共查询到20条相似文献,搜索用时 15 毫秒
1.
Iridophores isolated from bullfrog tadpoles were successfully cloned. In primary culture, the iridophores showed contraction of cell bodies by the addition of alkali-treated ACTH. The disappearance of reflecting platelets occurred in proliferating iridophores and many small black melanin granules were synthesized in the cells. The chromatophores now showed melanin dispersion by the addition of the above hormone. The findings suggest that iridophores transform into melanophores in vitro. 相似文献
2.
Hormone-induced changes in the in vitro DNA-binding activity of the chicken progesterone receptor 总被引:4,自引:0,他引:4
R Rodriguez M A Carson N L Weigel B W O'Malley W T Schrader 《Molecular endocrinology (Baltimore, Md.)》1989,3(2):356-362
Previous analyses have indicated that steroid hormone receptors undergo an allosteric change in structure upon binding by the steroid ligand. This structural change was envisioned as an intramolecular unmasking of the protein's DNA-binding domain, thus allowing the receptor to function in gene regulation. We report an analysis of the effect of hormone on the DNA-binding activity of the chicken progesterone receptor. Using an isocratic elution of DNA affinity columns we show that unliganded receptor (aporeceptor) can bind a 23-basepair progesterone response element with high affinity and a high degree of sequence preference. Hormone causes a 1.5-fold increase in affinity for the PRE sequence and a 2-fold decrease in affinity for non-specific DNA. Kinetic analysis of the off-rate of receptor-DNA complexes is consistent with this minor effect of hormone. In addition, gel retardation analysis of receptor-progesterone response element complexes further substantiates that hormone is not required for sequence-specific DNA binding. These results indicate that hormone is not necessary for the progesterone receptor to fold into a conformation that recognizes specific gene regulatory sequences. 相似文献
3.
The results of electron microscope investigations on dermal melanophores of Rana temporaria L. during migration of pigment granules are presented. It was shown that in comparison to the previous observations dermal melanophores are flat cells without branches. Ultrastructural differences have been demonstrated in dermal melanophores during migration of pigment granules. During melanosome dispersion membrane vesicle bodies are seen in the cytoplasm to be inserted in the melanophore membrane. 相似文献
4.
Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole shape and color 总被引:4,自引:0,他引:4
Predator-induced defenses are well studied in plants and invertebrate animals, but have only recently been recognized in
vertebrates. Gray treefrog (Hylachrysoscelis) tadpoles reared with predatory dragonfly (Aeshnaumbrosa) larvae differ in shape and color from tadpoles reared in the absence of dragonflies. By exposing tadpoles to tail damage
and the non-lethal presence of starved and fed dragonflies, we determined that these phenotypic differences are induced by
non-contact cues present when dragonflies prey on Hyla. The induced changes in shape are in the direction that tends to increase swimming speed; thus, the induced morphology may
help tadpoles evade predators. Altering morphology in response to predators is likely to influence interactions with other
species in the community as well.
Received: 17 April 1996 / Accepted: 18 September 1996 相似文献
5.
Mitochondria are highly dynamic organelles, the location, size and distribution of which are controlled by a family of proteins that modulate mitochondrial fusion and fission. Recent evidence indicates that mitochondrial morphology is crucial for cell physiology, as changes in mitochondrial shape have been linked to neurodegeneration, calcium signalling, lifespan and cell death. Because immune cells contain few mitochondria, these organelles have been considered to have only a marginal role in this physiological context—which is conversely well characterized from the point of view of signalling. Nevertheless, accumulating evidence shows that mitochondrial dynamics have an impact on the migration and activation of immune cells and on the innate immune response. Here, we discuss the roles of mitochondrial dynamics in cell pathophysiology and consider how studying dynamics in the context of the immune system could increase our knowledge about the role of dynamics in key signalling cascades. 相似文献
6.
