首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The biogenesis of multivesicular bodies and endosomal sorting of membrane cargo are driven forward by the endosomal sorting complexes required for transport, ESCRT-I, -II, and -III. ESCRT-I is characterized in yeast as a complex consisting of Vps23, Vps28, and Vps37. Whereas mammalian homologues of Vps23 and Vps28 (named Tsg101 and hVps28, respectively) have been identified and characterized, a mammalian counterpart of Vps37 has not yet been identified. Here, we show that a regulator of proliferation, hepatocellular carcinoma related protein 1 (HCRP1), interacts with Tsg101, hVps28, and their upstream regulator Hrs. The ability of HCRP1 (which we assign the alternative name hVps37A) to interact with Tsg101 is conferred by its mod(r) domain and is shared with hVps37B and hVps37C, two other mod(r) domain-containing proteins. HCRP1 cofractionates with Tsg101 and hVps28 by size exclusion chromatography and colocalizes with hVps28 on LAMP1-positive endosomes. Whereas depletion of Tsg101 by siRNA reduces cellular levels of both hVps28 and HCRP1, depletion of HCRP1 has no effect on Tsg101 or hVps28. Nevertheless, HCRP1 depletion strongly retards epidermal growth factor (EGF) receptor degradation. Together, these results indicate that HCRP1 is a subunit of mammalian ESCRT-I and that its function is essential for lysosomal sorting of EGF receptors.  相似文献   

2.
Monoubiquitination of endocytosed cell surface receptors serves as a sorting signal for their trafficking from endosomes to lysosomes. The sorting of ubiquitinated proteins is executed by concerted actions of class E vacuolar protein sorting (Vps) proteins. Some proteins in the sorting machinery undergo monoubiquitination, suggesting that their functions are also regulated by ubiquitination. The Hrs-STAM complex, a class E Vps protein complex essential for the initial step of the sorting pathway, binds two deubiquitinating enzymes, UBPY and AMSH. Here we examined the effects of inactivating UBPY on protein ubiquitination at endosomes. Overexpression of a catalytically inactive UBPY mutant or depletion of UBPY by RNA interference resulted in the accumulation of ubiquitinated proteins on morphologically aberrant endosomes. Electron microscopy showed that they are aggregates of multivesicular endosomes. Among the sorting machinery proteins that undergo ubiquitination, Eps15 was monoubiquitinated at an elevated level in UBPY-inactivated cells. UBPY also deubiquitinated Eps15 in vitro, suggesting that Eps15 is a cellular substrate for UBPY. Furthermore, inactivation of UBPY caused the accumulation of Eps15 on the endosomal aggregates. These results suggest that UBPY regulates the level of protein ubiquitination on endosomes, which is required for maintaining the morphology of the organelle.  相似文献   

3.
The endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are thought to mediate the biogenesis of multivesicular endosomes (MVEs) and endosomal sorting of ubiquitinated membrane proteins. Here, we have compared the importance of the ESCRT-I subunit tumor susceptibility gene 101 (Tsg101) and the ESCRT-III subunit hVps24/CHMP3 for endosomal functions and receptor signaling. Like Tsg101, endogenous hVps24 localized mainly to late endosomes. Depletion of hVps24 by siRNA showed that this ESCRT subunit, like Tsg101, is important for degradation of the epidermal growth factor (EGF) receptor (EGFR) and for transport of the receptor from early endosomes to lysosomes. Surprisingly, however, whereas depletion of Tsg101 caused sustained EGF activation of the mitogen-activated protein kinase pathway, depletion of hVps24 had no such effect. Moreover, depletion of Tsg101 but not of hVps24 caused a major fraction of internalized EGF to accumulate in nonacidified endosomes. Electron microscopy of hVps24-depleted cells showed an accumulation of EGFRs in MVEs that were significantly smaller than those in control cells, probably because of an impaired fusion with lyso-bisphosphatidic acid-positive late endosomes/lysosomes. Together, our results reveal functional differences between ESCRT-I and ESCRT-III in degradative protein trafficking and indicate that degradation of the EGFR is not required for termination of its signaling.  相似文献   

