共查询到20条相似文献,搜索用时 0 毫秒
1.
Over small spatial scales, coral reefs represent a mosaic of suitable settlement microhabitat patches of varying size for late-stage larval reef fishes. Few studies have specifically examined how variation in patch size influences density of recently settled coral reef fishes (recruits). Using standardized units of coral rubble settlement substrate deployed on sandy bottom, we monitored the concurrent settlement of three reef fish taxa onto differently sized patches (0.28–1.68 m2) at 5-d intervals during a lunar settlement peak. We found marked differences among taxa in how recruit density scaled with patch size. Recruit density of a damselfish and a parrotfish decreased and increased, respectively, with the increase in patch size, while that of a wrasse was similar among patch sizes. Our results highlight the importance of the interaction between taxon-specific settlement behaviour and patch size in establishing initial spatial differences in density within and among coral reef fish taxa in a heterogeneous landscape. 相似文献
2.
Many coral reef fishes have restricted depth ranges that are established at settlement or soon after, but the factors limiting these distributions are largely unknown. This study examines whether the availability of microhabitats (reef substrata) explains depth limits, and evaluates whether juvenile growth and survival are lower beyond these limits. Depth-stratified surveys of reef fishes at Kimbe Bay (Papua New Guinea) showed that the abundance of new settlers and the cover of coral substrata differed significantly among depths. A field experiment investigated whether settling coral reef fishes preferred particular depths, and whether these depth preferences were dependent on microhabitat. Small patch reefs composed of identical coral substrata were set up at five depths (3, 6, 10, 15 and 20 m), and settlement patterns were compared to those on unmanipulated reef habitat at the same five depths. For all species, settlement on patch reefs differed significantly among depths despite uniform substratum composition. For four of the six species tested, depth-related settlement patterns on unmanipulated habitat and on patch reefs did not differ, while for the other two, depth ranges were greater on the patch reefs than on unmanipulated habitat. A second experiment examined whether depth preferences reflected variation in growth and survival when microhabitat was similar. Newly settled individuals of Chrysiptera parasema and Dascyllus melanurus were placed, separately, on patch reefs at five depths (as above) and their survival and growth monitored. D. melanurus, which is restricted to shallow depths, had highest survival and growth at the shallowest depth. Depth did not affect either survival or growth of C. parasema, which has a broader depth range than D. melanurus (between 6 and 15 m). This suggests that the fitness costs potentially incurred by settling outside a preferred depth range may depend on the strength of the depth preference. 相似文献
3.
Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO(2) predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO(2) effects, whereby some individuals are unaffected at particular CO(2) concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 μatm CO(2) (current day levels) or 850 μatm CO(2), a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO(2) failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 μatm-CO(2) fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO(2) exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO(2) exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO(2)-treated fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO(2) may alter the cognitive ability of juvenile fish and render learning ineffective. 相似文献
4.
Populations of fishes on coral reefs are replenished by the settlement of pelagic larvae to demersal populations. Recruitment varies spatially and temporally and can exert strong effects on the dynamics of reef fish populations. This study examined the effect of microhabitat characteristics on small-scale and large-scale recruitment variation in the three-spot damselfish, Stegastes planifrons (Cuvier). Comparison of 0.25-m 2 quadrats occupied by three-spots with randomly sampled null quadrats showed that three-spots quadrats contained a higher percent cover of the coral Montastrea annularis than would be expected at random. Manipulative experiments on three types of 1.0-m 2 patch reefs (living M. annularis, dead Porites Porites and dead Acropora palmata) patch reefs on showed that this non-random distribution was established by microhabitat choice during settlement and not by differential post-settlement survival. The presence of conspecific juveniles did not affect settlement. Recruitment was monitored at nine sites on three islands over 3 years. Recruitment showed no consistent pattern in the relative levels of recruitment among sites. Similarly, no consistent relationship emerged between recruitment levels and microhabitat characteristics at the nine sites. For example, at this large scale, the percent cover of M. annularis explained variation in recruitment in only 1 out of 3 years. These results suggest that small-scale recruitment patterns are influenced by microhabitat choice during settlement, but that these habitat effects do not scale up to influence large-scale variation in recruitment. 相似文献
5.