《Biology of the cell / under the auspices of the European Cell Biology Organization》1995,83(2-3):149-161
One of the initial events required for the expression of cartilage-specific macromolecules in monolayer cultures is the reversion to the initial round shape of chondrocytes. Thus, considerable research efforts have focused on developing reliable procedures to maintain a round morphology of cultured chondrocytes. Our study focuses on evaluating the response of dedifferentiated fetal rat chondrocytes to cytochalasin D, an actin-disrupting agent, with special emphasis on the morphological events. Immediately after exposure to the drug, cells round up but flatten again after removing the agent. However, immunocytochemical procedures revealed a disorganization of microfilaments and intermediate filaments. Phase-contrast and scanning electron microscopic observations revealed that on day 6 of culture, cells located at the top of the cell layer adopted a spherical morphology. Prominent differences were noted in control cultures where cells had to aggregate prior to overt chondrogenesis. Transmission electron microscopy confirmed the round morphology of the cells situated at the top layer but also revealed the presence of cell contacts between the cells. In addition, cells located at the central part of the cell layer displayed a typical morphology of mature chondrocytes, separated by an extensive extracellular matrix. These morphological changes occurred parallel to the expression of type II collagen and chondroitin sulfate, both hallmarks of the chondrocyte phenotype strong in experimental cultures, relatively weak in control cultures, and only restricted on areas of polygonal cellular aggregates. Furthermore, [35S]-sulfate incorporation into sulfated glycosaminoglycans increased rapidly with the period of culture to a maximum after 7 days and was then two-fold in treated cultures. Taken together, these findings indicated that cytochalasin D stimulates chondrogenesis in response to modification of cytoskeleton architecture and the subsequent rounding up of the cells. 相似文献
7.
Animal cell shape changes and gene expression. 总被引:16,自引:0,他引:16
A Ben-Ze'ev 《BioEssays : news and reviews in molecular, cellular and developmental biology》1991,13(5):207-212
Cell shape and cell contacts are determined by transmembrane receptor-mediated associations of the cytoskeleton with specific extracellular matrix proteins and with ligands on the surface of adjacent cells. The cytoplasmic domains of these microfilament-membrane associations at the adherens junction sites, also localize a variety of regulatory molecules involved in signal transduction and gene regulation. The stimulation of cells with soluble polypeptide factors leads to rapid changes in cell shape and microfilament component organization. In addition, this stimulation also activates the phosphoinositide signaling pathway. Recently, a linkage between actin-binding proteins and the phosphoinositide signaling pathway, was discovered. It is suggested that by the association with the second messenger system, and/or by controlling the localization of regulatory molecules, the cytoskeleton may regulate gene expression. 相似文献
8.
9.
Male canaries revise their vocal repertoire every year. Early work indicated that the volume and neuron number of the song-control nucleus HVC (Higher Vocal Center) declined in late-summer/fall as birds added and deleted syllables from their repertoire, and increased in spring as the set of song syllables stabilized to a fixed number. Seasonal variation in serum testosterone levels suggested that these changes in brain and behavior were regulated by testosterone (T). However, although initial studies describing growth and regression of HVC used Nissl-staining to define its borders, recent experiments that have measured the distribution of identified populations of HVC cells (projection neurons, hormone target cells) suggest that there are no seasonal changes in HVC volume or neuron number. In order to clarify the role of T in the regulation of HVC morphology, we castrated male canaries, maintained them on short (fall-like) days, and treated them with either T, antisteroid drugs, or nothing. After 1 month of treatment, we used a double-labeling technique to characterize HVC projection neurons and androgen target cells. The results showed that hormonal manipulation influenced HVC volume, the density and size of HVC cells, and the absolute number and percentage of androgen target cells in HVC. Hormonal manipulation did not influence the absolute number of cells in HVC. Moreover, the distribution of projection neurons, androgen target cells, and the Nissl-defined borders of HVC were closely aligned in all experimental groups, indicating that exposure to T and/or its metabolites (estradiol and dihydrotestosterone) regulates the overall size of HVC by affecting the distributions of both projection neurons and androgen target cells. Analysis of double-labeling results suggests that T specifically influences both cell size and the ability to accumulate androgen among HVC neurons that project to the robust nucleus of the archistriatum (RA). The results of this study show that steroid hormones exert potent effects on HVC morphology in male canaries, but differences between our results and studies of seasonal males suggest there may be additional factors that can regulate HVC morphology. © 1993 John Wiley & Sons, Inc. 相似文献
10.
