首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The general oxidation mechanism by hypochlorite on starch has been well studied, but the information on the distribution of the oxidation sites within starch granules is limited. This study investigated the locations where the oxidation occurred within corn starch granules varying in amylose content, including waxy corn starch (WC), common corn starch (CC), and 50% and 70% high-amylose corn starch (AMC). Oxidized corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The surface-gelatinized remaining granules were separated and studied for structural characteristics including carboxyl content, amylose content, amylopectin chain-length distribution, thermal properties, and swelling properties. Oxidation occurred mostly at the amorphous lamellae. More carboxyl groups were found at the periphery than at the core of starch granules, which was more pronounced in oxidized 70% AMC. More amylose depolymerization from oxidation occurred at the periphery of CC. For WC and CC, amylopectin long chains (>DP 36) were more prone to depolymerization by oxidation. The gelatinization properties as measured by differential scanning calorimetry also supported the changes in amylopectin fine structure from oxidation. Oxidized starches swelled to a greater extent than their unmodified counterparts at all levels of surface removal. This study demonstrates that the locations of oxidation and physicochemical properties of oxidized starches are affected by the molecular arrangement within starch granules.  相似文献   

2.
High-amylose starch is a source of resistant starch (RS) which have great impact on human health like dietary fiber. Nowadays, high-amylose wheat has been produced by genetic backcrossing, which enhances apparent amylose content and generates altered amylopectin. In this study, the high-amylose wheat starches isolated from various high-amylose wheat cultivars grown in Australia were characterized for understanding their physicochemical properties and fine structure of starch. The physicochemical characteristics of the high-amylose wheat starches are significantly different among the cultivars. Amylose contents of these cultivars were in a range of 28.0–36.9%, which is significantly higher than that of the normal wheat starch (25.6%). The high-amylose wheat starches also had higher blue value but lower λmax than the normal wheat starch. Gelatinization temperature of the high-amylose wheat starches is higher than that of the normal wheat starch but transition enthalpy is lower. X-ray diffraction showed that the high-amylose wheat starch had C-type crystals close to A-type crystal. Pasting properties of the high-amylose wheat starches were varying depending on the cultivars. However, almost high-amylose wheat starches had lower peak and final viscosities and higher setback viscosity than did the normal wheat starch. Fine structure of amylose and amylopectin was different among the high-amylose wheat cultivars and related to the physicochemical properties of starch. These results help to understand well the characteristics of the high-amylose wheat starches before application for food processing.  相似文献   

3.
The molecular structure and physicochemical properties of acid–alcohol treated maize and potato starches (0.36% HCl in methanol at 25 °C for 1–15 days) were investigated. The yields of the modified starches were ranging from 91 to 100%. The average granule size of modified starches decreased slightly. The solubility of starches increased with the increase of treatment time, and the pasting properties confirmed the high solubility of modified starches. The gelatinization temperatures and range of gelatinization increased with the increase of treatment time except To (onset temperature) of maize starch. Molecular structures of modified starches suggested the degradation of starches occurred mostly within the first 5 days of treatment, and degradation rate of potato starch was higher than maize starch both in amylopectin and in amylose. Maize starch was found less susceptible to acid–alcohol degradation than potato starch.  相似文献   

4.
A new approach for the determination of the botanical origin of starch is presented based on the formation of starch-triiodide complexes. The starch samples were extracted from wheat (Srpanjka), potato, maize, rye (Barun), barley (Conduct), rice, tapioca and a commercial modified starch. The amylose/amylopectin ratios of starches, among various other properties, differ between starches of different botanical origins. Triiodide ions bind characteristically to the amylose and amylopectin of the starch depending on the starch's origin. The new technique includes direct potentiometric measurements of the response of free triiodide ions in starch-triiodide solutions where the data is analysed by principal component analysis (PCA). PCA gave graphical results for statistical differentiation between starches of different botanical origins.  相似文献   