4.
Ten class E Vps proteins in yeast are known components of the ESCRT complexes I, II and III, which are required for the sorting of proteins to the lumenal membranes of multivesicular bodies. We used the yeast 2 hybrid system to analyze the protein–protein interactions of all 17 soluble class E Vps proteins, as well as proteins thought to be required for the ubiquitination and deubiquitination of cargo proteins at multivesicular bodies. We identified novel interactions between yeast ESCRT complex components suggesting that ESCRTI binds to both ESCRTII and ESCRTIII. These interactions were confirmed by GST pull-down experiments. Our data indicate that the link between ESCRTI and ESCRTIII is via Vps28p and Vps37p/Srn2p binding directly to Vps20p, as well as through indirect interactions via ESCRTII. This is in contrast to the situation in mammalian cells where ESCRTI and ESCRTIII interact indirectly via ALIX, the mammalian homologue of yeast proteins Vps31p/Bro1p and Rim20p. Our data also enable us to link all soluble class E Vps proteins to the ESCRT complexes. We propose the formation of a large multimeric complex on the endosome membrane consisting of ESCRTI, ESCRTII, ESCRTIII and other associated proteins.  相似文献   

5.
Dynamic modification of endosomal cargo proteins, such as the epidermal growth factor receptor, by ubiquitin can regulate their sorting into the lumen of multivesicular bodies through interactions with a complex protein network incorporating the endosomal sorting complexes required for transport (ESCRTs). Two deubiquitinating enzymes, AMSH and UBPY, interact with ESCRT protein components but exert opposite effects upon the rate of epidermal growth factor receptor downregulation. This might reflect their distinct specificities for different types of polyubiquitin chain linkage. We propose that AMSH might rescue ubiquitinated cargo from lysosomal degradation through disassembly of K63-linked polyubiquitin chains. UBPY function is essential for effective downregulation but is likely to be multifaceted, encompassing activity against both K63-linked and K48-linked polyubiquitin chains and including regulation of the stability of ESCRT-associated proteins such as STAM, by reversing their ubiquitination.  相似文献   

6.
The homotypic fusion and protein sorting (HOPS) complex is a multisubunit tethering complex that in yeast regulates membrane fusion events with the vacuole, the yeast lysosome. Mammalian homologs of all HOPS components have been found, but little is known about their function. Here, we studied the role of hVps41 and hVps39, two components of the putative human HOPS complex, in the endo‐lysosomal pathway of human cells. By expressing hemagglutinin (HA)‐tagged constructs, we show by immunoelectron microscopy (immunoEM) that both hVps41 and hVps39 associate with the limiting membrane of late endosomes as well as lysosomes. Small interference RNA (siRNA)‐mediated knockdown of hVps41 or hVps39 resulted in an accumulation of late endosomes, a depletion in the number of lysosomes and a block in the degradation of endocytosed cargo. Lysosomal pH and cathepsin B activity remained unaltered in these conditions. By immunoEM we found that hVps41 or hVps39 knockdown impairs homotypic fusion between late endosomes as well as heterotypic fusion between late endosomes and lysosomes. Thus, our data show that both hVps41 and hVps39 are required for late endosomal–lysosomal fusion events and the delivery of endocytic cargo to lysosomes in human cells.  相似文献   

7.
Ligand-activated receptor tyrosine kinases undergo endocytosis and are transported via endosomes to lysosomes for degradation. This "receptor down-regulation" process is crucial to terminate the cell proliferation signals produced by activated receptors. During the process, ubiquitination of the receptors serves as a sorting signal for their trafficking from endosomes to lysosomes. Here, we describe the role of a deubiquitinating enzyme UBPY/USP8 in the down-regulation of epidermal growth factor (EGF) receptor (EGFR). Overexpression of UBPY reduced the ubiquitination level of EGFR and delayed its degradation in EGF-stimulated cells. Immunopurified UBPY deubiquitinated EGFR in vitro. In EGF-stimulated cells, UBPY underwent ubiquitination and bound to EGFR. Overexpression of Hrs or a dominant-negative mutant of SKD1, proteins that play roles in the endosomal sorting of ubiquitinated receptors, caused the accumulation of endogenous UBPY on exaggerated endosomes. A catalytically inactive UBPY mutant clearly localized on endosomes, where it overlapped with EGFR when cells were stimulated with EGF. Finally, depletion of endogenous UBPY by RNA interference resulted in elevated ubiquitination and accelerated degradation of EGF-activated EGFR. We conclude that UBPY negatively regulates the rate of EGFR down-regulation by deubiquitinating EGFR on endosomes.  相似文献   

