首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p-Antimonybenzenesulfonyl fluoride and p-mercurybenzenesulfonyl fluoride irreversibly inhibit chymotrypsin (EC 3.4.21.1), trypsin (EC 3.4.21.4), and chromosomal protease, and these inhibitors appear to be as active as phenylmethanesulfonyl fluoride. The pretreatment of the proteases interferes with the phosphorylation of the active-site serine by diisopropylfluorophosphate suggesting that the organometallic inhibitors may also interact with the active site serine. The organometallic inhibitors may be used for localization of proteases in different parts of the cell by electron microscopy and p-mercurybenzenesulfonyl fluoride could also be used for isolation of proteases by sulfhydryl affinity chromatography.  相似文献   

2.
The metal content of carboxypeptidase Y was analyzed by the atomic absorption method. After exhaustive dialysis against an EDTA solution, the enzyme showed no loss of activity nor any significant content of metals (Zh,Mg,Ca,Cu,Mn,Ni,Fe, and Co). The activity was, however, rather sensitive to preincubation with various metals. The reactivity of a serine residue of the enzyme was also reevaluated. Diisopropyl fluorophosphate (DFP) and phenylmethanesulfonyl fluoride (PMSF) stoichiometrically and irreversively inhibited the enzyme. The rate of inactivation with DFP was much faster than that for typsin [EC 3.4.21.4] and chymotrypsin [EC 3.4.21.1.], while the rate with PMSF was one-fifteenth of that for chymotrypsin. The pH-dependence of the inactivation by DFP was similar to that of the enzymatic hydrolysis of acetylphenylalanine ethyl ester. The present results indicate that carboxypeptidase Y is free of metals and has a serine residue with a vital role in the catalytic process, though the functional role of this SH group remains to be clarified.  相似文献   

3.
NMR and ESR spectroscopies have been used to examine the plasma protease inhibitor pregnancy zone protein (PZP) and its complex with chymotrypsin. The 1H NMR spectrum of PZP shows relatively few sharp resonances, which, by analogy with human alpha 2-macroglobulin, probably arise from the proteolytically sensitive bait region. Upon reaction with chymotrypsin to form a 1:1 protease.PZP tetramer complex, there is a large increase in the intensity of sharp resonances due to an increase in mobility of these residues. 35Cl NMR has been used to follow binding of zinc and manganese to apo-PZP. Zinc binding causes a linear broadening of the bulk Cl-, consistent with access of Cl- to PZP-bound zinc. Since zinc in the two highest affinity sites in human alpha 2-macroglobulin causes no broadening of Cl-, it is concluded that these zinc sites are absent from PZP. The mobility of chymotrypsin in the PZP.chymotrypsin complex was examined by covalently attaching a nitroxide spin label at the serine residue in the active site of the enzyme and examining the appearance of the ESR spectrum. The chymotrypsin is rigidly held by the PZP to which it is covalently bound. In an analogous experiment performed previously on alpha 2-macroglobulin, chymotrypsin, bound in the presence of methylamine and therefore largely noncovalently bound, was found to be free to rotate inside the cage formed by the protease inhibitor.  相似文献   

4.
The phosphoryl group on the serine residue at the active site of phosphoglucomutase is presumed to undergo nucleophilic attack by the monophosphate substrates glucose 1- and glucose 6-phosphate to form glucose 1,6-diphosphate. Fluoride, hydroxylamine, and several thiol compounds have now been shown to serve as effective nucleophiles toward the active phosphate and result in the dephosphorylation of phosphoglucomutase. The more extensively studied nucleophiles, cysteine, hydroxylamine, and fluoride, are effective at a concentration as low as 1 mM with a relative reactivity of 40, 2, and 1, respectively. The reaction proceeds as long as the catalytic activity of the enzyme is maintained. Inactivation of the enzyme abolishes dephosphorylation by all nucleophilic reagents thus far studied. The dephosphorylation reaction shows optimal activity of pH 6.5. The rate of dephosphorylation exhibits saturation kinetics. With fluoride the Km is 534 mM. Dephosphorylation by fluoride is stimulated by some but not all bivalent cations. Cu+ and Co2+ are the most effective. Cu2+ not only augments the reaction with fluoride but also facilitates a nucleophilic attack by water, in the absence of the halogen, to yield inorganic phosphate. No augmentation of the rate of dephosphorylation by bivalent cations can be elicited with either cysteine or hydroxylamine. The products of the fluoride reaction are phosphorofluoridate, a small but variable amount of inorganic phosphate, and a fully active dephosphoenzyme. By constrast, cysteine and hydroxylamine yield inorganic phosphate and a partially inactive enzyme. The dephosphorylation rate varies with temperature. Arrhenius plots for the fluoride reaction reveal two distinct slopes. The heat of activation between 5-37 degrees was found to be 10.2 Cal per mol. Between 0-5 degrees, however, it was considerably greater amounting to 24.3 Cal per mol.  相似文献   

