首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Hole is a novel gene product isolated from a chick heart subtractive hybridization. Hole is a six-transmembrane protein (predicted size 311 and 317 amino acids in chick and mouse) expressed in the cardiac crescent and later in the myocardium of the developing chick heart, as well as in the fusing neural tube and ganglia. Mouse hole is not expressed in the developing heart, although it does share neural expression seen in the chick.  相似文献   

7.
8.
9.
We have earlier reported partial cloning of a cDNA of a chick atrial myosin heavy chain (MHC) gene, CCSV2 and its expression pattern in embryonic chick hearts (Oana et al (1995) Eur J Cell Biol 67, 42-49). In this study, five overlapping cDNA clones (including CCSV2) which together encode the entire open reading frame of the chick atrial MHC gene were characterized, and both the entire nucleotide sequence consisting of 5825 bases and the deduced amino acid sequence consisting of 1931 amino acids determined. Reinvestigation of the nucleotide sequence of the previously reported and presumably different chick atrial specific MHC cDNA clone, AMHC1 (Yutzey et al (1994) Development 120, 871-883), revealed that our clone and AMHC1 encoded the same MHC. The chick atrial MHC gene was strongly expressed in developing chick atria from a very early stage (Hamburger and Hamilton stage 9, 29-33 h) to the adult stage. This gene was also expressed, although weakly, in the ventricle, somite (the precursor to skeletal muscle) and skeletal muscle during embryonic stages but not in adults.  相似文献   

10.
11.
12.
13.
14.
We have cloned a chick homologue of Drosophila dachshund (dac), termed Dach1. Dach1 is the orthologue of mouse and human Dac/Dach (hereafter referred to as Dach1). We show that chick Dach1 is expressed in a variety of sites during embryonic development, including the eye and ear. Previous work has demonstrated the existence of a functional network and genetic regulatory hierarchy in Drosophila in which eyeless (ey, the Pax6 orthologue), eyes absent (eya), and dac operate together to regulate Drosophila eye development, and that ey regulates the expression of eya and dac. We find that in the developing eye of both chick and mouse, expression domains of Dach1 overlap with those of Pax6, a gene required for normal eye development. Similarly, in the developing ear of both mouse and chick, Dach1 expression overlaps with the expression of another Pax gene, Pax2. In the mouse, Dach1 expression in the developing ear also overlaps with the expression of Eya1 (an eya homologue). Both Pax2 and Eya1 are required for normal ear development. Our expression studies suggest that the Drosophila Pax-eya-dac regulatory network may be evolutionarily conserved such that Pax genes, Eya1, and Dach1 may function together in vertebrates to regulate neural development. To address the further possibility that a regulatory hierarchy exists between Pax, Eya, and Dach genes, we have examined the expression of mouse Dach1 in Pax6, Pax2 and Eya1 mutant backgrounds. Our results indicate that Pax6, Pax2, and Eya1 do not regulate Dach1 expression through a simple linear hierarchy.  相似文献   

15.
16.
17.
18.
19.
The Drosophila gene sine oculis (so), a nuclear homeoprotein that is required for eye development, has several homologues in vertebrates (the SIX gene family). Among them, SIX3 is considered to be the functional orthologue of so because it is strongly expressed in the developing eye. However, embryonic SIX3 expression is not limited to the eye field, and SIX3 has been found to be mutated in some patients with holoprosencephaly type 2 (HPE2), suggesting that SIX3 has wide implications in head development. We report here the cloning and characterization of SIX6, a novel human SIX gene that is the homologue of the chick Six6(Optx2) gene. SIX6 is closely related to SIX3 and is expressed in the developing and adult human retina. Data from chick and mouse suggest that the human SIX6 gene is also expressed in the hypothalamic and the pituitary regions. SIX6 spans 2567 bp of genomic DNA and is split in two exons that are transcribed into a 1393-nucleotide-long mRNA. Chromosomal mapping of SIX6 revealed that it is closely linked to SIX1 and SIX4 in human chromosome 14q22.3-q23, which provides clues about the origin and evolution of the vertebrate SIX family. Recently three independent reports have associated interstitial deletions at 14q22.3-q23 with bilateral anophthalmia and pituitary anomalies. Genomic analyses of one of these cases demonstrated SIX6 hemizygosity, strongly suggesting that SIX6 haploinsufficiency is responsible for these developmental disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号