5.
Eight commercial starches, including common corn, waxy corn, wheat, tapioca, potato, Hylon V, Hylon VII, and mung bean starch, were annealed by a multiple-step process, and their gelatinization characteristics were determined. Annealed starches had higher gelatinization temperatures, reduced gelatinization ranges, and increased gelatinization enthalpies than their native starches. The annealed starches with the highest gelatinization enthalpies were subjected to acid hydrolysis with 15.3% H2SO4, and Naegeli dextrins were prepared after 10 days' hydrolysis. Annealing increased the acid susceptibility of native starches in the first (rapid) and the second (slow) phases with potato starch showing the greatest and high amylose starches showing the least changes. Starches with a larger shift in onset gelatinization temperature also displayed a greater percent hydrolysis. The increase in susceptibility to acid hydrolysis was proposed to result from defective and porous structures that resulted after annealing. Although annealing perfected the crystalline structure, it also produced void space, which led to porous structures and possible starch granule defects. The molecular size distribution and chain length distribution of Naegeli dextrins of annealed and native starches were analyzed. The reorganization of the starch molecule during annealing occurred mainly within the crystalline lamellae. Imperfect double helices in the crystalline lamellae improved after annealing, and the branch linkages at the imperfect double helices became protected by the improved crystalline structure. Therefore, more long chains were observed in the Naegeli dextrins of annealed starches than in native starches.  相似文献   

6.
Starches from waxy maize and potato were treated in methanol and 2-propanol either with or without 0.36% hydrochloric acid at 65 °C for 1 h. The granule morphology, molecular structure and pasting properties of the starches were determined and the effects of treatments on the granule and molecular structures of starch were investigated. Starch treated in alcohols without acid showed loss of native order through the hilum of granules, and no obvious molecular degradation was found. However, acid–alcohol treated starch showed many cracks inside granules, and both waxy maize and potato starches showed obvious molecular degradation after treated. Furthermore, the amylose chains and long chains of amylopectin of starch were more easily degraded with acid–alcohol treatment. The pasting viscosity of acid–alcohol treated starches were also obviously less than that of their counterpart native starch and starch after alcohol treatment. The extent of degradation of molecules and the decrease of pasting viscosity on potato starch after acid–alcohol treated were more obvious than that of waxy maize starch. The result indicates that the degradation preferentially occur in the amorphous region when starch treated by acid–alcohol, and the degradation of starch molecules enhances the amorphous excretion and the occurrence of cracks inside the granules.  相似文献   

7.
Physico-chemical properties of starch from wheat, rye, barley (waxy, high-amylose and normal-amylose), waxy maize, pea and potato (normal-amylose and high-amylopectin) were studied. Emphasis was given to the amylose (total, apparent and lipid-complexed) and amylopectin characteristics as well as to the gelatinization and retrogradation properties measured using differential scanning calorimetry. The total amylose content varied from ca. 1 % for waxy maize to 37% for high-amylose barley. The amylopectin characteristics were determined by high-performance size-exclusion chromatography after debranching with isoamylase. The weight-average degree of polymerization ( w) was 26, 33 and 27 for the A-, B-, and C-type starches, respectively. In general, the potato starches exhibited the highest retrogradation enthalpies and the cereal starches the lowest, while the pea starch showed an intermediate retrogradation enthalpy. The data were analysed by principal component analysis (PCA). The w showed positive correlation to the melting interval, the peak minimum, the offset temperatures of the retrogradation-related endotherm as well as to the gelatinization and retrogradation enthalpies. However, the high-amylose barley retrograded to a greater extent than the other cereal starches, despite low w (24). The amylose content was negatively correlated to the onset and the peak minimum temperatures of gelatinization.  相似文献   

8.
Sorption of terpenoids (essential oil components) from aqueous solutions by six types of native food starches was studied by capillary gas chromatography. Sorption of volatile substances did not depend on amylose content in starch and specific surface of its granules. The degree of sorption was maximum (86%) for corn starch containing 25-28% amylose and decreased in the following order: tapioca starch (77%) > potato starch (74%) > wheat starch (70%) > high-amylose corn starch (58%) > amylopectin corn starch (57%). Amylopectin corn starch differed from other starches in the mechanism of sorption and selectivity to compounds with various functional groups.  相似文献   

9.
Sorption of terpenoids (essential oil components) from aqueous solutions by six types of native food starches was studied by capillary gas chromatography. Sorption of volatile substances did not depend on amylose content in starch and specific surface of its granules. The degree of sorption was maximum (86%) for corn starch containing 25–28% amylose and decreased in the following order: tapioca starch (77%) > potato starch (74%) > wheat starch (70%) > high-amylose corn starch (58%) > amylopectin corn starch (57%). Amylopectin corn starch differed from other starches in the mechanism of sorption and selectivity to compounds with various functional groups.  相似文献   