This study examined recruitment patterns and microhabitat associations for three carnivorous fishes, Plectropomus maculatus, Lutjanus carponotatus and Epinephelus quoyanus, at the Keppel Islands, southern Great Barrier Reef, Australia. Habitat selectivity was highest for recruits that were found mostly with corymbose Acropora, predominantly on patches of live coral located over loose substrates (sand). Adults were more commonly associated with tabular Acropora. The proportion of P. maculatus (72 %) found with live corals was higher than for L. carponotatus (68 %) and E. quoyanus (44 %). Densities of recruits were highly variable among locations, but this was only partly related to availability of preferred microhabitats. Our findings demonstrate that at least some carnivorous reef fishes, especially during early life-history stages, strongly associate with live corals. Such species will be highly sensitive to increasing degradation of coral reef habitats. 相似文献
6.
On coral reefs, there is concern that increased nutrient supply (e.g. due to eutrophication) causes increased algal growth and hence increased algal abundance, in turn causing colonisation and invasions of coral populations, resulting in reef degradation, or a coral-algal phase shift. For example, species of Sargassum, a highly seasonal, large, brown seaweed, are suggested to be colonising corals on inshore coral reefs of the Great Barrier Reef, as a result of anthropogenic increases in terrestrial runoff of sediments and nutrients. However, implicit in this argument is the assumption that nutrient-related increases in growth will lead to increased fecundity (and/or propagule success), since without such changes, increased abundance can only occur by vegetative means. Whilst plausible, there is no experimental evidence for this assumption in coral reef algae.We here present an initial study in which experimental increases in nutrient supply apparently did not lead to increased fecundity of Sargassum siliquosum; rather, density and biomass of receptacles were reduced in nutrient-enhanced algae. There was little effect of nutrient treatments on the proportional allocation of biomass to reproductive and vegetative structures: nutrient enhancement led to similar decreases in biomass of reproductive and vegetative tissue. Tissue nutrient levels indicated effective enhancement of nitrogen supply, although phosphorus levels were not different across nutrient treatments.The reduced fecundity with increased nutrients may reflect either a genuine inhibition by higher nutrient levels, as found in previous studies, or accelerated maturation, causing increased tissue losses due to more advanced seasonal senescence. Either way, this exploratory experiment provides initial evidence that nutrient effects on tropical coral reef macroalgae may be complex, and does not support the assumption that increased nutrient supply will result in a numeric increase in populations of Sargassum spp. Our results should not be taken as an unequivocal demonstration that nutrients inhibit fecundity overall, but illustrate the need to distinguish between effects on different life-history processes (e.g. growth and reproduction). For increased growth of pre-existing individuals to contribute to algal invasions and phase shifts, that growth must result in either increased fecundity, or increased propagule success. 相似文献
7.
The mechanisms responsible for different patterns of habitat use by two benthic gobiid fishes, Acentrogobius sp. 1 and A. sp. 2, which displayed identical food use but resided in shallow and deep zones of coarse and fine sediments, respectively,
in Lake Hamana, Shizuoka Prefecture, Japan, were investigated by field removal and laboratory sediment-grain size selection
experimentation. Following field manipulation, involving removal of both species, the distribution patterns of each were found
to be similar in both control and manipulated quadrats, suggesting their differential habitat use patterns may be the outcome
not of competition but of differing preferences for habitat characteristics. Results of a sediment-grain size selection experiment
in the laboratory suggested a weak preference of A. sp. 2 for fine sediment, while A. sp. 1 showed no grain size preference. The observed difference in the distribution patterns between these two species, therefore,
may possibly have resulted from, at least in part, a combination of differences in their preference for sediment grain size
and other habitat characteristics such as water depth. 相似文献
8.