5.
6.
The interaction between complement component factor B and the triazine dye ligand Cibacron Blue F3G-A coupled to a cross-linked agarose matrix (Blue Sepharose) was found to involve the Bb part of the molecule, and to be inhibited by benzamidine. Human, chicken and rainbow trout factor B which had bound to Blue Sepharose could subsequently be eluted with benzamidine. Other serine proteases (C2, factor II, factor IX, trypsin, chymotrypsin, proteinase 3) also bound to Blue Sepharose but only those belonging to the trypsin family could be eluted with benzamidine. Trypsin treated with the active-site inhibitor phenylmethylsulfonyl fluoride did not bind to Blue Sepharose and pretreatment of Blue Sepharose with benzamidine did not influence binding of proteases. We conclude that trypsin-like serine proteases can be purified on Blue Sepharose and that the interaction of these serine proteases with Blue Sepharose involves the active site of the enzyme.  相似文献   

7.
Prostate-specific antigen (PSA) is one of the three most abundant prostatic-secreted proteins in human semen. It is a serine proteinase that, in its primary structure, manifests extensive similarities with that of the Arg-restricted glandular kallikrein-like proteinases. When isolated from semen by the addition of chromatography on aprotinin-Sepharose to a previously described procedure, PSA displayed chymotrypsin-like activity and cleaved semenogelin and the semenogelin-related proteins in a rapid and characteristic pattern, but had no trypsin-like activity. About one third of the purified protein was found to be enzymatically inactive, due to cleavage carboxy-terminal of Lys145. Active PSA formed SDS-stable complexes with alpha 1-antichymotrypsin, alpha 2-macroglobulin-analogue pregnancy zone protein. PSA formed inhibitory complexes with alpha 1-antichymotrypsin at a molar ratio of 1:1, a reaction in which PSA cleaved the inhibitor in a position identical to that reported from the reaction between chymotrypsin and alpha 1-antichymotrypsin. The formation of stable complexes between PSA and alpha 1-antichymotrypsin occurred at a much slower rate than that between chymotrypsin and alpha 1-antichymotrypsin, and at a similar or slightly slower rate than that between PSA and alpha 2-macroglobulin. When added to normal blood plasma in vitro, active PSA formed stable complexes both with alpha 2-macroglobulin and alpha 1-antichymotrypsin. This complex formation may be a crucial determinant of the turnover of active PSA in intercellular fluid or blood plasma in vivo.  相似文献   