10.
The amylase digestibility of high-amylose maize starches has been compared before and after thermo-mechanical processing. Starches were analysed for enzyme-resistant starch yield, apparent amylose content, crystallinity (X-ray diffraction), and molecular order (NMR and FTIR), both before and after treatment with α-amylase. All samples had significant (>10%) enzyme-resistant starch levels irrespective of the type and extent of thermal or enzymic processing. Molecular or crystalline order was not a pre-requisite for enzyme resistance. Near-amorphous forms of high amylose maize starches are likely to undergo recrystallisation during the enzyme-digestion process. The mechanism of enzyme resistance of granular high-amylose starches is found to be qualitatively different to that for processed high-amylose starches. For all samples, measured levels of enzyme resistance are due to the interruption of a slow digestion process, rather than the presence of completely indigestible material.  相似文献   

11.
Kong L  Ziegler GR 《Biomacromolecules》2012,13(8):2247-2253
We have demonstrated a method of fabricating pure starch fibers with an average diameter in the order of micrometers. In the present study, correlation between the rheological properties of starch dispersions and the electrospinnability was attempted via the extrapolation of the critical entanglement concentration, which is the boundary between the semidilute unentangled regime and the semidilute entangled regime. Dispersions of high amylose starch containing nominally 80% amylose (Gelose 80) required 1.2-2.7 times the entanglement concentration for effective electrospinning. Besides starch concentration, molecular conformation, and shear viscosity were also of importance in determining the electrospinnability. The rheological properties and electrospinnability of different starches were studied. Hylon VII and Hylon V starches, containing nominally 70 and 50% amylose, respectively, required concentrations of 1.9 and 3.7 times their entanglement concentrations for electrospinning. Only poor fibers were obtained from mung bean starch, which contains about 35% amylose, while starches with even lower amylose contents could not be electrospun.  相似文献   

12.
The organization of amylose and amylopectin within starch granules is still not well elucidated. This study investigates the radial distribution of amylose and amylopectin in different corn starches varying in amylose content (waxy corn starch (WC), common corn starch (CC), and 50% and 70% amylose corn starches (AMC)). Corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The gelatinized surface starch and remaining granules were characterized for amylose content, amylopectin chain-length distribution, thermal properties, swelling power (SP), and water solubility index (WSI). Except for the outmost 10% layer, the amylose content in CC increased slightly with increasing surface removal. In contrast, amylose was more concentrated at the periphery than at the core for 50% and 70% AMC. The proportion of amylopectin A chains generally decreased while that of B1 chains generally increased with increasing surface removal for all corn starches. The gelatinization enthalpy usually decreased, except for 70% AMC, whereas the retrogradation enthalpy relatively remained unchanged for CC but increased for WC, 50% and 70% AMC with increasing surface removal. The SP and WSI increased with increasing surface removal for all corn starches, with WC showing a significant increase in SP after the removal of the outmost 10% layer. The results of this study indicated that there were similarities and differences in the distribution of amylose and amylopectin chains along the radial location of corn starch granules with varying amylose contents. More amylose-lipid complex and amylopectin long chains were present at the periphery than at the core for amylose-containing corn starches.  相似文献   

13.
JA Han  ST Lim 《Carbohydrate polymers》2012,90(4):1480-1485
Octenylsuccinylated (OS) starches from waxy rice or high-amylose rice (28.1% amylose) (DS 0.023 and 0.025, respectively) were gamma-irradiated at 10, 30, or 50kGy and their pasting and thermal properties, crystallinity, and emulsification property were examined. When the OS starches were irradiated, the degrees of substitution gradually decreased as irradiation dose increased. A significant decrease in pasting viscosity was observed with an increase in irradiation dose, indicating the presence of chain degradation induced by the radiation. The melting temperature and enthalpy determined by differential scanning calorimetry increased slightly by irradiating at 10 or 30kGy. Little change in crystallinity was observed in the X-ray diffraction analysis for the OS high-amylose rice starch regardless of irradiation doses, whereas a decrease in crystallinity was observed with the OS waxy starch irradiated at 50kGy. Chain degradation induced by irradiation occurred mainly in the amorphous regions, but some loss of crystallinity occurred when the irradiation was excessive. The OS starches showed greater emulsion capacity and stability than the native counterparts due to their amphipathic nature. The irradiation further improved the emulsification properties of OS starches. The irradiation at 10kGy was optimal, and treating at higher doses decreased the emulsion capacity and stability of the OS starches.  相似文献   

