首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
During blastocyst implantation, interaction between integrins on the apical surface of the trophoblast and extracellular matrix (ECM) in the endometrium anchors the embryo to the uterine wall. Strong adhesion of the blastocyst to fibronectin (FN) requires integrin signaling initiated by exogenous fibronectin. However, it is not known how integrin signaling enhances blastocyst adhesion. We present new evidence that the integrin, alphaIIbbeta3, plays a key role in trophoblast adhesion to fibronectin during mouse peri-implantation development. Trafficking of alphaIIb to the apical surface of the trophoblast increased dramatically after blastocysts were exposed to fibronectin, whereas other fibronectin-binding integrins, alpha5beta1 and alphaVbeta3, were resident at the apical surface before ligand exposure. Functional comparisons among the three integrins revealed that ligation of alpha5beta1 most efficiently strengthened blastocyst fibronectin-binding activity, while subsequent trophoblast cell migration was dependent primarily on the beta3-class integrins. In vivo, alphaIIb was highly expressed by invasive trophoblast cells in the ectoplacental cone and trophoblast giant cells of the parietal yolk sac. These data demonstrate that trafficking of alphaIIb regulates adhesion between trophoblast cells and fibronectin as invasion of the endometrium commences.  相似文献   

3.
Integrins control many cell functions, including generation of reactive oxygen species (ROS) and regulation of collagen synthesis. Mesangial cells, found in the glomerulus of the kidney, are able to produce large amounts of ROS via the NADPH oxidase. We previously demonstrated that integrin alpha1-null mice develop worse fibrosis than wild-type mice following glomerular injury and this is due, in part, to excessive ROS production by alpha1-null mesangial cells. In the present studies, we describe the mechanism whereby integrin alpha1-null mesangial cells produce excessive ROS. Integrin alpha1-null mesangial cells have constitutively increased basal levels of activated Rac1, which result in its increased translocation to the cell membrane, excessive ROS production, and consequent collagen IV deposition. Basal Rac1 activation is a direct consequence of ligand-independent increased epidermal growth factor receptor (EGFR) phosphorylation in alpha1-null mesangial cells. Thus, our study demonstrates that integrin alpha1beta1-EGFR cross talk is a key step in negatively regulating Rac1 activation, ROS production, and excessive collagen synthesis, which is a hallmark of diseases characterized by irreversible fibrosis.  相似文献   

4.
Hemidesmosomes (HDs) are multiprotein adhesion complexes that promote attachment of epithelial cells to the basement membrane. The binding of alpha6beta4 to plectin plays a central role in their assembly. We have defined three regions on beta4 that together harbor all the serine and threonine phosphorylation sites and show that three serines (S1356, S1360, and S1364), previously implicated in HD regulation, prevent the interaction of beta4 with the plectin actin-binding domain when phosphorylated. We have also established that epidermal growth factor receptor activation, which is known to function upstream of HD disassembly, results in the phosphorylation of only one or more of these three residues and the partial disassembly of HDs in keratinocytes. Additionally, we show that S1360 and S1364 of beta4 are the only residues phosphorylated by PKC and PKA in cells, respectively. Taken together, our studies indicate that multiple kinases act in concert to breakdown the structural integrity of HDs in keratinocytes, which is primarily achieved through the phosphorylation of S1356, S1360, and S1364 on the beta4 subunit.  相似文献   

5.
In cancer and angiogenesis, coagulation-independent roles of tissue factor (TF) in cell migration are incompletely understood. Immobilized anti-TF extracellular domain antibodies induce cell spreading, but this phenomenon is epitope specific and is not induced by anti-TF 5G9. Spreading on anti-TF is beta1 integrin-dependent, indicating functional interactions of the TF extracellular domain 5G9 epitope (a presumed integrin-binding site) and integrins. Recombinant TF extracellular domain supports adhesion of cells expressing alphavbeta3 or certain beta1 integrin heterodimers (alpha3beta1, alpha4beta1, alpha5beta1, alpha6beta1, alpha9beta1) and adhesion is blocked by specific anti-integrin antibodies or mutations in the integrin ligand-binding site. Although several studies have linked TF to cell migration, we here demonstrate that TF specifically regulates alpha3beta1-dependent migration on laminin 5. Expression of TF suppresses alpha3beta1-dependent migration, but only when the TF cytoplasmic domain is not phosphorylated. Suppression of migration can be reversed by 5G9, presumably by disrupting integrin interaction, or by the protease ligand VIIa, known to induce PAR-2-dependent phosphorylation of TF. In both cases, release of alpha3beta1 inhibition is prevented by mutation of critical phosphorylation sites in the TF cytoplasmic domain. Thus, TF influences integrin-mediated migration through cooperative intra- and extracellular interactions and phosphorylation regulates TF's function in cell motility.  相似文献   