8.
The effect of ingesting isocaloric and isonitrogenous diets with increasing amounts of lipid (0-30%) and consequently decreasing amounts of carbohydrates (68.7-1.25%) on the exocrine pancreas was studied in adult male Wistar rats. Pancreatic contents of chymotrypsin, lipase and colipase activity, as well as synthesis of amylase, lipase, procarboxypeptidases and individual serine proteases were examined. Lipid-free diets and diets containing 1% lipid were found to have little effect on pancreatic proteins as compared with lipid-rich diets where two distinct patterns of response were observed. Ingestion of diets containing 3-20% lipid resulted in a progressive increase in the activity of lipase, colipase and chymotrypsin up to 2-fold in the first case and 1.6-fold in the two other cases when animals were fed the 20% fat diet. Under the latter conditions, the relative synthesis of secretory proteins, as expressed as percentage of the radioactivity incorporated into individual proteins compared to that incorporated into the total mixture of exocrine proteins, was unchanged for procarboxypeptidases, whereas it was stimulated for lipase (2-fold) and serine proteases (1.6-fold). Amylase relative synthesis progressively decreased as the lipid content of diets increased. Consumption of hyperlipidic diets containing 25% and 30% fat resulted in a further enhancement in the activity of lipase and colipase in the gland in contrast with chymotrypsin activity which was unchanged as compared to the control diet (3% lipid). As far as biosynthesis was concerned, a plateau in the relative synthesis of lipase and serine protease was reached. Amylase relative synthesis further decreased down to 2.2-fold when rats were fed the 30% fat-rich diet whereas that of procarboxypeptidases was markedly increased (about 1.7-fold). Absolute rates of synthesis of total pancreatic secretory proteins, as expressed with regard to the DNA content of the tissue, indicated that biosynthesis of all secretory pancreatic proteins was stimulated by hyperlipidic diets (at least 2-fold with the 30% lipid diet). Consequently, when such an increase was taken into consideration, the absolute synthesis of amylase was found to be unchanged throughout the dietary manipulations, whereas that of lipase, procarboxypeptidases and serine proteases were stimulated by 4.0-fold, 3.4-fold and 3.2-fold, respectively.  相似文献   

9.
Three variants of a chymotrypsin-like protease were purified from scallop digestive glands successively by ion-exchange, gel filtration and high-performance liquid chromatographies. Enzyme activity was detected using succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as a specific synthetic substrate for chymotrypsin. This proteinase was inhibited by chymostatin, diisopropylfluorophosphate and phenylmethylsulfonyl fluoride. Estimated molecular mass of the purified enzyme is around 32 kDa. These isoenzymes exhibit very low activities in hydrolyzing small synthetic specific substrates used for trypsic, elastolytic and collagenolytic measurements and referred mainly to a chymotrypsin-like proteinase. Very few differences were measured concerning pH profiles among the three isoenzymes. Stability is higher at low temperature for two variants. An N-terminal analysis was performed on one variant (B) among the three isoenzymes. The alignment of the N-terminal amino acid sequence indicates some homologies with abalone chymotrypsin-like protein and arthropod chymotrypsin proteases as well as with vertebrate serine protease counterparts (trypsin, chymotrypsin and elastase).  相似文献   

10.
Miyazaki K  Tsugita A 《Proteomics》2006,6(7):2026-2033
A successive C-terminal amino acid truncation reaction with acetic anhydride was applied on proteins in polyacrylamide gel. Protein bands separated by conventional SDS-PAGE were excised, partially fixed in the gel with glutaraldehyde ethanol solution, dehydrated with ACN and subjected to the truncation reaction with acetic anhydride formamide solution. Pre-treatment of the gel with pyridine aqueous solution was found to enhance the truncation reaction yields. After the truncation reaction, the products were treated with an aqueous solution of dimethylaminoethanol to hydrolyze oxazolone rings at the C termini of the truncated products and O-acetylated products of serine, threonine and/or tyrosine. Several commercially available proteins of 10-40 kDa, as determined by SDS-PAGE, such as myoglobin, trypsin inhibitor, alpha-hemolysin, cytochrome c, chymotrypsin C chain, elastase, acylase and histone H4, were subjected to the C-terminal analysis. The truncated proteins were in-gel digested with trypsin and the extracted peptides were analyzed by MALDI-TOF MS, giving rise to a series of molecular mass ions of the C-terminal truncated fragments corresponding to the C-terminal amino acid sequence of the relevant protein.  相似文献   