8.
Ligand-mediated lysosomal degradation of growth factor receptors, mediated by the endosomal sorting complex required for transport (ESCRT) machinery, is a mechanism that attenuates the cellular response to growth factors. In this article, we present a novel regulatory mechanism that involves ligand-mediated degradation of a key component of the sorting machinery itself. We have investigated the endosomal localization of subunits of the four ESCRTs-Hrs (ESCRT-0), Tsg101 (ESCRT-I), EAP30/Vps22 (ESCRT-II) and charged multivesicular body protein 3/Vps24 (ESCRT-III). All the components were detected on the limiting membrane of multivesicular endosomes (MVEs). Surprisingly, however, Tsg101 and other ESCRT-I subunits were also detected within intraluminal vesicles (ILVs) of MVEs. Tsg101 was sequestered along with cargo during endosomal sorting into ILVs and further degraded in lysosomes. Importantly, ESCRT-mediated downregulation of two distinct cargoes, epidermal growth factor receptor (EGFR) and connexin43, mutually made cells refractory to degradation of the other cargo. Our observations indicate that the degradation of a key ESCRT component along with cargo represents a novel feedback control of endosomal sorting by preventing collateral degradation of cell surface receptors following stimulation of one specific pathway.  相似文献   

9.
Endosomal sorting complex required for transport-III (ESCRT-III) is a large complex built from related ESCRT-III proteins involved in multivesicular body biogenesis. Little is known about the structure and function of this complex. Here, we compare four human ESCRT-III proteins - hVps2-1/CHMP2a, hVps24/CHMP3, hVps20/CHMP6, and hSnf7-1/CHMP4a - to each other, studying the effects of deleting predicted alpha-helical domains on their behavior in transfected cells. Surprisingly, removing approximately 40 amino acids from the C-terminus of each protein unmasks a common ability to associate with endosomal membranes and assemble into large polymeric complexes. Expressing these truncated ESCRT-III proteins in cultured cells causes ubiquitinated cargo to accumulate on enlarged endosomes and inhibits viral budding, while expressing full-length proteins does not. hVps2-1/CHMP2a lacking its C-terminal 42 amino acids further fails to bind to the AAA+ adenosine triphosphatase VPS4B/SKD1, indicating that C-terminal sequences are important for interaction of ESCRT-III proteins with VPS4. Overall, our study supports a model in which ESCRT-III proteins cycle between a default 'closed' state and an activated 'open' state under control of sequences at their C-terminus and associated factors.  相似文献   

10.
The biogenesis of multivesicular endosomes and the sorting of activated signaling receptors into multivesicular endosomes depend on soluble protein complexes (ESCRT complexes), which transiently interact with the receptor cargo and the endosomal membrane. Previously, it was shown that the transmembrane protein secretory carrier membrane protein (SCAMP) 3, which is present on endosomes, interacts with ESCRT components. Here, we report that SCAMP3 plays a role in the biogenesis of multivesicular endosomes. We find that SCAMP3 plays a role in EGF receptor sorting into multivesicular endosomes and in the formation of intralumenal vesicles within these endosomes in vitro and thus also controls EGF receptor targeting to lysosomes. We also find that SCAMP3 regulates the EGF-dependent biogenesis of multivesicular endosomes. We conclude that the transmembrane protein SCAMP3 has a positive role in sorting into and budding of intralumenal vesicles and thereby controls the process of multivesicular endosome biogenesis.  相似文献   

11.
The Niemann Pick C1 protein localizes to late endosomes and plays a key role in the intracellular transport of cholesterol in mammalian cells. Cholesterol and other lipids accumulate in a lysosomal or late endosomal compartment in cells lacking normal NPC1 function. Other than accumulation of lipids, defects in lysosomal retroendocytosis, sorting of a multifunctional receptor and endosomal movement have also been detected in NPC1 mutant cells. Ncr1p is an ortholog of NPC1 in the budding yeast Saccharomyces cerevisiae. In this study, we show that Ncr1p is a vacuolar membrane protein that transits through the biosynthetic vacuolar protein sorting pathway, and that it can be solubilized by Triton X-100 at 4 degrees C. Using well-established assays, we demonstrate that the absence of Ncr1p had no effect on fluid phase and receptor- mediated endocytosis, biosynthetic delivery to the vacuole, retrograde transport from endosome to Golgi and ubiquitin- and nonubiquitin-dependent multivesicular body sorting. We conclude that Ncr1p does not have an essential role in known endocytic transport pathways in yeast.  相似文献   