6.
The chemokine CXCL12 promotes T lymphocyte adhesion mediated by the integrin alpha4beta1. CXCL12 activates the GTPase Rac, as well as Vav1, a guanine-nucleotide exchange factor for Rac, concomitant with up-regulation of alpha4beta1-dependent adhesion. Inhibition of CXCL12-promoted Rac and Vav1 activation by transfection of dominant negative Rac or Vav1 forms, or by transfection of their siRNA, remarkably impaired the increase in T lymphocyte attachment to alpha4beta1 ligands in response to this chemokine. Importantly, inhibition of Vav1 expression by RNA interference resulted in a blockade of Rac activation in response to CXCL12. Adhesions in flow chambers and soluble binding assays using these transfectants indicated that initial ligand binding and adhesion strengthening mediated by alpha4beta1 were dependent on Vav1 and Rac activation by CXCL12. Finally, CXCL12-promoted T-cell transendothelial migration involving alpha4beta1-mediated adhesion was notably inhibited by expression of dominant negative Vav1 and Rac. These results indicate that activation of Vav1-Rac signaling pathway by CXCL12 represents an important inside-out event controlling efficient up-regulation of alpha4beta1-dependent T lymphocyte adhesion.  相似文献   

7.
The purpose of this study was to examine the effects of IL-1 beta on integrin expression in MG-63 human osteosarcoma cells. Human recombinant IL-1 beta (rIL-1 beta) produced significant increases in both alpha 2- and alpha 5-subunit mRNA levels, as well as a smaller increase in alpha v-subunit mRNA. In contrast, IL-1 beta decreased alpha 4-subunit mRNA levels by approximately 30% relative to untreated controls. These findings suggest that human IL-1 beta differentially regulates expression of integrins. When cultures were treated with both IL-1 beta and the cyclooxygenase inhibitor, indomethacin, the expression of alpha 2-, alpha 5-, and alpha v-subunit mRNA levels were dramatically increased relative to untreated controls; co-treatment with 0.5 mM prostaglandin E2 (PGE2) partially reversed this effect. Indomethacin alone did not affect integrin mRNA levels. Treatment with IL-1 beta or IL-1 beta + indomethacin also induced significant changes in MG-63 morphology (i.e., increased cell elongation) and increased the ability of cells to contract collagen gels. PGE2 reversed the above effects on cell morphology and gel contraction. These findings indicate that (a) IL-1 beta differentially regulates the expression of integrins and (b) that PGE2, which is induced by IL-1 beta, may provide a negative feedback loop which counteracts the stimulatory effect of IL-1 beta on integrin gene expression. It is suggested that products of inflammation may affect cell behavior by differentially regulating the expression of various integrins.  相似文献   

8.
Heregulins are a family of ligands for the ErbB3/ErbB4 receptors that play important roles in breast cancer cell proliferation and tumorigenesis. Limited information is available on the contribution of Rho GTPases to heregulin-mediated signaling. In breast cancer cells, heregulin beta1 (HRG) causes a strong activation of Rac; however, it does so with striking differences in kinetics compared to epidermal growth factor, which signals through ErbB1 (epidermal growth factor receptor [EGFR]). Using specific ErbB receptor inhibitors and depletion of receptors by RNA interference (RNAi), we established that, surprisingly, activation of Rac by HRG is mediated not only by ErbB3 and ErbB2 but also by transactivation of EGFR, and it is independent of ErbB4. Similar receptor requirements are observed for HRG-induced actin cytoskeleton reorganization and mitogenic activity via extracellular signal-regulated kinase (ERK). HRG-induced Rac activation was phosphatidylinositol 3-kinase dependent and Src independent. Furthermore, inactivation of Rac by expression of the Rac GTPase-activating protein beta2-chimerin inhibited HRG-induced ERK activation, mitogenicity, and migration in breast cancer cells. HRG mitogenic activity was also impaired by depletion of Rac1 using RNAi. Our studies established that Rac is a critical mediator of HRG mitogenic signaling in breast cancer cells and highlight additional levels of complexity for ErbB receptor coupling to downstream effectors that control aberrant proliferation and transformation.  相似文献   