11.
A serine protease was isolated from midguts of the bumblebee male Bombus terrestris by a combination of precipitation procedures with column chromatography. The purified enzyme exhibited two bands with molecular masses of 25 and 26 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These bands showed a proteolytic activity in zymography assay. Midgut enzymes showed optimum proteolytic activity at pH 9 and 35°C using N‐succinyl‐L‐alanyl‐L‐alanyl‐L‐prolyl‐L‐phenyl‐alanine 4‐nitroanilide as a substrate. The Michaelis constant (Km) and maximum reaction rate (Vmax) were 0.55 ± 0.042 mM and 0.714 ± 0.056 μmol p‐nitroalanine produced min?1 mg protein?1, respectively. Inhibition was affected by trypsin inhibitor, but not by phenylmethylsulfonyl fluoride and N‐tosyl‐L‐phenylalanine chloromethyl ketone, which indicated the trypsin‐like but not chymotrypsin‐like specificity. The identity of the serine protease was confirmed by nanoliquid‐tandem mass spectrometry. Eleven unique peptides of the B. terrestris serine protease were found. It shows high homology to a previously reported B. ignitus serine protease covering more than 65% of the protein amino acid sequence.  相似文献   

12.
A colorimetric method for serine protease inhibition was modified using N-Acetyl-DL-Phenylalanine beta-Naphthylester (APNE) as the substrate and o-Dianisidine tetrazotized (oD) as the dye. The reaction generated a single peak absorbing at 530 nm for both trypsin and chymotrypsin. Standard curves with increasing enzyme concentrations showed strong linearity. A standard curve for the serine protease inhibitor, Bowman-Birk Inhibitor (BBI), has been made using this modified method. The IC50 for 3 U of trypsin was found to be 33 ng and the IC50 obtained for 3 mU of chymotrypsin was 53 ng. A recombinant BBI (rBBI) gene was constructed, cloned and expressed in the yeast Pichia pastoris. Evaluating samples of rBBI for protease inhibitory activity by the gel activity method failed to quantify the inhibitor amounts, due to high sensitivity for trypsin inhibition and low sensitivity for chymotrypsin inhibition. After development, the results could not be quantified, even to the extent that 1 microl of rBBI could not be detected with chymotrypsin inhibition. Therefore, a modified method for trypsin and chymotrypsin inhibition was used to evaluate the level of rBBI-expression for these same samples. The level of rBBI expression was calculated to be 50-56 ng/microl of media. These amounts fit into the range of values previously obtained by Western blot analysis. This modified method allows us to combine the sensitivity of the gel activity method with the quantification attributes of a Western blot. Thus, the modified method represents a significant improvement in speed, sensitivity and reproducibility over the gel activity method.  相似文献   

13.
Venom of the puff adder (Bitis arietans) contains a potent, basic, Mr 24,000 metalloproteinase activity that can destroy all detectable trypsin and chymotrypsin inhibitory activity, when venom is incubated with human plasma. We have found that during such incubation, concomitant activation of inactive renin occurs. In an examination of the mechanism involved we now report the activation, in addition, of plasma prekallikrein and serine proteinase activity, but not plasminogen, when human plasma is incubated with venom. Furthermore, venom was not able to release active trypsin from its complex with alpha 1-proteinase inhibitor and human renin was not inhibited by alpha 1-proteinase inhibitor. The activities in venom and venom/plasma mixtures were analysed using Sephacryl S-200 gel filtration and the effect of 10 mM EDTA and 5 mM phenylmethanesulphonyl fluoride on activities in column fractions was tested. The inactive-renin-activating, plasma prekallikrein-activating and serine proteinase-activating activities could be accounted for to a large extent by a venom metalloproteinase which was estimated to have a Mr of 24,000 by sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis. This enzyme activity appeared to complex with alpha 2-macroglobulin when venom was mixed with plasma. Since both EDTA and phenylmethanesulphonyl fluoride could inhibit the activation of inactive renin by this metalloproteinase, it is suggested that the enzyme activates serine proteinase(s), which then activate inactive renin. Plasma kallikrein may have a role in this process. Additional peaks of inactive-renin-activating activity eluted from Sephacryl S-200 at Mr 30,000 and 80,000 (minor) and an additional, minor peak of caseinolytic activity eluted at Mr 60,000. The Mr 24,000 metalloproteinase in venom may have considerable utility in activating inactive renin at physiological pH owing to its ability to destroy plasma proteinase inhibitors at the same time.  相似文献   