12.
Whereas poly-ubiquitination targets protein substrates for proteasomal degradation, mono-ubiquitination is known to regulate protein trafficking in the endosomal system and to target cargo proteins for lysosomal degradation. The role of the de-ubiquitinating enzymes AMSH and UBPY in endosomal trafficking of cargo proteins such as the epidermal growth factor receptor (EGFR) has only very recently been the subject of study and is already a matter of debate. Although one report (Mizuno, E., Iura, T., Mukai, A., Yoshimori, T., Kitamura, N., and Komada, M. (2005) Mol. Biol. Cell 16, 5163-5174) concludes that UBPY negatively regulates EGFR degradation by de-ubiquitinating the EGFR on endosomes, another report (Row, P. E., Prior, I. A., McCullough, J., Clague, M. J., and Urbe, S. (2006) J. Biol. Chem. 281, 12618-12624) concludes that UBPY-mediated EGFR de-ubiquitination is essential for EGFR degradation. Here, we demonstrate that Usp8/UBPY, the mammalian ortholog of budding yeast Ubp4/Doa4, constitutively co-precipitates in a bivalent manner with the EGFR. Moreover, UBPY is a substrate for Src-family tyrosine kinases that are activated after ligand-induced EGFR activation. Using overexpression of three different recombinant dominant negative UBPY mutants (UBPY C748A mutant, UBPY 1-505, and UBPY 640-1080) in NIH3T3 and HEK293 cells, we demonstrate that UBPY affects both constitutive and ligand-induced (i) EGFR ubiquitination, (ii) EGFR expression levels, and (iii) the appearance of intermediate EGFR degradation products as well as (iv) downstream mitogen-activated protein kinase signal transduction. Our findings provide further evidence in favor of the model that UBPY-mediated EGFR de-ubiquitination promotes EGFR degradation.  相似文献   

13.
Sorting nexin (SNX) 1 and SNX2 are mammalian orthologs of Vps5p, a yeast protein that is a subunit of a large multimeric complex, termed the retromer complex, involved in retrograde transport of proteins from endosomes to the trans-Golgi network. We report the cloning and characterization of human orthologs of three additional components of the complex: Vps26p, Vps29p, and Vps35p. The close structural similarity between the yeast and human proteins suggests a similarity in function. We used both yeast two-hybrid assays and expression in mammalian cells to define the binding interactions among these proteins. The data suggest a model in which hVps35 serves as the core of a multimeric complex by binding directly to hVps26, hVps29, and SNX1. Deletional analyses of hVps35 demonstrate that amino acid residues 1-53 and 307-796 of hVps35 bind to the coiled coil-containing domain of SNX1. In contrast, hVps26 binds to amino acid residues 1-172 of hVps35, whereas hVps29 binds to amino acid residues 307-796 of hVps35. Furthermore, hVps35, hVps29, and hVps26 have been found in membrane-associated and cytosolic compartments. Gel filtration chromatography of COS7 cell cytosol showed that both recombinant and endogenous hVps35, hVps29, and hVps26 coelute as a large complex ( approximately 220-440 kDa). In the absence of hVps35, neither hVps26 nor hVps29 is found in the large complex. These data provide the first insights into the binding interactions among subunits of a putative mammalian retromer complex.  相似文献   