9.
Suppressors of cytokine signaling (SOCS) are Src homology-2-containing proteins originally identified as negative regulators of cytokine signaling. Accumulating evidence indicates a role for SOCS proteins in the regulation of additional signaling pathways including receptor tyrosine kinases. Notably, SOCS36E, the Drosophila ortholog of mammalian SOCS5, was recently implicated as a negative regulator of the Drosophila ortholog of EGFR. In this study, we aimed at characterizing the role of SOCS5 in the negative regulation of EGFR. Here we show that the expression of SOCS5 and its closest homolog SOCS4 is elevated in cells following treatment with EGF, similar to several negative feedback regulators of EGFR whose expression is up-regulated upon receptor activation. The expression of SOCS5 led to a marked reduction in EGFR expression levels by promoting EGFR degradation. The reduction in EGFR levels and EGF-induced signaling in SOCS5-expressing cells requires both the Src homology-2 and SOCS box domains of SOCS5. Interestingly, EGFR is degraded by SOCS5 prior to EGF treatment in a ligand- and c-Cbl-independent manner. SOCS5 can associate with EGFR and can also bind the ElonginBC protein complex via its SOCS box, which may recruit an E3 ubiquitin ligase to promote EGFR degradation. Thus, we have characterized a novel function for SOCS5 in regulating EGFR and discuss its potential role in controlling EGFR homeostasis.  相似文献   

10.
Cell migration in wound healing and disease is critically dependent on integration with the extracellular matrix, but the receptors that couple matrix topography to migratory behavior remain obscure. Using nano-engineered fibronectin surfaces and cell-derived matrices, we identify syndecan-4 as a key signaling receptor determining directional migration. In wild-type fibroblasts, syndecan-4 mediates the matrix-induced protein kinase Calpha (PKCalpha)-dependent activation of Rac1 and localizes Rac1 activity and membrane protrusion to the leading edge of the cell, resulting in persistent migration. In contrast, syndecan-4-null fibroblasts migrate randomly as a result of high delocalized Rac1 activity, whereas cells expressing a syndecan-4 cytodomain mutant deficient in PKCalpha regulation fail to localize active Rac1 to points of matrix engagement and consequently fail to recognize and respond to topographical changes in the matrix.  相似文献   

11.
12.
Phosphatidylinositol-4,5-bisphosphate (PIP(2)) is known to play an important role in signal transduction and membrane trafficking. We show that one enzyme responsible for PIP(2) production, phosphatidylinositol-4-phosphate 5-kinase type 1beta (PIPKbeta), is essential for epidermal growth factor receptor (EGFR)-mediated endocytosis. Expression of murine PIPKbeta in NR6 cells expressing EGFR strikingly increased receptor internalization. Moreover, the kinase was shown to form an immunoprecipitable complex with EGFR. Expression of either a truncated kinase or a kinase dead mutant inhibited EGFR endocytosis and also blocked the membrane recruitment of PIPKbeta and both clathrin light chain and dynamin. Our results delineate a novel mechanism by which PIPKbeta regulates receptor-mediated endocytosis and receptor tyrosine kinase membrane traffic.  相似文献   