Conceptual models of the atom preceded the mathematical model of the hydrogen atom in physics in the second decade of the 20th century. The computer modeling of the living cell in the 21st century may follow a similar course of development. A conceptual model of the cell called the Bhopalator was formulated in the mid-1980s, along with its twin theories known as the conformon theory of molecular machines and the cell language theory of biopolymer interactions [Ann. N.Y. Acad. Sci. 227 (1974) 211; BioSystems 44 (1997) 17; Ann. N.Y. Acad. Sci. 870 (1999a) 411; BioSystems 54 (2000) 107; Semiotica 138 (1-4) (2002a) 15; Fundamenta Informaticae 49 (2002b) 147]. The conformon theory accounts for the reversible actions of individual biopolymers coupled to irreversible chemical reactions, while the cell language theory provides a theoretical framework for understanding the complex networks of dynamic interactions among biopolymers in the cell. These two theories are reviewed and further elaborated for the benefit of both computational biologists and computer scientists who are interested in modeling the living cell and its functions. One of the critical components of the mechanisms of cell communication and cell computing has been postulated to be space- and time-organized teleonomic (i.e. goal-directed) shape changes of biopolymers that are driven by exergonic (free energy-releasing) chemical reactions. The generalized Franck-Condon principle is suggested to be essential in resolving the apparent paradox arising when one attempts to couple endergonic (free energy-requiring) biopolymer shape changes to the exergonic chemical reactions that are catalyzed by biopolymer shape changes themselves. Conformons, defined as sequence-specific mechanical strains of biopolymers first invoked three decades ago to account for energy coupling in mitochondria, have been identified as shape changers, the agents that cause shape changes in biopolymers. Given a set of space- and time-organized teleonomic shape changes of biopolymers driven by conformons, all of the functions of the cell can be accounted for in molecular terms-at least in principle. To convert a conceptual model of the cell into a computer model, it is necessary to represent the conceptual model in an algebraic language. To this end, we have begun to apply the process algebra of Milner [Communicating and Mobile Systems: The pi-calculus, Cambridge University Press, Cambridge, 1999] to develop what is here called the "shape algebra," capable of describing complex and mobile patterns of interactions among biomolecules leading to cell functions. 相似文献
11.
12.
13.
14.
J A Anstrom 《The Journal of experimental zoology》1992,264(3):312-322
Primary mesenchyme formation in sea urchin embryos occurs when a subset of epithelial cells of the blastula move from the epithelial layer into the blastocoel. The role of microfilaments in producing the cell shape changes that characterize this process, referred to as ingression, was investigated in this study. f-Actin was localized by confocal microscopy using labeled phalloidin. The distribution of f-actin was observed before, during, and after ingression and was correlated with cellular movements. Prior to the onset of ingression, staining became intense in the apical region of putative primary mesenchyme and disappeared following the completion of mesenchyme formation. The apical end of these cells constricted coincidentally with the appearance of the intensified staining, indicating that f-actin may be involved in this constriction. In addition, papaverine, a smooth muscle cell relaxant that interferes with microfilament-based contraction, and that was shown in this study to inhibit cytokinesis, diminished apical constriction and delayed ingression. Despite this interference with apical constriction, the basal surface of ingressing cells protruded into the blastocoel. It is suggested that apical constriction, while not necessary for ingression, does contribute to the efficient production of mesenchyme and that protrusion of the basal surface results from changes that occur independent of apical constriction. 相似文献
15.
16.