Here we present a review of how the study of the geographic distribution of genetic lineages (phylogeography) has helped identify
management units, evolutionary significant units, cryptic species, and areas of endemism, and how this information can help
efforts to achieve effective conservation of coral reefs. These studies have confirmed the major biogeographic barriers that
were originally identified by tropical species distributions. Ancient separations, identified primarily with mtDNA sequence
comparisons, became apparent between populations on each side of the barriers. The general lack of correlation between pelagic
larval duration and genetic connectivity across barriers indicates that life history and ecology can be as influential as
oceanography and geography in shaping evolutionary partitions within ocean basins. Hence, conservation strategies require
a recognition of ecological hotspots, those areas where habitat heterogeneity promotes speciation, in addition to more traditional
approaches based on biogeography. Finally, the emerging field of genomics will add a new dimension to phylogeography, allowing
the study of genes that are pertinent to recent and ongoing differentiation, and ultimately providing higher resolution to
detect evolutionary significant units that have diverged in an ecological time scale. 相似文献
9.
Spatial associations of seven herbivore species in the Kruger National Park, South Africa, are analyzed using a new technique,
Correlative Coherence Analysis (CoCA). CoCA is a generalization of the concept of correlation to more than two sequences of
numbers. Prior information on the feeding ecology and metabolic requirements of these species is used to contrast spatial
scales at which hypothesized guild aggregation or competition occurs. These hypotheses are tested using 13 years of aerial
census data collected during the dry season. Our results are consistent with the hypothesis that distributions of large and
small species of the same feeding type (i.e., grazers and browsers) overlap in potentially resource-rich areas, but have lower
similarity values across all areas because the higher tolerance of large species for low quality foods results in a more even
spatial distribution of large species compared to small species. 相似文献
10.
Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9-46 times, upright macroalgal biomass by 23-84 times, and cyanobacteria cover by 0-27 times, but decreased cover of encrusting coralline algae by 46-100% and short turf algae by 14-39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33-42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30-35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition. 相似文献
11.
While the loss of structural complexity causes declines in coral reef fish diversity, the processes leading to this decline
are largely unexplained. To explore the role of coral morphology in providing shelter for fishes, tabular, branching and massive
corals were filmed with video cameras and their usage by large reef fishes compared. Tabular corals were utilised more than
the other two morphologies, with at least triple the abundance, biomass and residence times of large fishes. The preference
of coral reef fishes for specific structural traits of tabular corals was also examined using artificial structural units.
This experimental component showed that large reef fishes preferred opaque rather than translucent canopies. It appears that
large fishes cue to tabular corals because of the concealment and/or shade provided. It is suggested that a loss of tabular
corals as a result of climate change would have significant ecological impacts for the coral reef fishes that use these structures
for shelter. 相似文献
12.
The global degradation of coral reefs is having profound effects on the structure and species richness of associated reef fish assemblages. Historically, variation in the composition of fish communities has largely been attributed to factors affecting settlement of reef fish larvae. However, the mechanisms that determine how fish settlers respond to different stages of coral stress and the extent of coral loss on fish settlement are poorly understood. Here, we examined the effects of habitat degradation on fish settlement using a two-stage experimental approach. First, we employed laboratory choice experiments to test how settlers responded to early and terminal stages of coral degradation. We then quantified the settlement response of the whole reef fish assemblage in a field perturbation experiment. The laboratory choice experiments tested how juveniles from nine common Indo-Pacific fishes chose among live colonies, partially degraded colonies, and dead colonies with recent algal growth. Many species did not distinguish between live and partially degraded colonies, suggesting settlement patterns are resilient to the early stages of declining coral health. Several species preferred live or degraded corals, and none preferred to associate with dead, algal-covered colonies. In the field experiment, fish recruitment to coral colonies was monitored before and after the introduction of a coral predator (the crown-of-thorns starfish) and compared with undisturbed control colonies. Starfish reduced live coral cover by 95–100%, causing persistent negative effects on the recruitment of coral-associated fishes. Rapid reductions in new recruit abundance, greater numbers of unoccupied colonies and a shift in the recruit community structure from one dominated by coral-associated fishes before degradation to one predominantly composed of algal-associated fish species were observed. Our results suggest that while resistant to coral stress, coral death alters the process of replenishment of coral reef fish communities. 相似文献
14.