13.
Interactions between integrins and tyrosine kinase receptors can modulate a variety of cell functions. We observed a cooperative interaction between the beta(1) integrin and vascular endothelial growth factor receptor-3 (VEGFR-3 or Flt4) that appeared to be required for cell migration. By using VEGFR-3-transfected 293 cells (293/VEGFR-3) or primary dermal microvascular endothelial cells (DMEC), we found that stimulation with either soluble or immobilized extracellular matrix (ECM) proteins, collagen or fibronectin (FN), resulted in the increased tyrosine phosphorylation of VEGFR-3 in the absence of a cognate ligand. This increased tyrosine phosphorylation of VEGFR-3 was diminished by pretreatment with a blocking antibody against the beta(1) integrin. Cross-linking with anti-beta(1) integrin antibody induced a similar degree of tyrosine phosphorylation of VEGFR-3. Stimulation with collagen or FN induced an association between beta(1) integrin and VEGFR-3 in both 293/VEGFR-3 and primary DMEC cells. Collagen or FN-induced tyrosine phosphorylation of VEGFR-3 was inhibited by treatment with cytochalasin D, an inhibitor of actin polymerization. Collagen or FN was able to induce the migration of 293/VEGFR-3 or DMEC cells to a limited extent. However, migration was dramatically enhanced when a gradient of the cognate ligand, VEGF-D, was added. VEGF-D failed to induce cell migration in the absence of ECM proteins. Introducing a mutation at the kinase domain of VEGFR-3 or treatment with blocking antibody against either VEGFR-3 or beta(1) integrin inhibited cell migration induced by ECM and VEGF-D, indicating that signals from both beta(1) integrin and VEGFR-3 are required for this cell function.  相似文献   

14.
GD25 cells lacking the beta1 integrin subunit or expressing beta1A with certain cytoplasmic mutations have poor directed cell migration to platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), ligands of receptor tyrosine kinases, or to lysophosphatidic acid (LPA), a ligand of G-protein-coupled receptors (Sakai, T., Zhang, Q., F?ssler, R., and Mosher, D. F. (1998) J. Cell Biol. 141, 527-538 and Sakai, T., Peyruchaud, O., F?ssler, R., and Mosher, D. F. (1998) J. Biol. Chem. 273, 19378-19382). We demonstrate here that LPA synergizes with signals induced by beta1A integrins and ligated EGF or PDGF receptors to modulate migration. When LPA was mixed with EGF or PDGF, migration was greater than with EGF or PDGF alone. The enhancement was greater for beta1A-expressing cells than for beta1-null cells. Cells expressing beta1A with mutations of prolines or tyrosines in conserved cytoplasmic NPXY motifs had blunted migratory responses to mixtures of LPA and EGF or PDGF. The major effects on beta1A-expressing cells of LPA when combined with EGF or PDGF were to sensitize cells so that maximal responses were obtained with >10-fold lower concentrations of growth factor and increase the chemokinetic component of migration. Sensitization by LPA was lost when cells were preincubated with pertussis toxin or C3 exotransferase. There was no evidence for transactivation or sensitization of receptors for EGF or PDGF by LPA. EGF or PDGF and LPA caused activation of mitogen-activated protein kinase by pertussis toxin-insensitive and -sensitive pathways respectively, but activation was not additive. These findings indicate that signaling pathways initiated by the cytoplasmic domains of ligated beta1A integrins and tyrosine kinase receptors interact with signaling pathways initiated by LPA to facilitate directed cell migration.  相似文献   

15.
16.
Accumulating evidence suggests that integrin recycling regulates cell migration. However, the lack of reagents to selectively target the trafficking of individual heterodimers, as opposed to endocytic transport as a whole, has made it difficult to define the contribution made by particular recycling pathways to directional cell movement. We show that autophosphorylation of protein kinase D1 (PKD1) at Ser(916) is necessary for its association with alphavbeta3 integrin. Expression of PKD1(916A) or the use of mutants of beta3 that do not bind to PKD1 selectively inhibits short-loop, Rab4-dependent recycling of alphavbeta3, and this suppresses the persistence of fibroblast migration. However, we report that short-loop recycling does not directly contribute to fibroblast migration by moving alphavbeta3 to the cell front, but by antagonizing alpha5beta1 recycling, which, in turn, influences the cell's decision to migrate with persistence or to move randomly.  相似文献   

17.
The alpha 6 beta 4 integrin and epithelial cell migration.   总被引:1,自引:0,他引:1  
Although the involvement of alpha 6 beta 4, an integrin laminin receptor, in hemidesmosome organization has dominated the study of this integrin, recent studies are revealing novel functions for alpha 6 beta 4 in the migration of epithelial and carcinoma cells. The engagement of laminin by alpha 6 beta 4 can stabilize actin-rich protrusions and mediate traction forces necessary for cell movement. This integrin also has a significant impact on signaling molecules that stimulate migration and invasion, especially PI3-K and Rho GTPases. Activation of PI3-K by alpha 6 beta 4 enhances the formation of actin protrusions, and it may stimulate the function of other integrins, such as alpha 3 beta 1, that are also important for epithelial migration. Signaling through alpha 6 beta 4 may not always depend on the adhesive functions of this integrin, a possibility that has profound implications for migration and invasion because it implies that the ability of alpha 6 beta 4 to stimulate these processes is not limited to specific matrix environments.  相似文献   