14.
Soybean lipoxygenase 1 was studied using limited proteolysis and active-site labeling to begin the structural characterization of the enzyme in solution. The serine proteases trypsin and chymotrypsin cleaved the large monomeric protein (95 kDa) into two large polypeptides, a C-terminal fragment of about 30 kDa and an N-terminal fragment of about 60 kDa. Under conditions that led to complete cleavage of the protein as judged by SDS-polyacrylamide gel electrophoresis, the catalytic activity of the protein was either reduced slightly (chymotrypsin) or enhanced (trypsin). The characteristics of the cleaved enzymes were the same as for native lipoxygenase 1 in all aspects examined: insensitivity to cyanide, fluoride, and EDTA, regiochemical and stereochemical consequences of catalysis, and EPR spectroscopy upon oxidation by product. The two fragments apparently were tightly associated as they could not be resolved under conditions which preserved the catalytic activity. Both native and protease-cleaved lipoxygenase 1 formed covalent adducts when treated with either 14C-phenylhydrazine or 4-nitrophenylhydrazine. The label was found only in the 60-kDa fragment and following complete trypsin digestion was associated with a peptide beginning after Lys-482 in the primary sequence. Therefore labeling occurred in the vicinity of the conserved histidine cluster which has been postulated as the iron-binding site. From these observations it appears that lipoxygenase 1 exists as a pair of tightly associated domains with the iron-binding site located in the larger of the two.  相似文献   

15.
16.
The influence of proteinase inhibitors on the lipotropic effect of somatotropic (STH), adrenocorticotropic (ACTH) and beta-lipotropic (LPH) hormones in adipose tissue was studied in vitro. The effect of STH was found to be completely dependent on the activity of tissue serine proteinases of trypsin and chymotrypsin types. The effect of LPH partly depended on serine proteinases of chymotrypsin type, whereas that of ACTH--on chymotrypsin and carboxylic proteinases. The effects of all the three hormones were also manifested during lysosomal proteolysis. The protease-dependent inhibition was specific for polypeptide hormones and was unobserved in the lipotropic effect of adrenaline. The inhibiting effect of serine proteinase inhibitors on hormones pretreated with blood plasma or proteinases was much weaker than on untreated hormones. In adipose tissue the early insulin-like effect of STH, unlike the late lipotropic effect, was independent of proteolysis. It was assumed that primary proteolysis plays a role in the activation of polypeptide hormones which is necessary for the manifestation of the lipotropic action.  相似文献   

17.
Serine proteases, ubiquitous enzymes known to function in digestion and immune protection in both vertebrates and invertebrates and implicated in regeneration in some species, were investigated in the California blackworm, Lumbriculus variegatus. Several serine proteases, rather than a single enzyme with broad specificity, were present in tissue extracts from the worms. Extracts were treated with a fluorescein‐labeled peptide chloromethyl ketone that specifically binds to trypsin/thrombin‐like proteases. Denaturing gel electrophoresis of labeled extracts showed several serine proteases with their molecular weight ranging 28,000–38,000 daltons. The trypsin/thrombin‐like activity was localized, using the fluorescein‐conjugated reagent, to the pharynx and digestive tract of L. variegatus. Movement of cells labeled by the reagent into regenerating tissues suggests that some differentiated endodermal tissues were used for reformation of digestive structures during regeneration in L. variegatus. The types of serine proteases in the extracts were further characterized by inhibitor studies. Presence of plasmin‐like activity was indicated by degradation of fibrin by tissue homogenates from the worms and the inhibitory effect of aprotinin on enzymes in these extracts. The ability of L. variegatus extracts to generate clots when incubated with rabbit plasma and partial inhibition of extract activity by phenylmethylsulfonyl fluoride and hirudin indicated presence of thrombin‐like activity. Consistent with the detection of trypsin, chymotrypsin, and plasmin‐like enzymes in the extracts was partial inhibition of L. variegatus serine protease activity by aminoethyl benzenesulfonyl fluoride and soybean trypsin inhibitor. Selective inhibition of chymotrypsin‐like activity by N‐tosyl‐l ‐phenylalanine chloromethyl ketone and chymostatin as well as trypsin‐like activity by N‐tosyl‐l ‐lysine chloromethyl ketone was observed. A potential role during regeneration for serine proteases is suggested by blockage of formation of head and tail structures by aminoethyl benzenesulfonyl fluoride, an inhibitor of these proteases.  相似文献   