14.
The effects of amylose content on the extent of oxidation and the distribution of carboxyl groups in hypochlorite-oxidized corn starches were investigated. Corn starches including waxy corn starch (WC), common corn starch (CC), and 50% and 70% high-amylose corn starches (AMC) were oxidized with NaOCl at three concentrations (0.8%, 2%, and 5%). Carboxyl and carbonyl content of oxidized starches increased with increasing NaOCl concentration. High-AMC (70%) had slightly higher carboxyl and carbonyl contents at 0.8% NaOCl, whereas WC had significantly higher carboxyl and carbonyl contents at 2% and 5% NaOCl levels. Carbohydrate profiles by high-performance size-exclusion chromatography indicate that amylose was more susceptible to depolymerization than amylopectin. Degradation of amylopectin long chains (DP >24) was more pronounced in WC and CC than in AMCs. The crystalline lamellae of WC started to degrade at 2% NaOCl, but those of the other corn starches remained intact even at 5% NaOCl level according to X-ray crystallinity. By using anion-exchange chromatography for separation and size-exclusion chromatography for characterization, carboxyl groups were found to be more concentrated on amylopectin than on amylose, particularly in AMCs. Oxidation decreased gelatinization temperature and enthalpy with WC showing the most decrease and 70% AMC showing the least. The gelatinization enthalpy of 50% AMC decreased significantly faster than those of CC and 70% AMC after 0.8% oxidation. Retrogradation of amylopectin slightly increased after oxidation with increasing oxidation level. The peak viscosities of oxidized WC and CC were higher than those of their native counterparts at 0.8% NaOCl, but this increase was not observed in AMCs. The setback viscosities of 2% NaOCl-oxidized 50% and 70% AMCs were much higher than those of the unmodified counterparts. The extent of oxidation and physicochemical properties of oxidized starches varied greatly with the amylase:amylopectin ratio of corn starches. Amylose was suggested to play an important role in controlling the oxidation efficiency.  相似文献   

15.
Endosperm starch and pericarp starch were isolated from maize (B73) kernels at different developmental stages. Starch granules, with small size (2–4 μm diameter), were first observed in the endosperm on 5 days after pollination (DAP). The size of endosperm-starch granules remained similar until 12DAP, but the number increased extensively. A substantial increase in granule size was observed from 14DAP (diameter 4–7 μm) to 30DAP (diameter10–23 μm). The size of starch granules on 30DAP is similar to that of the mature and dried endosperm-starch granules harvested on 45DAP. The starch content of the endosperm was little before 12DAP (less than 2%) and increased rapidly from 10.7% on 14DAP to 88.9% on 30DAP. The amylose content of the endosperm starch increased from 9.2% on 14DAP to 24.2% on 30DAP and 24.4% on 45DAP (mature and dried). The average amylopectin branch chain-length of the endosperm amylopectin increased from DP23.6 on 10DAP to DP26.9 on14DAP and then decreased to DP25.4 on 30DAP and DP24.9 on 45DAP. The onset gelatinization temperature of the endosperm starch increased from 61.3 °C on 8DAP to 69.0 °C on 14DAP and then decreased to 62.8 °C on 45DAP. The results indicated that the structure of endosperm starch was not synthesized consistently through the maturation of kernel. The pericarp starch, however, showed similar granule size, starch content, amylose content, amylopectin structure and thermal properties at different developmental stages of the kernel.  相似文献   

16.
In order to modify the properties of native starch granules, the formation of gelatinized granular forms (GGS) from normal, waxy, and high amylose maize, as well as potato and tapioca starches was investigated by treating granules with aqueous ethanol at varying starch:water:ethanol ratios and then heating in a rotary evaporator to remove ethanol. The modified starches were characterized using bright field, polarized and electron microscopy. Short/long range molecular order and enthalpic transitions on heating were also studied using infrared spectroscopy, X-ray diffractometry and differential scanning calorimetry respectively. A diffuse birefringence pattern without Maltese cross was observed for most GGS samples. Treatment with aqueous ethanol resulted in starch-specific changes in the surface of granules, most noticeably swelling and disintegration in waxy maize, surface wrinkling in normal maize and tapioca, swelling and opening-up in potato starches, and swelling and bursting in high amylose maize. The ratio of ethanol to water at which original granular order was disrupted also varied with starch type. GGS had less short range molecular order than native granules as inferred by comparing 1047/1022 wave number ratio from infrared spectroscopy. Similarly, A- and B-type diffraction reflections were either reduced or completely lost with evolution of V-type patterns in GGS.  相似文献   