18.
Cell sheet movement during epithelial wound closure is a complex process involving collective cell migration. We have found that glycogen synthase kinase-3 (GSK-3) activity is required for membrane protrusion and crawling of cells at the wound edge and those behind it in wounded Madin-Darby canine kidney (MDCK) epithelial cell monolayers. RNA interference-based silencing of GSK-3alpha and GSK-3beta expression also results in slowed cell sheet migration, with the effect being more pronounced with knockdown of GSK-3beta. Both GSK-3alpha and GSK-3beta are in activated states during the most active phase of cell migration. In addition to having a positive control or permissive, rather than negative, function in MDCK cell migration, GSK-3 appears to act upstream of the small GTPases ADP-ribosylation factor 6 (ARF6) and Rac1. Expression of constitutively active ARF6 restores a protrusive, migratory phenotype in cells treated with GSK-3 inhibitors. It does not, however, restore to normal levels the directional polarization of cells behind the wound edge toward the wound area, implying the existence of a separate ARF6-independent branch of the GSK-3 pathway that regulates proper wound-directed polarization of these cells. Finally, inhibition of GSK-3 also strongly reduces activation of Rac1 and cell scatter in response to hepatocyte growth factor/scatter factor, which triggers dispersal and migration of cells in monolayer culture as fibroblast-like individual cells, a mode of epithelial cell motility distinct from the collective migration of wound closure.  相似文献   

19.
Activation of intracellular signaling pathways by growth factors is one of the major causes of cancer development and progression. Recent studies have demonstrated that monomeric G proteins of the Ras family are key regulators of cell proliferation, migration, and invasion. Using an invasive breast cancer cell lines, we demonstrate that the ADP-ribosylation factor 1 (ARF1), a small GTPase classically associated with the Golgi, is an important regulator of the biological effects induced by epidermal growth factor. Here, we show that this ARF isoform is activated following epidermal growth factor stimulation and that, in MDA-MB-231 cells, ARF1 is found in dynamic plasma membrane ruffles. Inhibition of endogenous ARF1 expression results in the inhibition of breast cancer cell migration and proliferation. The underlying mechanism involves the activation of the phosphatidylinositol 3-kinase pathway. Our data demonstrate that depletion of ARF1 markedly impairs the recruitment of the phosphatidylinositol 3-kinase catalytic subunit (p110alpha) to the plasma membrane, and the association of the regulatory subunit (p85alpha) to the activated receptor. These results uncover a novel molecular mechanism by which ARF1 regulates breast cancer cell growth and invasion during cancer progression.  相似文献   

20.
Elevated expression or activity of the epidermal growth factor (EGF) receptor is common in ovarian cancer and is associated with poor patient prognosis. Our previous studies demonstrated that expression of the constitutively active mutant form of the EGF receptor (EGFRvIII) in ovarian cancer cells led to reduction in integrin alpha2 surface expression, defects in cell spreading, and disruption of focal adhesions. Inhibition of EGFRvIII catalytic activity reversed the response, suggesting that EGF receptor activation regulates integrin alpha2. In this study we found that EGF treatment resulted in a transient loss of integrin alpha2 from the cell surface. Before EGF stimulation, integrin alpha2 and EGF receptors were associated based on biochemical and immuno-colocalization approaches. After EGF treatment, EGF receptor and integrin alpha2 were internalized and segregated into different compartments. Integrin alpha2, but not EGF receptor, was associated with caveolin-1 and GM1 (Gal_1,3GalNAc_1,4(Neu5Ac-_ 2,3)Gal_1,4Glc_1,1-ceramide) gangliosides, suggesting caveolae-mediated endocytosis. Moreover, integrin alpha2 was subsequently targeted to the Golgi apparatus and the endoplasmic reticulum. Together, these findings demonstrate that activated EGF receptor transiently modulates integrin alpha2 cell surface expression and stimulates integrin alpha2 trafficking via caveolae/raft-mediated endocytosis, representing a novel mechanism by which the EGF receptor may regulate integrin-mediated cell behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号