18.
Spink E  Hewage C  Malthouse JP 《Biochemistry》2007,46(44):12868-12874
The peptide-derived glyoxal inhibitor Z-Ala-Pro-Phe-glyoxal, where Z is benzyloxycarbonyl, is an extremely potent inhibitor of chymotrypsin. When it is bound to chymotrypsin both the glyoxal (RCOCHO) keto and aldehyde carbons are sp3 hybridized with chemical shifts of 100.7 and 91.4 ppm, respectively. However it is has not been shown whether these carbons are bound as hydrates or whether the active-site serine has reacted with them to form the corresponding hemiketal or hemiacetal. In this study we use 18O isotope shifts to determine whether one or two exchangeable oxygen atoms are attached to the glyoxal keto or aldehyde carbons when it is free in water or bound to alpha-chymotrypsin. Both the 18O isotope shifts at the free and enzyme-bound aldehyde carbons were approximately 0.04 ppm showing that it is hydrated in both the free and bound forms. The 18O isotope shift for the free hydrated keto carbon at 96.6 ppm was 0.046-0.049 ppm, but this was reduced to 0.026 ppm when the glyoxal inhibitor was bound to alpha-chymotrypsin showing that the nonexchangeable serine hydroxyl group has formed a hemiketal with glyoxal keto carbon. Deuterium isotope shifts on the 13C NMR signals from the glyoxal inhibitor when it free and hydrated, when it is bound to chymotrypsin, as well as when it forms a model hemiketal confirm that the serine hydroxyl group has formed a hemiketal with the glyoxal keto carbon. The reasons for the different reaction specificities of glyoxal inhibitors for the active-site nucleophiles of serine and cysteine proteases are discussed.  相似文献   

19.
U Sreenivasan  P H Axelsen 《Biochemistry》1992,31(51):12785-12791
Buried water molecules in the structurally homologous family of eukaryotic serine proteases were examined to determine whether buried waters and their protein environments are conserved in these proteins. We found 16 equivalent water sites conserved in trypsin/ogen, chymotrypsin/ogen, elastase, kallikrein, thrombin, rat tonin and rat mast cell protease, and 5 additional water sites in enzymes which share the primary specificity of trypsin. Based on an alignment of 30 serine protease sequences, it appears that the protein environments of these 21 conserved buried waters are highly conserved. The protein environments of buried waters are comprised primarily of atoms from highly conserved residues or main chain atoms from nonconserved residues. In one instance, the protein environment of a water is conserved even in the presence of an unlikely Pro/Ala substitution. We also note 3 instances in which a histidine side chain substitutes for water, suggesting that the structural role of water at these sites is satisfied by the presence of an alternative hydrogen bonding partner. Buried waters appear to be integral structural components of these proteins and should be incorporated into protein structures predicted on the basis of sequence homology to this family, including the catalytic domains of coagulation proteases.  相似文献   

20.
Protease susceptibility of homologous proteins in their native conformations was studied. This work aims to establish a broad and quantitative basis for the utilization of protease digestion to analyze the local stability of native proteins. Using high-performance liquid chromatography (HPLC) the time course of the proteolytic degradation of intact proteins was quantitatively traced. Rapid separation of peptide fragments with HPLC made possible the elucidation of sequential digestion originating from the cleavage at a very few sites which are locally unstable in the protein structure. Using four serine proteases, chymotrypsin, trypsin, elastase and subtilisin BPN', we found some common trends in proteolysis for a group of proteins of the cytochrome c family. By comparing of the proteolysis and thermal denaturation with ten homologous cytochromes c extracted from horse, beef, Candida krusei, Saccharomyces cerevisiae, chicken, tuna, pigeon, rabbit, dog and rat, protease susceptibility was related to locally unfolding states intrinsic to the native conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号