Increasing sediment onto coral reefs has been identified as a major source of habitat degradation, and yet little is known
about how it affects reef fishes. In this study, we tested the hypothesis that sediment-enriched water impairs the ability
of larval damselfish to find suitable settlement sites. At three different experimental concentrations of suspended sediment
(45, 90, and 180 mg l −1), pre-settlement individuals of two species ( Pomacentrus amboinensis and P. moluccensis) were not able to select their preferred habitat. In a clear water environment (no suspended sediment), both species exhibit
a strong preference for live coral over partially dead and dead coral, choosing live coral 70 and 80% of the time, respectively.
However, when exposed to suspended sediment, no habitat choice was observed, with individuals of both species settling on
live coral, partially dead, and dead coral, at the same frequency. To determine a potential mechanism underlying these results,
we tested chemosensory discrimination in sediment-enriched water. We demonstrated that sediment disrupts the ability of this
species to respond to chemical cues from different substrata. That is, individuals of P. moluccensis prefer live coral to dead coral in clear water, but in sediment-enriched water, chemical cues from live and dead coral were
not distinguished. These results suggest that increasing suspended sediment in coral reef environments may reduce settlement
success or survival of coral reef fishes. A sediment-induced disruption of habitat choice may compound the effects of habitat
loss on coral reefs. 相似文献
16.
The ecological role of parasites in the early life-history stages of coral reef fish, and whether this varies between fish
with and without a pelagic phase, was investigated. The susceptibility to, and effect of reef-based micropredatory gnathiid
isopods on larval, recently settled, and juvenile fishes was tested using two damselfishes (Pomacentridae): Neopomacentrus azysron, which has pelagic larvae, and Acanthochromis polyacanthus, which does not. When larval and recently settled stages of N. azysron and very young A. polyacanthus juveniles (smaller than larval N. azysron) were exposed to one or three gnathiids, the proportion of infections did not vary significantly among the three host types
or between the number of gnathiids to which the fish were exposed. The overall infection was 35%. Mortality, however, differed
among the three gnathiid-exposed host types with most deaths occurring in larval N. azysron; no mortalities occurred for recently settled N. azysron exposed to one or three gnathiids, and A. polyacanthus exposed to one gnathiid. Mortality did not differ significantly between larval N. azysron and A. polyacanthus juveniles, failing to provide support for the hypothesis that reef-based A. polyacanthus juveniles are better adapted to gnathiid attack than fish with a pelagic phase. The study suggests that settling on the reef
exposes young fish to potentially deadly micropredators. This supports the idea that the pelagic phase may allow young fish
to avoid reef-based parasites. 相似文献
17.
Two walls of Salt River Canyon, St. Croix, U.S. Virgin Islands are at the same depth in the fore reef environment and are separated by only 100 m, but they differ in microtopography. Replicate visual censuses of the fish assemblages on these two walls, by four saturation divers, gave consistent estimates of the species assemblages on the two walls. Significant faunal differences between the two walls are best understood in terms of combined features of coloration, predator avoidance, and feeding habit displayed regularly by individuals occupying a given microhabitat. It appears that characteristic sets of environmental circumstances occur within a habitat with sufficient frequency to give a consistent direction to natural selection, producing the patterns we have observed. Thus, form and function is predictable in relation to microhabitat, although species occurrence is not. The “order” and “chaos” concepts of community structure in coral reef fish, with their narrow focus on the predictability of species occurrence, underemphasize the possibility for a simple and direct role for natural selection in shaping the functional characteristics of an assemblage on a small scale 相似文献
18.