Drosophila gastrulation: analysis of cell shape changes in living embryos by three-dimensional fluorescence microscopy. 总被引:3,自引:0,他引:3
The first event of Drosophila gastrulation is the formation of the ventral furrow. This process, which leads to the invagination of the mesoderm, is a classical example of epithelial folding. To understand better the cellular changes and dynamics of furrow formation, we examined living Drosophila embryos using three-dimensional time-lapse microscopy. By injecting fluorescent markers that visualize cell outlines and nuclei, we monitored changes in cell shapes and nuclear positions. We find that the ventral furrow invaginates in two phases. During the first 'preparatory' phase, many prospective furrow cells in apparently random positions gradually begin to change shape, but the curvature of the epithelium hardly changes. In the second phase, when a critical number of cells have begun to change shape, the furrow suddenly invaginates. Our results suggest that furrow formation does not result from an ordered wave of cell shape changes, contrary to a model for epithelial invagination in which a wave of apical contractions causes invagination. Instead, it appears that cells change their shape independently, in a stochastic manner, and the sum of these individual changes alters the curvature of the whole epithelium. 相似文献
17.
Christopher Rose 《BioEssays : news and reviews in molecular, cellular and developmental biology》2009,31(3):287-299
Amphibians that undergo a metamorphosis provide an unparalleled opportunity to investigate how skeletal shape is generated, preserved, and transformed in development. Their pharyngeal arch (PA) cartilages, which support breathing and feeding behaviors, form embryonically from cranial neural crest cells, grow isometrically at larval stages, and abruptly change shape during metamorphosis. Further, the shape changes occur in three different ways: some adult cartilages form de novo, others emerge from within resorbing larval cartilages and some larval cartilages reshape themselves at the cellular level. Isometric growth followed by abrupt shape change is unique to amphibian PA cartilages, which suggests that the origin and evolution of amphibian metamorphosis has been influenced by the tissue properties of cartilage. This essay reviews the functional role of the PA skeleton in frogs and salamanders and presents a mechanistic framework for understanding how its shape is generated, preserved, and transformed at the levels of cell behavior and specification mechanisms. 相似文献
18.
19.
Werner''s syndrome: proliferation in vitro of clones of cells bearing chromosome translocations. 总被引:1,自引:1,他引:1 下载免费PDF全文
S Schonberg M F Niermeijer D Bootsma E Henderson J German 《American journal of human genetics》1984,36(2):387-397
Each of several cultures of Werner's syndrome (WS) fibroblasts and lymphoblasts examined was found to be composed of one or several clones of cells with mutated chromosome complements. Two "sister" fibroblasts cell lines (FCLs) that were derived from a mixture of explants cut from the same WS skin biopsy were found to have completely different rearranged chromosome complements. Daily observation of the skin explants from which these two sister FCLs were derived revealed not only that no more than a few fibroblasts ever migrated from a given explant but also that fibroblasts migrated from only a few of the explants. Two of three lymphoblastoid cell lines (LCLs), each probably developed as an independent clone from a different cell from the same WS blood sample, were mosaic, comprised of cells having both normal and rearranged chromosome complements. The third LCL studied, although nonmosaic, had a rearranged chromosome complement, but one that was completely different from those in the other two lines. Based on the observations described, hypotheses have been formulated to explain both the preponderance in long-term WS cultures of clones with mutated chromosome complements and the abbreviated lifespan characteristic of WS fibroblast cultures. 相似文献
20.
PGE2 induced shape changes in porcine adventitial fibroblasts grown on glass in low density monolayer cell cultures. Incubation of the cells with PGE2 at concentrations of 100 ng/ml and 1000 ng/ml induced rounding of flat fibroblasts within one hour. The rounded cells had a small rim of cytoplasm around the nucleus and from one to several long thin arborizing cytoplasmic processes extending outward along the substratum. Removal of the PGE2 resulted in transient blebbing of the cell membrane of both the cell body and the processes as the cells returned to their flat normal morphology within one hour. The effect could be inhibited by 1% fetal calf serum. PGF2α did not however induce similar changes. This difference between PGE2 and PGF2α is similar to a report on spreading and migration of mouse peritoneal macrophages, and suggests that under certain conditions PGE2 may have the ability to induce shape changes in cells. 相似文献