric analyses revealed that vegetative cells of B. cereus metabolized glucose by simultaneous operation of the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. As the growth temperature decreased, glucose was metabolized with increased participation of the pentose phosphate pathway. The shift of cells grown at a higher temperature to a lower temperature increased the relative participation of the pentose phosphate pathway, whereas the shift of cells grown at low temperatures to a higher temperature had the opposite effect. Cells of late logarithmic phase grown at 20 and 7 C oxidized acetate by the tricarboxylic acid cycle reaction. However, cells grown at 32 C failed to oxidize acetate to CO2 to any appreciable extent. The extracellular products resulting from the metabolism of glucose decreased as the growth temperature was lowered. Organic acids were the major extracellular products of cultures grown at 32 and 20 C. Acetic acid, lactic acid, and pyruvic acid together accounted for 86.1 and 78.9% of extracellular radioactivity, respectively, at the two temperatures. The relative ratio of these three acids varied between the temperatures. Little or no acid accumulated at 7 C.  相似文献   

15.
The influence of temperature on glucose metabolism of a psychotrophic strain of Bacillus cereus was investigated. The pH of the growth medium and spore-forming frequencies of B. cereus varied when grown at 32, 20, or 7 C. Radiorespirometric analyses revealed that vegetative cells of B. cereus metabolized glucose by simultaneous operation of the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. As the growth temperature decreased, glucose was metabolized with increased participation of the pentose phosphate pathway. The shift of cells grown at a higher temperature to a lower temperature increased the relative participation of the pentose phosphate pathway, whereas the shift of cells grown at low temperatures to a higher temperature had the opposite effect. Cells of late logarithmic phase grown at 20 and 7 C oxidized acetate by the tricarboxylic acid cycle reaction. However, cells grown at 32 C failed to oxidize acetate to CO2 to any appreciable extent. The extracellular products resulting from the metabolism of glucose decreased as the growth temperature was lowered. Organic acids were the major extracellular products of cultures grown at 32 and 20 C. Acetic acid, lactic acid, and pyruvic acid together accounted for 86.1 and 78.9% of extracellular radioactivity, respectively, at the two temperatures. The relative ratio of these three acids varied between the temperatures. Little or no acid accumulated at 7 C.  相似文献   

16.
13C NMR was used to study glucose metabolism in intact cells of Halobacterium halobium. Spectra of glucose grown cells incubated with [1-13C] glucose indicate the presence of gluconate as the initial product. The existence of glycolytic pathway is also indicated. In the extracts of these cells an NADP dependent glucose dehydrogenase was detected. Galactose grown cells failed to metabolise glucose but exhibited glucose dehydrogenase activity although about 20-50% less than that for glucose grown cells. Possible explanations of these experiments are discussed.  相似文献   

17.
THIRTY STRAINS OF HUMAN ORAL ANAEROBIC SPIROCHETES WERE ISOLATED IN THREE DIFFERENT MEDIA: veal heart infusion-ascitic fluid, Spirolate-Brain Heart Infusion-rabbit serum, and supplemented PPLO broth. The morphological and biochemical characteristics of the isolates permitted their differentiation into three distinct species: Treponema denticola, T. macrodentium, and T. oralis (proposed new species). These species could be differentiated as follows. Organisms of the T. denticola type had a "2-4-2" axial fibril relationship as determined by electron microscopy, required serum for growth, did not utilize glucose or lactate, and produced indole, ammonia, acetate, and lactate as end products. T. macrodentium had a "1-2-1" axial fibril relationship, did not require serum, utilized glucose but not lactate, did not produce indole or ammonia, and produced formate, acetate, lactate, and succinate as acid end products. T. oralis had a "1-2-1" axial fibril relationship, required serum for growth, utilized lactate but not glucose, produced indole but not ammonia, and produced propionate and acetate as acid end products.  相似文献   

18.
The uptake of acetate by intact nongrowing cells of Acinetobacter calcoaceticus was studied in dependence on the C-source (acetate, n-alcanes, yeast extract, succinate, L-malate) and the growth phase. Single kinetic parameters of acetate uptake were determined. The best acetate uptake was observed with cells cultivated with acetate as the only C-source. Bacteria in the early growth phase were found to transfer acetate twice as fast as cells of the late logarithmic growth phase. The uptake of acetate can be described by a biphasic saturation kinetics with 2 Km values: the Km value for the first phase being 1.10(-5) M, and for the second one, 1.8 .10(-4) M. The corresponding maximal uptake rates are 8 and 37 mM/min/mg dry weight, respectively. Alpha-ketoglutarate, fumarate, L-malate, and oxalacetate inhibit the initial uptake of acetate. Uranylacetate, inhibitors of the respiratory chain and proton conductors in part completely inhibit the uptake of acetate.  相似文献   

19.
The regulation of amino acid chemotaxis by nitrogen was investigated in the gram-negative bacterium Pseudomonas aeruginosa. The quantitative capillary tube technique was used to measure chemotactic responses of bacteria to spatial gradients of amino acids and other attractants. Chemotaxis toward serine, arginine, and alpha-aminoisobutyrate was sharply dependent on the form in which nitrogen was presented to the bacteria. Bacteria grown on mineral salts-succinate with potassium nitrate gave responses to amino acids that were 2 to 3 times those of cells grown on ammonium sulfate and 10 to 20 times those of cells grown in mineral salts-succinate with Casamino Acids as the nitrogen source. A combination of ammonium sulfate and glutamate was as effective as Casamino Acids in depressing serine taxis. The threshold concentration for alpha-aminoisobutyrate taxis was consistently lower in nitrate-grown bacteria than in ammonia-grown bacteria. Responsiveness to sodium succinate, however, was not subject to regulation by nitrogen, and glucose chemotaxis was inhibited, rather than enhanced, in nitrate-grown bacteria. These results indicate that chemotaxis of P. aeruginosa toward amino acids is subject to regulation by nitrogen and that this regulation probably is expressed at the level of the chemoreceptors or transducers.  相似文献   

20.
Lysine and chloride ions are water-soluble attractants for Caenorhabditis elegans. When chemotaxis behavior to either of these attractants was assayed separately, the radial concentration gradients of 3 M lysine and 0.1 M ammonium chloride had similar potencies for attracting worms. However, when the concentration gradients of lysine and ammonium chloride at these concentrations were presented simultaneously, worms preferred lysine to ammonium chloride more than expected from the results obtained in separate experiments, suggesting the presence of an interaction between these two sensory information pathways within the nervous system. Chemotaxis behavior toward the radial concentration gradient of one of these attractants superimposed on a uniform concentration of the other attractant showed that the chemotaxis was augmented or attenuated by the ammonium chloride background depending on the background concentration, and attenuated by the lysine background, further supporting the interaction between the two sensory information pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号