14.
In yeast and mammals, the AAA ATPase Vps4p/SKD1 (for Vacuolar protein sorting 4/SUPPRESSOR OF K(+) TRANSPORT GROWTH DEFECT1) is required for the endosomal sorting of secretory and endocytic cargo. We identified a VPS4/SKD1 homolog in Arabidopsis thaliana, which localizes to the cytoplasm and to multivesicular endosomes. In addition, green fluorescent protein-SKD1 colocalizes on multivesicular bodies with fluorescent fusion protein endosomal Rab GTPases, such as ARA6/RabF1, RHA1/RabF2a, and ARA7/RabF2b, and with the endocytic marker FM4-64. The expression of SKD1(E232Q), an ATPase-deficient version of SKD1, induces alterations in the endosomal system of tobacco (Nicotiana tabacum) Bright Yellow 2 cells and ultimately leads to cell death. The inducible expression of SKD1(E232Q) in Arabidopsis resulted in enlarged endosomes with a reduced number of internal vesicles. In a yeast two-hybrid screen using Arabidopsis SKD1 as bait, we isolated a putative homolog of mammalian LYST-INTERACTING PROTEIN5 (LIP5)/SKD1 BINDING PROTEIN1 and yeast Vta1p (for Vps twenty associated 1 protein). Arabidopsis LIP5 acts as a positive regulator of SKD1 by increasing fourfold to fivefold its in vitro ATPase activity. We isolated a knockout homozygous Arabidopsis mutant line with a T-DNA insertion in LIP5. lip5 plants are viable and show no phenotypic alterations under normal growth conditions, suggesting that basal SKD1 ATPase activity is sufficient for plant development and growth.  相似文献   

15.
UBPY is a ubiquitin-specific protease that can deubiquitinate monoubiquitinated receptor tyrosine kinases, as well as process Lys-48- and Lys-63-linked polyubiquitin to lower denomination forms in vitro. Catalytically inactive UBPY localizes to endosomes, which accumulate ubiquitinated proteins. We have explored the sequelae of short interfering RNA-mediated knockdown of UBPY. Global levels of ubiquitinated protein increase and ubiquitin accumulates on endosomes, although free ubiquitin levels are unchanged. UBPY-depleted cells have more and larger multivesicular endosomal structures that are frequently associated through extended contact areas, characterized by regularly spaced, electron-dense, bridging profiles. Degradation of acutely stimulated receptor tyrosine kinases, epidermal growth factor receptor and Met, is strongly inhibited in UBPY knockdown cells suggesting that UBPY function is essential for growth factor receptor down-regulation. In contrast, stability of the UBPY binding partner STAM is dramatically compromised in UBPY knockdown cells. The cellular functions of UBPY are complex but clearly distinct from those of the Lys-63-ubiquitin-specific protease, AMSH, with which it shares a binding site on the SH3 domain of STAM.  相似文献   

16.
The retromer protein complex assists in recycling selected integral membrane proteins from endosomes to the trans Golgi network. One protein subcomplex (Vps35p, Vps26p and Vps29p) combines with a second (Vps17p and Vps5p) to form a coat involved in sorting and budding of endosomal vesicles. Yeast Vps35p (yVps35) exhibits similarity to human Vps35 (hVps35), especially in a completely conserved PRLYL motif contained within an amino-terminal domain. Companion studies indicate that an R(98)W mutation in yVps35 causes defective retromer assembly in Saccharomyces cerevisiae. Herein, we find that the expression of hVps35 in yeast confers dominant-negative vacuolar proenzyme secretion and defective secretory proprotein processing. The mutant phenotype appears to be driven by hVps35 competing with endogenous yVps35, becoming incorporated into defective retromer complexes and causing proteasomal degradation of endogenous Vps26 and Vps29. Increased expression of yVps35 displaces some hVps35 to a 100 000 x g supernatant and suppresses the dominant-negative phenotype. Remarkably, mutation of the conserved R(107)W of hVps35 displaces some of the protein to the 100 000 x g supernatant, slows protein turnover and restores stability of Vps26p and Vps29p and completely abrogates dominant-negative trafficking behavior. We show that hVps35 coprecipitates Vps26, whereas the R(107)W mutant does not. In pancreatic beta cells, the R(107)W mutant shifts hVps35 from peripheral endosomes to a juxtanuclear compartment, affecting both mannose phosphate receptors and insulin. These data underscore importance of the Vps35 PRLYL motif in retromer subcomplex interactions and function.  相似文献   