17.
The maximum water solubilities of eight native starches from potato, shoti, tapioca, maize, waxy maize, amylomaize-7, wheat, and rice and their acid-methanol and acid-ethanol modified analogues have been determined. Maximum solubilities of 18.7 and 17.4 mg/mL were obtained for waxy maize and tapioca and 12.4 mg/mL for potato and maize starches by autoclaving 220 mg/10 mL at 121 degrees C; 8.7 mg/mL was obtained for shoti starch by stirring in 85:15 (v/v) Me(2)SO-H(2)O at 20 degrees C; and 7.0 and 5.2mg/mL for rice and amylomaize-7 starches by stirring in 1M NaOH at 20 degrees C. The acid-alcohol treated starches were 4-9 times more soluble than their native starches. The compositions of the solubilized starches had, in general, much higher ratios of amylose to amylopectin than the ratios in their native granules. A major exception to this was the acid-methanol treated potato, shoti, and rice starches that had much lower ratios of amylose to amylopectin than the ratios in their granules.  相似文献   

18.
Pure starches were isolated from white and red sorghum cultivated in Tidikelt, a hyper arid region situated in south Algeria. Amylose content, X-ray pattern and rheological properties of starches were examined. The amylose content in white sorghum starch (27.1%) was slightly higher than that in red sorghum (24.8%). The swelling power and the solubility behavior of both starches were nearly similar below 65 °C. At higher temperatures, starch isolated from the white sorghum cultivar showed higher swelling power and lower solubility index than pigmented sorghum starch. The pasting properties of starches determined by RVA, Rapid Visco Analyser showed different viscosity peaks. Red sorghum starch had a higher value (4731 cP) than white sorghum starch (4093 cP). For both sorghum, X-ray diffractograms exhibit an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity were estimated at 22.72% and 28.91%, respectively, for local white and red sorghum starch. DSC analysis revealed that sorghum starches present higher temperatures at the peak (70.60 and 72.28 °C for white and red sorghum starches, respectively) and lower gelatinization enthalpies (9.087 and 8.270 J/g for white and red sorghum starches, respectively) than other cereal starches.The results showed that physicochemical and functional properties of sorghum cultivar starches were influenced by the genotype and the environment.  相似文献   

19.
Wheat starch was cross-linked at 40 °C and pH 11.0 by slurrying the starch (30% solids) in a solution of sodium trimetaphosphate (STMP), sodium hydroxide, and sodium sulfate. The extent of cross-linking was determined by an increase in alkaline fluidity or by a decrease in alkaline clarity. Response surface analysis showed that cross-linking increased with increasing levels of STMP (0.5-1.5%, based on starch, bos) and sodium sulfate (0–4.0%, bos) over a reaction period of 120–720 min. A regression equation with first and second order terms showed that STMP and sodium sulfate concentrations and the reaction time accounted for 99% of the variability in alkaline fluidity. Wheat starch (37% slurry) was hydroxypropylated by reaction with propylene oxide (8%, bos) for 24h at 45 °C in alkali (pH 11.5) containing 16.0% sodium sulfate (bos). The hydroxypropylated (4.5wt%) wheat starch (DS 0.12-0.13) was not isolated but was cross-linked with STMP (0.1-0.5%, bos) over a 10–40 min reaction period. A comparison of pasting curves at pH 3.5 showed that some of the cross-links produced by STMP were less stable than those produced by phosphoryl chloride, indicating a low level of pyrophosphate as well as monophosphate cross-links. The less stable cross-links were diminished by changing reaction conditions with STMP.  相似文献   

20.
Production of very-high-amylose potato starch by inhibition of SBE A and B   总被引:13,自引:0,他引:13  
High-amylose starch is in great demand by the starch industry for its unique functional properties. However, very few high-amylose crop varieties are commercially available. In this paper we describe the generation of very-high-amylose potato starch by genetic modification. We achieved this by simultaneously inhibiting two isoforms of starch branching enzyme to below 1% of the wild-type activities. Starch granule morphology and composition were noticeably altered. Normal, high-molecular-weight amylopectin was absent, whereas the amylose content was increased to levels comparable to the highest commercially available maize starches. In addition, the phosphorus content of the starch was increased more than fivefold. This unique starch, with its high amylose, low amylopectin, and high phosphorus levels, offers novel properties for food and industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号