Within the complex food webs that occur on coral reefs, mesopredatory fish consume small-bodied prey and transfer accumulated biomass to other trophic levels. We estimated biomass, growth and mortality rates of three common mesopredators from Ningaloo Reef in Western Australia to calculate their annual turnover rates and potential contribution to local trophic dynamics. Biomass estimates of the serranid Epinephelus rivulatus (4.46 ± 0.76 g m−2) were an order of magnitude greater than two smaller-bodied mesopredatory fishes, Pseudochromis fuscus (0.10 ± 0.03 g m−2) and Parapercis clathrata (0.23 ± 0.31 g m−2). Growth parameters generated from a von Bertalanffy growth function fitted to size-at-age data, however, indicated that mortality rates for the three mesopredators were similar and that 32–55 % of fish survived each year. Consequently, interspecific differences in annual turnover rates among E. rivulatus (1.9 g m−2 yr−1), Pa. clathrata (0.10 g m−2 yr−1) and Ps. fuscus (0.07 g m−2 yr−1) were an artefact of differences in local biomass estimates. The rapid turnover estimates for E. rivulatus suggest this species is an important conduit of energy within the isolated patch reef habitat where it is typically found, while Ps. fuscus and Pa. clathrata channel smaller amounts of energy from specific habitats in the Ningaloo lagoon. Apparent differences in habitat, diet and turnover rates of the three species examined provide an insight into the different roles these species play in coral reef food webs and suggest that life-history traits allow for variability in the local and spatial contribution of these species at Ningaloo Reef. Moreover, calculating turnover rates of a broader suite of fish species from a range of trophic groups will help better define the role of fishes in coral reef trophic dynamics. 相似文献
19.
Gobies (Teleostei: Gobiidae) are an extremely diverse and widely distributed group and are the second most species rich family of vertebrates. Ecological drivers are key to the evolutionary success of the Gobiidae. However, ecological and phylogenetic data are lacking for many diverse genera of gobies. Our study investigated the evolution of microhabitat association across the phylogeny of 18 species of dwarfgobies (genus Eviota), an abundant and diverse group of coral reef fishes. In addition, we also explore the evolution of pectoral fin-ray branching and sensory head pores to determine the relationship between morphological evolution and microhabitat shifts. Our results demonstrate that Eviota species switched multiple times from a facultative hard-coral association to inhabiting rubble or mixed sand/rubble habitat. We found no obvious relationship between microhabitat shifts and changes in pectoral fin-ray branching or reduction in sensory pores, with the latter character being highly homoplasious throughout the genus. The relative flexibility in coral-association in Eviota combined with the ability to move into non-coral habitats suggests a genetic capacity for ecological release in contrast to the strict obligate coral-dwelling relationship commonly observed in closely related coral gobies, thus promoting co-existence through fine scale niche partitioning. The variation in microhabitat association may facilitate opportunistic ecological speciation, and species persistence in the face of environmental change. This increased speciation opportunity, in concert with a high resilience to extinction, may explain the exceptionally high diversity seen in Eviota compared to related genera in the family. 相似文献
20.
Juvenile and adult reef fishes often undergo migration, ontogenic habitat shifts, and nocturnal foraging movements. The orientation
cues used for these behaviours are largely unknown. In this study, the use of sound as an orientation cue guiding the nocturnal
movements of adult and juvenile reef fishes at Lizard Island, Great Barrier Reef was examined. The first experiment compared
the movements of fishes to small patch reefs where reef noise was broadcast, with those to silent reefs. No significant responses
were found in the 79 adults that were collected, but the 166 juveniles collected showed an increased diversity each morning
on the reefs with broadcast noise, and significantly greater numbers of juveniles from three taxa (Apogonidae, Gobiidae and
Pinguipedidae) were collected from reefs with broadcast noise. The second experiment compared the movement of adult and juvenile
fishes to reefs broadcasting high (>570 Hz), or low (<570 Hz) frequency reef noise, or to silent reefs. Of the 122 adults
collected, the highest diversity was seen at the low frequency reefs; and adults from two families (Gobiidae and Blenniidae)
preferred these reefs. A similar trend was observed in the 372 juveniles collected, with higher diversity at the reefs with
low frequency noises. This preference was seen in the juvenile apogonids; however, juvenile gobiids were attracted to both
high and low sound treatments equally, and juvenile stage Acanthuridae preferred the high frequency noises. This evidence
that juvenile and adult reef fishes orientate with respect to the soundscape raises important issues for management, conservation
and the protection of sound cues used in natural behaviour. 相似文献
|