17.
At the late endosomes, cargoes destined for the interior of the vacuole are sorted into invaginating vesicles of the multivesicular body. Both PtdIns(3,5)P2 and ubiquitin are necessary for proper sorting of some of these cargoes. We show that Ent5p, a yeast protein of the epsin family homologous to Ent3p, localizes to endosomes and specifically binds to PtdIns(3,5)P2 via its ENTH domain. In cells lacking Ent3p and Ent5p, ubiquitin-dependent sorting of biosynthetic and endocytic cargo into the multivesicular body is disrupted, whereas other trafficking routes to the vacuole are not affected. Ent3p and Ent5p are associated with Vps27p, a FYVE domain containing protein that interacts with ubiquitinated cargoes and is required for protein sorting into the multivesicular body. Therefore, Ent3p and Ent5p are the first proteins shown to be connectors between PtdIns(3,5)P2- and the Vps27p-ubiquitin-driven sorting machinery at the multivesicular body.  相似文献   

18.
Vesicle-mediated protein sorting plays an important role in segregation of intracellular molecules into distinct organelles. Extensive genetic studies using yeast have identified more than 40 vacuolar protein sorting (VPS) genes involved in vesicle transport to vacuoles. However, their mammalian counterparts are not fully elucidated. In this study, we identified two human homologues of yeast Class C VPS genes, human VPS11 (hVPS11) and human VPS18 (hVPS18). We also characterized the subcellular localization and interactions of the protein products not only from these genes but also from the other mammalian Class C VPS homologue genes, hVPS16 and rVPS33a. The protein products of hVPS11 (hVps11) and hVPS18 (hVps18) were ubiquitously expressed in peripheral tissues, suggesting that they have a fundamental role in cellular function. Indirect immunofluorescence microscopy revealed that the mammalian Class C Vps proteins are predominantly associated with late endosomes/lysosomes. Immunoprecipitation and gel filtration studies showed that the mammalian Class C Vps proteins constitute a large hetero-oligomeric complex that interacts with syntaxin-7. These results indicate that like their yeast counterparts, mammalian Class C Vps proteins mediate vesicle trafficking steps in the endosome/lysosome pathway.  相似文献   

19.
Early endosomes are organized in a network of vesicles shaped by cycles of fusion, fission, and conversion to late endosomes. In yeast, endosome fusion and conversion are regulated, among others, by CORVET, a hexameric protein complex. In the mammalian endocytic system, distinct subpopulations of early endosomes labelled by the Rab5 effectors APPL1 and EEA1 are present. Here, the function of mammalian CORVET with respect to these endosomal subpopulations was investigated. Tgfbrap1 as CORVET‐specific subunit and functional ortholog of Vps3p was identified, demonstrating that it is differentially distributed between APPL1 and EEA1 endosomes. Surprisingly, depletion of CORVET‐specific subunits caused fragmentation of APPL1‐positive endosomes but not EEA1 endosomes in vivo. These and in vitro data suggest that CORVET plays a role in endosome fusion independently of EEA1. Depletion of CORVET subunits caused accumulation of large EEA1 endosomes indicative of another role in the conversion of EEA1 endosomes into late endosomes. In addition, depletion of CORVET‐specific subunits caused alterations in transport depending on both the type of cargo and the specific endosomal subpopulation. These results demonstrate that CORVET plays distinct roles at multiple stages in the mammalian endocytic pathway.   相似文献   

20.
We have identified and characterized a Microtubule Interacting and Transport (MIT) domain at the N terminus of the deubiquitinating enzyme UBPY/USP8. In common with other MIT-containing proteins such as AMSH and VPS4, UBPY can interact with CHMP proteins, which are known to regulate endosomal sorting of ubiquitinated receptors. Comparison of binding preferences for the 11 members of the human CHMP family between the UBPY MIT domain and another ubiquitin isopeptidase, AMSH, reveals common interactions with CHMP1A and CHMP1B but a distinct selectivity of AMSH for CHMP3/VPS24, a core subunit of the ESCRT-III complex, and UBPY for CHMP7. We also show that in common with AMSH, UBPY deubiquitinating enzyme activity can be stimulated by STAM but is unresponsive to its cognate CHMPs. The UBPY MIT domain is dispensable for its catalytic activity but is essential for its localization to endosomes. This is functionally significant as an MIT-deleted UBPY mutant is unable to rescue its binding partner STAM from proteasomal degradation or reverse a block to epidermal growth factor receptor degradation imposed by small interfering RNA-mediated depletion of UBPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号